Skip to main content
Top
Published in: BMC Pediatrics 1/2018

Open Access 01-12-2018 | Research article

Newborn weight change and childhood cardio-metabolic traits – a prospective cohort study

Authors: Maria João Fonseca, Milton Severo, Debbie A. Lawlor, Henrique Barros, Ana Cristina Santos

Published in: BMC Pediatrics | Issue 1/2018

Login to get access

Abstract

Background

Newborn weight change (NWC) in the first 4 days represents short-term adaptations to external environment. It may be a key developmental period for future cardio-metabolic health, but this has not been explored. We aimed to determine the associations of NWC with childhood cardio-metabolic traits.

Methods

As part of Generation XXI birth cohort, children were recruited in 2005/2006 at all public units providing obstetrical and neonatal care in Porto. Birthweight was abstracted from clinical records and postnatal anthropometry was obtained by trained examiners during hospital stay. NWC was calculated as ((minimum weight - birthweight)/birthweight) × 100. At age 4 and 7, children were measured and had a fasting blood sample collected. Fasting glucose, LDL-cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressure were evaluated. This study included 312 children with detailed information on growth in very early life and subsequent cardio-metabolic measures. Path analysis was used to compute adjusted regression coefficients and 95% confidence intervals.

Results

NWC was not associated with any cardio-metabolic traits at ages 4 or 7. Strong associations were observed between each cardio-metabolic trait at 4 with the same trait at 7 years. The strongest associations were found for waist circumference [0.725 (0.657; 0.793)] and LDL-cholesterol [0.655 (0.575; 0.735)].

Conclusions

No evidence that NWC is related to childhood cardio-metabolic traits was found, suggesting that NWC should be faced in clinical practice as a short-term phenomenon, with no medium/long term consequences, at least in cardio-metabolic health. Our results show strong tracking correlations in cardio-metabolic traits during childhood.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362–74.CrossRefPubMed Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362–74.CrossRefPubMed
2.
go back to reference Lassale C, Tzoulaki I, Moons KGM, Sweeting M, Boer J, Johnson L, Huerta JM, Agnoli C, Freisling H, Weiderpass E, et al. Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. Eur Heart J. 2018;39(5):397–406.CrossRefPubMedPubMedCentral Lassale C, Tzoulaki I, Moons KGM, Sweeting M, Boer J, Johnson L, Huerta JM, Agnoli C, Freisling H, Weiderpass E, et al. Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. Eur Heart J. 2018;39(5):397–406.CrossRefPubMedPubMedCentral
3.
go back to reference Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7.CrossRefPubMed Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7.CrossRefPubMed
4.
go back to reference Lakshmy R. Metabolic syndrome: role of maternal undernutrition and fetal programming. Rev Endocr Metab Disord. 2013;14(3):229–40.CrossRefPubMed Lakshmy R. Metabolic syndrome: role of maternal undernutrition and fetal programming. Rev Endocr Metab Disord. 2013;14(3):229–40.CrossRefPubMed
5.
go back to reference Chiavaroli V, Marcovecchio ML, de Giorgis T, Diesse L, Chiarelli F, Mohn A. Progression of cardio-metabolic risk factors in subjects born small and large for gestational age. PLoS One. 2014;9(8):e104278.CrossRefPubMedPubMedCentral Chiavaroli V, Marcovecchio ML, de Giorgis T, Diesse L, Chiarelli F, Mohn A. Progression of cardio-metabolic risk factors in subjects born small and large for gestational age. PLoS One. 2014;9(8):e104278.CrossRefPubMedPubMedCentral
8.
go back to reference Beilin L, Huang RC. Childhood obesity, hypertension, the metabolic syndrome and adult cardiovascular disease. Clin Exp Pharmacol Physiol. 2008;35(4):409–11.CrossRefPubMed Beilin L, Huang RC. Childhood obesity, hypertension, the metabolic syndrome and adult cardiovascular disease. Clin Exp Pharmacol Physiol. 2008;35(4):409–11.CrossRefPubMed
9.
go back to reference Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290–6.CrossRefPubMed Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290–6.CrossRefPubMed
10.
go back to reference Hardy R, Lawlor DA, Kuh D. A life course approach to cardiovascular aging. Futur Cardiol. 2014;11(1):101–13.CrossRef Hardy R, Lawlor DA, Kuh D. A life course approach to cardiovascular aging. Futur Cardiol. 2014;11(1):101–13.CrossRef
11.
go back to reference Howe LD, Tilling K, Benfield L, Logue J, Sattar N, Ness AR, Smith GD, Lawlor DA. Changes in ponderal index and body mass index across childhood and their associations with fat mass and cardiovascular risk factors at age 15. PLoS One. 2011;5(12):e15186.CrossRef Howe LD, Tilling K, Benfield L, Logue J, Sattar N, Ness AR, Smith GD, Lawlor DA. Changes in ponderal index and body mass index across childhood and their associations with fat mass and cardiovascular risk factors at age 15. PLoS One. 2011;5(12):e15186.CrossRef
12.
go back to reference Noel-Weiss J, Courant G, Woodend AK. Physiological weight loss in the breastfed neonate: a systematic review. Open Med. 2008;2(4):e99–e110.PubMedPubMedCentral Noel-Weiss J, Courant G, Woodend AK. Physiological weight loss in the breastfed neonate: a systematic review. Open Med. 2008;2(4):e99–e110.PubMedPubMedCentral
13.
go back to reference Fonseca MJ, Severo M, Santos AC. A new approach to estimating weight change and its reference intervals during the first 96 hours of life. Acta Paediatr. 2015;104(10):1028–34.CrossRefPubMed Fonseca MJ, Severo M, Santos AC. A new approach to estimating weight change and its reference intervals during the first 96 hours of life. Acta Paediatr. 2015;104(10):1028–34.CrossRefPubMed
14.
go back to reference Bell EF, Warburton D, Stonestreet BS, Oh W. Effect of fluid administration on the development of symptomatic patent ductus arteriosus and congestive heart failure in premature infants. N Engl J Med. 1980;302(11):598–604.CrossRefPubMed Bell EF, Warburton D, Stonestreet BS, Oh W. Effect of fluid administration on the development of symptomatic patent ductus arteriosus and congestive heart failure in premature infants. N Engl J Med. 1980;302(11):598–604.CrossRefPubMed
15.
go back to reference van Dommelen P, van Wouwe JP, Breuning-Boers JM, van Buuren S, Verkerk PH. Reference chart for relative weight change to detect hypernatraemic dehydration. Arch Dis Child. 2007;92(6):490–4.CrossRefPubMed van Dommelen P, van Wouwe JP, Breuning-Boers JM, van Buuren S, Verkerk PH. Reference chart for relative weight change to detect hypernatraemic dehydration. Arch Dis Child. 2007;92(6):490–4.CrossRefPubMed
16.
go back to reference Larsen PS, Kamper-Jorgensen M, Adamson A, Barros H, Bonde JP, Brescianini S, Brophy S, Casas M, Charles MA, Devereux G, et al. Pregnancy and birth cohort resources in europe: a large opportunity for aetiological child health research. Paediatr Perinat Epidemiol. 2013;27(4):393–414.CrossRefPubMed Larsen PS, Kamper-Jorgensen M, Adamson A, Barros H, Bonde JP, Brescianini S, Brophy S, Casas M, Charles MA, Devereux G, et al. Pregnancy and birth cohort resources in europe: a large opportunity for aetiological child health research. Paediatr Perinat Epidemiol. 2013;27(4):393–414.CrossRefPubMed
17.
go back to reference Gibson RS. Principles of nutritional assessment, 2nd edn. New York, NY, USA: Oxford University Press; 2005. Gibson RS. Principles of nutritional assessment, 2nd edn. New York, NY, USA: Oxford University Press; 2005.
18.
go back to reference National High Blood Pressure Education Program Working Group on High Blood Pressure in C, Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76. National High Blood Pressure Education Program Working Group on High Blood Pressure in C, Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.
19.
go back to reference Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.PubMed Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.PubMed
20.
go back to reference Yuan KH, Bentler PM. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. In: Sobel, Becker, editors. Sociological Methodology; 2000. p. 165–200. Yuan KH, Bentler PM. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. In: Sobel, Becker, editors. Sociological Methodology; 2000. p. 165–200.
21.
22.
go back to reference Tucker L, Lewis C. A reliability coefficient for maximum likelihood factor analysis. Psychometrika. 1973;38:1–10.CrossRef Tucker L, Lewis C. A reliability coefficient for maximum likelihood factor analysis. Psychometrika. 1973;38:1–10.CrossRef
23.
go back to reference Steiger JH. Structural model evaluation and modification. An interval estimation approach. Multivar Behav Res. 1990;25:173–80.CrossRef Steiger JH. Structural model evaluation and modification. An interval estimation approach. Multivar Behav Res. 1990;25:173–80.CrossRef
24.
go back to reference Friend A, Craig L, Turner S. The prevalence of metabolic syndrome in children: a systematic review of the literature. Metab Syndr Relat Disord. 2013;11(2):71–80.CrossRefPubMed Friend A, Craig L, Turner S. The prevalence of metabolic syndrome in children: a systematic review of the literature. Metab Syndr Relat Disord. 2013;11(2):71–80.CrossRefPubMed
25.
go back to reference Camhi SM, Katzmarzyk PT. Tracking of cardiometabolic risk factor clustering from childhood to adulthood. Int J Pediatr Obes : IJPO : an official journal of the International Association for the Study of Obesity. 2010;5(2):122–9.CrossRef Camhi SM, Katzmarzyk PT. Tracking of cardiometabolic risk factor clustering from childhood to adulthood. Int J Pediatr Obes : IJPO : an official journal of the International Association for the Study of Obesity. 2010;5(2):122–9.CrossRef
26.
go back to reference De Henauw S, Michels N, Vyncke K, Hebestreit A, Russo P, Intemann T, Peplies J, Fraterman A, Eiben G, de Lorgeril M, et al. Blood lipids among young children in Europe: results from the European IDEFICS study. Int J Obes. 2014;38(Suppl 2):S67–75.CrossRef De Henauw S, Michels N, Vyncke K, Hebestreit A, Russo P, Intemann T, Peplies J, Fraterman A, Eiben G, de Lorgeril M, et al. Blood lipids among young children in Europe: results from the European IDEFICS study. Int J Obes. 2014;38(Suppl 2):S67–75.CrossRef
27.
go back to reference Jolliffe CJ, Janssen I. Distribution of lipoproteins by age and gender in adolescents. Circulation. 2006;114(10):1056–62.CrossRefPubMed Jolliffe CJ, Janssen I. Distribution of lipoproteins by age and gender in adolescents. Circulation. 2006;114(10):1056–62.CrossRefPubMed
28.
go back to reference Mascarenhas LP, Leite N, Titski AC, Brito LM, Boguszewski MC. Variability of lipid and lipoprotein concentrations during puberty in Brazilian boys. J Pediatr Endocrino Metab : JPEM. 2015;28(1–2):125–31. Mascarenhas LP, Leite N, Titski AC, Brito LM, Boguszewski MC. Variability of lipid and lipoprotein concentrations during puberty in Brazilian boys. J Pediatr Endocrino Metab : JPEM. 2015;28(1–2):125–31.
29.
go back to reference Lawlor DA. The Society for Social Medicine John Pemberton Lecture 2011. Developmental overnutrition--an old hypothesis with new importance? Int J Epidemiol. 2013;42(1):7–29.CrossRefPubMed Lawlor DA. The Society for Social Medicine John Pemberton Lecture 2011. Developmental overnutrition--an old hypothesis with new importance? Int J Epidemiol. 2013;42(1):7–29.CrossRefPubMed
30.
go back to reference Ekelund U, Ong KK, Linne Y, Neovius M, Brage S, Dunger DB, Wareham NJ, Rossner S. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J Clin Endocrinol Metab. 2007;92(1):98–103.CrossRefPubMed Ekelund U, Ong KK, Linne Y, Neovius M, Brage S, Dunger DB, Wareham NJ, Rossner S. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J Clin Endocrinol Metab. 2007;92(1):98–103.CrossRefPubMed
31.
go back to reference Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life: longitudinal study. BMJ. 2001;322(7292):949–53.CrossRefPubMedPubMedCentral Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life: longitudinal study. BMJ. 2001;322(7292):949–53.CrossRefPubMedPubMedCentral
32.
go back to reference Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetol. 2003;46(2):190–4.CrossRef Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetol. 2003;46(2):190–4.CrossRef
33.
go back to reference Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320(7240):967–71.CrossRefPubMedPubMedCentral Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320(7240):967–71.CrossRefPubMedPubMedCentral
34.
go back to reference Stettler N, Stallings VA, Troxel AB, Zhao J, Schinnar R, Nelson SE, Ziegler EE, Strom BL. Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation. 2005;111(15):1897–903.CrossRefPubMed Stettler N, Stallings VA, Troxel AB, Zhao J, Schinnar R, Nelson SE, Ziegler EE, Strom BL. Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation. 2005;111(15):1897–903.CrossRefPubMed
35.
go back to reference Andersen LG, Holst C, Michaelsen KF, Baker JL, Sorensen TI. Weight and weight gain during early infancy predict childhood obesity: a case-cohort study. Int J Obes. 2012;36(10):1306–11.CrossRef Andersen LG, Holst C, Michaelsen KF, Baker JL, Sorensen TI. Weight and weight gain during early infancy predict childhood obesity: a case-cohort study. Int J Obes. 2012;36(10):1306–11.CrossRef
36.
go back to reference Gamborg M, Andersen PK, Baker JL, Budtz-Jorgensen E, Jorgensen T, Jensen G, Sorensen TI. Life course path analysis of birth weight, childhood growth, and adult systolic blood pressure. Am J Epidemiol. 2009;169(10):1167–78.CrossRefPubMedPubMedCentral Gamborg M, Andersen PK, Baker JL, Budtz-Jorgensen E, Jorgensen T, Jensen G, Sorensen TI. Life course path analysis of birth weight, childhood growth, and adult systolic blood pressure. Am J Epidemiol. 2009;169(10):1167–78.CrossRefPubMedPubMedCentral
37.
go back to reference Wells JC, Hallal PC, Wright A, Singhal A, Victora CG. Fetal, infant and childhood growth: relationships with body composition in Brazilian boys aged 9 years. Int J Obes. 2005;29(10):1192–8.CrossRef Wells JC, Hallal PC, Wright A, Singhal A, Victora CG. Fetal, infant and childhood growth: relationships with body composition in Brazilian boys aged 9 years. Int J Obes. 2005;29(10):1192–8.CrossRef
38.
go back to reference Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2012;128(Suppl 5):S213–56. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2012;128(Suppl 5):S213–56.
Metadata
Title
Newborn weight change and childhood cardio-metabolic traits – a prospective cohort study
Authors
Maria João Fonseca
Milton Severo
Debbie A. Lawlor
Henrique Barros
Ana Cristina Santos
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2018
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-018-1184-x

Other articles of this Issue 1/2018

BMC Pediatrics 1/2018 Go to the issue