Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2010

01-11-2010 | Preclinical study

New troglitazone derivatives devoid of PPARγ agonist activity display an increased antiproliferative effect in both hormone-dependent and hormone-independent breast cancer cell lines

Authors: Christelle Colin, Stéphane Salamone, Isabelle Grillier-Vuissoz, Michel Boisbrun, Sandra Kuntz, Julie Lecomte, Yves Chapleur, Stéphane Flament

Published in: Breast Cancer Research and Treatment | Issue 1/2010

Login to get access

Abstract

Numerous recent studies indicate that most anticancer effects of PPARγ agonists like thiazolidinediones are the result of PPARγ-independent pathways. These conclusions were obtained by several approaches including the use of thiazolidinedione derivatives like Δ2-Troglitazone (Δ2-TGZ) that does not activate PPARγ. Since biotinylation has been proposed as a mechanism able to increase the specificity of drug delivery to cancer cells which could express a high level of vitamin receptor, a biotinylated derivative of Δ2-TGZ (bΔ2-TGZ) has been synthetized. In the present article, we have studied the in vitro effects of this molecule on both hormone-dependent (MCF-7) and hormone-independent (MDA-MB-231) breast cancer cells. In both cell lines, bΔ2-TGZ was more efficient than Δ2-TGZ to decrease cell viability. bΔ2-TGZ was also more potent than Δ2-TGZ to induce the proteasomal degradation of cyclin D1 in both cell lines and those of ERα in MCF-7 cells. However, in competition experiments, the presence of free biotin in the culture medium did not decrease the antiproliferative action of bΔ2-TGZ. Besides, other compounds that had no biotin but that were substituted at the same position of the phenolic group of the chromane moiety of Δ2-TGZ decreased cell viability similarly to bΔ2-TGZ. Hence, we concluded that the increased antiproliferative action of bΔ2-TGZ was not due to biotin itself but to the functionalization of the terminal hydroxyl group. This should be taken into account for the design of new thiazolidinedione derivatives able to affect not only hormone-dependent but also hormone-independent breast cancer cells in a PPARγ-independent pathway.
Literature
1.
go back to reference Sørlie T (2004) Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 40(18):2667–2675CrossRefPubMed Sørlie T (2004) Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 40(18):2667–2675CrossRefPubMed
2.
go back to reference Early Breast Cancer Trialist’ Collaborative Group (EBCTC) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet 365:1687–1717CrossRef Early Breast Cancer Trialist’ Collaborative Group (EBCTC) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet 365:1687–1717CrossRef
3.
go back to reference Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232(2):123–138CrossRefPubMed Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232(2):123–138CrossRefPubMed
4.
go back to reference Burstein HJ, Demetri GD, Mueller E et al (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand TGZ as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79:391–397CrossRefPubMed Burstein HJ, Demetri GD, Mueller E et al (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand TGZ as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79:391–397CrossRefPubMed
5.
go back to reference Yee LD, Williams N, Wen P et al (2007) Pilot study of rosiglitazone therapy in women with breast cancer: effects of short-term therapy on tumor tissue and serum marker. Clin Cancer Res 13:246–252CrossRefPubMed Yee LD, Williams N, Wen P et al (2007) Pilot study of rosiglitazone therapy in women with breast cancer: effects of short-term therapy on tumor tissue and serum marker. Clin Cancer Res 13:246–252CrossRefPubMed
6.
go back to reference Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839CrossRefPubMed Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839CrossRefPubMed
7.
go back to reference Isseman I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650CrossRef Isseman I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650CrossRef
8.
go back to reference Kliewer SA, Forman BM, Blumberg B et al (1994) Differential expression and activation of a family of murine peroxisome proliferators-activated receptors. Proc Natl Acad Sci USA 91:7355–7359CrossRefPubMed Kliewer SA, Forman BM, Blumberg B et al (1994) Differential expression and activation of a family of murine peroxisome proliferators-activated receptors. Proc Natl Acad Sci USA 91:7355–7359CrossRefPubMed
9.
go back to reference Dreyer C, Krey G, Keller H et al (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887CrossRefPubMed Dreyer C, Krey G, Keller H et al (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887CrossRefPubMed
10.
go back to reference Issemann I, Prince RA, Tugwood JD et al (1993) The retinoid X receptor enhances the function of the peroxisome proliferator activated receptor. Biochimie 75:251–256CrossRefPubMed Issemann I, Prince RA, Tugwood JD et al (1993) The retinoid X receptor enhances the function of the peroxisome proliferator activated receptor. Biochimie 75:251–256CrossRefPubMed
11.
12.
go back to reference McKenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators—an update. Endocrinology 43:2461–2465CrossRef McKenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators—an update. Endocrinology 43:2461–2465CrossRef
13.
go back to reference Yang W, Rachez C, Freedman LP (2000) Discrete roles for peroxisome proliferator-activated receptor gamma and retinoid X receptor in recruiting nuclear receptor coactivators. Mol Cell Biol 20:8008–8017CrossRefPubMed Yang W, Rachez C, Freedman LP (2000) Discrete roles for peroxisome proliferator-activated receptor gamma and retinoid X receptor in recruiting nuclear receptor coactivators. Mol Cell Biol 20:8008–8017CrossRefPubMed
14.
go back to reference Thoennes SR, Tate PL, Price TM et al (2000) Differential transcriptional activation of peroxisome proliferator-activated receptor gamma by omega-3 and omega-6 fatty acids in MCF-7 cells. Mol Cell Endocrinol 160:67–73CrossRefPubMed Thoennes SR, Tate PL, Price TM et al (2000) Differential transcriptional activation of peroxisome proliferator-activated receptor gamma by omega-3 and omega-6 fatty acids in MCF-7 cells. Mol Cell Endocrinol 160:67–73CrossRefPubMed
15.
go back to reference Forman BM, Tontonoz P, Chen J et al (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812CrossRefPubMed Forman BM, Tontonoz P, Chen J et al (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812CrossRefPubMed
16.
go back to reference Kliewer SA, Lenhard JM, Willson TM et al (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83:813–819CrossRefPubMed Kliewer SA, Lenhard JM, Willson TM et al (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83:813–819CrossRefPubMed
17.
go back to reference Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514CrossRefPubMed Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514CrossRefPubMed
18.
go back to reference Kim KY, Kim SS, Cheon HG (2006) Differential anti-proliferative actions of peroxisome proliferator-activated receptor-gamma agonists in MCF-7 breast cancer cells. Biochem Pharmacol 72:530–540CrossRefPubMed Kim KY, Kim SS, Cheon HG (2006) Differential anti-proliferative actions of peroxisome proliferator-activated receptor-gamma agonists in MCF-7 breast cancer cells. Biochem Pharmacol 72:530–540CrossRefPubMed
19.
go back to reference Elstner E, Muller C, Koshizuka K et al (1998) Ligands for peroxisome proliferators-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95:8806–8811CrossRefPubMed Elstner E, Muller C, Koshizuka K et al (1998) Ligands for peroxisome proliferators-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95:8806–8811CrossRefPubMed
20.
go back to reference Mueller E, Sarraf P, Tontonoz P et al (1998) Terminal differentiation of human breast cancer through PPARγ. Mol Cell 1:465–470CrossRefPubMed Mueller E, Sarraf P, Tontonoz P et al (1998) Terminal differentiation of human breast cancer through PPARγ. Mol Cell 1:465–470CrossRefPubMed
21.
go back to reference Mehta RG, Williamson E, Patel MK et al (2000) A ligand of peroxisome proliferator-activated receptor gamma, retinoids, and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 92:418–423CrossRefPubMed Mehta RG, Williamson E, Patel MK et al (2000) A ligand of peroxisome proliferator-activated receptor gamma, retinoids, and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 92:418–423CrossRefPubMed
22.
go back to reference Fenner MH, Elstner E (2005) Peroxisome proliferator-activated receptor-γ ligands for the treatment of breast cancer. Expert Opin Invest Drugs 14:557–568CrossRef Fenner MH, Elstner E (2005) Peroxisome proliferator-activated receptor-γ ligands for the treatment of breast cancer. Expert Opin Invest Drugs 14:557–568CrossRef
23.
go back to reference Yin F, Wakino S, Liu Z et al (2001) TGZ inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem Biophys Res Commun 286:916–922CrossRefPubMed Yin F, Wakino S, Liu Z et al (2001) TGZ inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem Biophys Res Commun 286:916–922CrossRefPubMed
24.
go back to reference Kar R, Singha PK, Venkatachalam MA et al (2009) A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene 28(28):2556–2568CrossRefPubMed Kar R, Singha PK, Venkatachalam MA et al (2009) A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene 28(28):2556–2568CrossRefPubMed
25.
go back to reference Zhou J, Zhang W, Liang B et al (2009) PPARgamma activation induces autophagy in breast cancer cells. Int J Biochem Cell Biol 41(11):2334–2342CrossRefPubMed Zhou J, Zhang W, Liang B et al (2009) PPARgamma activation induces autophagy in breast cancer cells. Int J Biochem Cell Biol 41(11):2334–2342CrossRefPubMed
26.
go back to reference Goetze S, Xi XP, Kawano H et al (1999) PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 33:798–806CrossRefPubMed Goetze S, Xi XP, Kawano H et al (1999) PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 33:798–806CrossRefPubMed
27.
go back to reference Xin X, Yang S, Kowalski J et al (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121CrossRefPubMed Xin X, Yang S, Kowalski J et al (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121CrossRefPubMed
28.
go back to reference Blanquicett C, Roman J, Hart CM (2008) Thiazolidinediones as anti-cancer agents. Cancer Ther 6(A):25–34PubMed Blanquicett C, Roman J, Hart CM (2008) Thiazolidinediones as anti-cancer agents. Cancer Ther 6(A):25–34PubMed
29.
go back to reference Wei S, Yang J, Lee SL et al (2009) PPARgamma-independent antitumor effects of thiazolidinediones. Cancer Lett 276(2):119–124CrossRefPubMed Wei S, Yang J, Lee SL et al (2009) PPARgamma-independent antitumor effects of thiazolidinediones. Cancer Lett 276(2):119–124CrossRefPubMed
30.
go back to reference Clay CE, Monjazeb A, Thorburn J et al (2002) 15-Deoxy-delta12, 14-prostaglandin J2-induced apoptosis does not require PPARgamma in breast cancer cells. J Lipid Res 43(11):1818–1828CrossRefPubMed Clay CE, Monjazeb A, Thorburn J et al (2002) 15-Deoxy-delta12, 14-prostaglandin J2-induced apoptosis does not require PPARgamma in breast cancer cells. J Lipid Res 43(11):1818–1828CrossRefPubMed
31.
go back to reference Shiau CW, Yang CC, Kulp SK et al (2005) Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Res 65(4):1561–1569CrossRefPubMed Shiau CW, Yang CC, Kulp SK et al (2005) Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Res 65(4):1561–1569CrossRefPubMed
32.
go back to reference Lecomte J, Flament S, Salamone S et al (2008) Disruption of ERα signalling pathway by PPARγ agonists: evidences of PPARγ-independent events in two hormone-dependent breast cancer cell lines. Breast Cancer Res Treat 112:437–451CrossRefPubMed Lecomte J, Flament S, Salamone S et al (2008) Disruption of ERα signalling pathway by PPARγ agonists: evidences of PPARγ-independent events in two hormone-dependent breast cancer cell lines. Breast Cancer Res Treat 112:437–451CrossRefPubMed
33.
go back to reference Yang CC, Ku CY, Wei S et al (2006) Peroxisome proliferator-activated receptor gamma-independent repression of prostate-specific antigen expression by thiazolidinediones in prostate cancer cells. Mol Pharmacol 69(5):1564–1570CrossRefPubMed Yang CC, Ku CY, Wei S et al (2006) Peroxisome proliferator-activated receptor gamma-independent repression of prostate-specific antigen expression by thiazolidinediones in prostate cancer cells. Mol Pharmacol 69(5):1564–1570CrossRefPubMed
34.
go back to reference Huang JW, Shiau CW, Yang YT et al (2005) Peroxisome proliferator-activated receptor γ-independent ablation of cyclin D1 by thiazolidinediones and their derivatives in breast cancer cells. Mol Pharmacol 67:1342–1348CrossRefPubMed Huang JW, Shiau CW, Yang YT et al (2005) Peroxisome proliferator-activated receptor γ-independent ablation of cyclin D1 by thiazolidinediones and their derivatives in breast cancer cells. Mol Pharmacol 67:1342–1348CrossRefPubMed
35.
go back to reference Russell-Jones G, McTavish K, McEwan J et al (2004) Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem 98(10):1625–1633CrossRefPubMed Russell-Jones G, McTavish K, McEwan J et al (2004) Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem 98(10):1625–1633CrossRefPubMed
36.
go back to reference Yang W, Cheng Y, Xu T et al (2009) Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 44(2):862–868CrossRefPubMed Yang W, Cheng Y, Xu T et al (2009) Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 44(2):862–868CrossRefPubMed
37.
go back to reference Boschi D, Tron GC, Lazzarato L et al (2006) NO-donor phenols: a new class of products endowed with antioxidant and vasodilator properties. J Med Chem 49:2886–2897CrossRefPubMed Boschi D, Tron GC, Lazzarato L et al (2006) NO-donor phenols: a new class of products endowed with antioxidant and vasodilator properties. J Med Chem 49:2886–2897CrossRefPubMed
38.
go back to reference Huang JW, Shiau CW, Yang J et al (2006) Development of small-molecule cyclin D1-ablative agents. J Med Chem 49:4684–4689CrossRefPubMed Huang JW, Shiau CW, Yang J et al (2006) Development of small-molecule cyclin D1-ablative agents. J Med Chem 49:4684–4689CrossRefPubMed
39.
go back to reference Turturro F, Friday E, Fowler R et al (2004) Troglitazone acts on cellular pH and DNA synthesis through a peroxisome proliferator-activated receptor gamma-independent mechanism in breast cancer-derived cell lines. Clin Cancer Res 10(20):7022–7030CrossRefPubMed Turturro F, Friday E, Fowler R et al (2004) Troglitazone acts on cellular pH and DNA synthesis through a peroxisome proliferator-activated receptor gamma-independent mechanism in breast cancer-derived cell lines. Clin Cancer Res 10(20):7022–7030CrossRefPubMed
40.
go back to reference Yang J, Wei S, Wang DS et al (2008) Pharmacological exploitation of the peroxisome proliferator-activated receptor gamma agonist ciglitazone to develop a novel class of androgen receptor-ablative agents. J Med Chem 51(7):2100–2107CrossRefPubMed Yang J, Wei S, Wang DS et al (2008) Pharmacological exploitation of the peroxisome proliferator-activated receptor gamma agonist ciglitazone to develop a novel class of androgen receptor-ablative agents. J Med Chem 51(7):2100–2107CrossRefPubMed
41.
go back to reference Kim HJ, Kim JY, Meng Z et al (2007) 15-deoxy-Delta 12, 14-prostaglandin J2 inhibits transcriptional activity of estrogen receptor-alpha via covalent modification of DNA-binding domain. Cancer Res 67:2595–2602CrossRefPubMed Kim HJ, Kim JY, Meng Z et al (2007) 15-deoxy-Delta 12, 14-prostaglandin J2 inhibits transcriptional activity of estrogen receptor-alpha via covalent modification of DNA-binding domain. Cancer Res 67:2595–2602CrossRefPubMed
42.
go back to reference Kansara V, Luo S, Balasubrahmanyam B et al (2006) Biotin uptake and cellular translocation in human derived retinoblastoma cell line (Y-79): a role of hSMVT system. Int J Pharm 312(1–2):43–52CrossRefPubMed Kansara V, Luo S, Balasubrahmanyam B et al (2006) Biotin uptake and cellular translocation in human derived retinoblastoma cell line (Y-79): a role of hSMVT system. Int J Pharm 312(1–2):43–52CrossRefPubMed
Metadata
Title
New troglitazone derivatives devoid of PPARγ agonist activity display an increased antiproliferative effect in both hormone-dependent and hormone-independent breast cancer cell lines
Authors
Christelle Colin
Stéphane Salamone
Isabelle Grillier-Vuissoz
Michel Boisbrun
Sandra Kuntz
Julie Lecomte
Yves Chapleur
Stéphane Flament
Publication date
01-11-2010
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2010
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-009-0700-y

Other articles of this Issue 1/2010

Breast Cancer Research and Treatment 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine