Skip to main content
Top
Published in: Breast Cancer Research 6/2004

01-12-2004 | Review

New targets for therapy in breast cancer: Farnesyltransferase inhibitors

Authors: Julia Head, Stephen RD Johnston

Published in: Breast Cancer Research | Issue 6/2004

Login to get access

Abstract

Current systemic therapies for breast cancer are often limited by their nonspecific mechanism of action, unwanted toxicities on normal tissues, and short-term efficacy due to the emergence of drug resistance. However, identification of the molecular abnormalities in cancer, in particular the key proteins involved in abnormal cell growth, has resulted in development of various signal transduction inhibitor drugs as new treatment strategies against the disease. Protein farnesyltransferase inhibitors (FTIs) were originally designed to target the Ras signal transduction pathway, although it is now clear that several other intracellular proteins are dependent on post-translational farnesylation for their function. Preclinical data revealed that although FTIs inhibit the growth of ras-transformed cells, they are also potent inhibitors of a wide range of cancer cell lines that contain wild-type ras, including breast cancer cells. Additive or synergistic effects were observed when FTIs were combined with cytotoxic agents (in particular the taxanes) or endocrine therapies (tamoxifen). Phase I trials with FTIs have explored different schedules for prolonged administration, and dose-limiting toxicities included myelosuppression, gastrointestinal toxicity and neuropathy. Clinical efficacy against breast cancer was seen for the FTI tipifarnib in a phase II study. Based on promising preclinical data that suggest synergy with taxanes or endocrine therapy, combination clinical studies are now in progress to determine whether FTIs can add further to the efficacy of conventional breast cancer therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Clark GJ, Der CJ: Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat. 1995, 35: 133-144.CrossRefPubMed Clark GJ, Der CJ: Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat. 1995, 35: 133-144.CrossRefPubMed
2.
go back to reference Norgaard P, Law B, Joseph H, Page DL, Shyr Y, Mays D, Pietenpol JA, Kohl NE, Oliff A, Coffey RJ, et al: Treatment with farnesyl-protein transferase inhibitor induces regression of mammary tumors in transforming growth factor (TGF) alpha and TGF alpha/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis. Clin Cancer Res. 1999, 5: 35-42.PubMed Norgaard P, Law B, Joseph H, Page DL, Shyr Y, Mays D, Pietenpol JA, Kohl NE, Oliff A, Coffey RJ, et al: Treatment with farnesyl-protein transferase inhibitor induces regression of mammary tumors in transforming growth factor (TGF) alpha and TGF alpha/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis. Clin Cancer Res. 1999, 5: 35-42.PubMed
3.
go back to reference Clark GJ, Kinch MS, Gilmer TM, Burridge K, Der CJ: Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene. 1996, 12: 169-176.PubMed Clark GJ, Kinch MS, Gilmer TM, Burridge K, Der CJ: Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene. 1996, 12: 169-176.PubMed
4.
go back to reference Casey PJ, Seabra MC: Protein prenyltransferases. J Biol Chem. 1996, 271: 5289-5292. 10.1074/jbc.271.10.5289.CrossRefPubMed Casey PJ, Seabra MC: Protein prenyltransferases. J Biol Chem. 1996, 271: 5289-5292. 10.1074/jbc.271.10.5289.CrossRefPubMed
5.
6.
go back to reference Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N: The PI3-kinase/Akt sinaling pathway delivers an anti-apoptotic signal. Genes Dev. 1997, 11: 701-713.CrossRefPubMed Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N: The PI3-kinase/Akt sinaling pathway delivers an anti-apoptotic signal. Genes Dev. 1997, 11: 701-713.CrossRefPubMed
7.
go back to reference Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science. 1993, 260: 315-319.CrossRefPubMed Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science. 1993, 260: 315-319.CrossRefPubMed
8.
go back to reference Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ: Isoprenoid addition to ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA. 1992, 89: 6403-6407.CrossRefPubMedPubMedCentral Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ: Isoprenoid addition to ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA. 1992, 89: 6403-6407.CrossRefPubMedPubMedCentral
9.
go back to reference Sepp-Lorenzino L, Ma Z, Rands E, Khol NE, Gibbs JB, Rosen NA: A peptidomimetic inhibitor of farnesyl protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res. 1995, 55: 5302-5309.PubMed Sepp-Lorenzino L, Ma Z, Rands E, Khol NE, Gibbs JB, Rosen NA: A peptidomimetic inhibitor of farnesyl protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res. 1995, 55: 5302-5309.PubMed
10.
go back to reference Khol NE, Omer CA, Conner MW, Anthony NJ, Davide JP, DeSolms SJ, Giuliani E, Gomez RP, Graham SL, Hamilton K, et al: Inhibition of farnesyltransferase induces regression of mammaruy and salivary carcinomas in ras transgenic mice. Nat Med. 1995, 1: 792-797. 10.1038/nm0895-792.CrossRef Khol NE, Omer CA, Conner MW, Anthony NJ, Davide JP, DeSolms SJ, Giuliani E, Gomez RP, Graham SL, Hamilton K, et al: Inhibition of farnesyltransferase induces regression of mammaruy and salivary carcinomas in ras transgenic mice. Nat Med. 1995, 1: 792-797. 10.1038/nm0895-792.CrossRef
11.
go back to reference Qian Y, Blaskovich MA, Saleem M, Seong CM, Wathen SP, Hamilton AD, Sebti SM: Design and structural requirements of potent peptidomimetics inhibitors of p21ras farnesyltransferase. J Biol Chem. 1994, 269: 12410-12413.PubMed Qian Y, Blaskovich MA, Saleem M, Seong CM, Wathen SP, Hamilton AD, Sebti SM: Design and structural requirements of potent peptidomimetics inhibitors of p21ras farnesyltransferase. J Biol Chem. 1994, 269: 12410-12413.PubMed
12.
go back to reference Bishop WR, Bond R, Petrin J, Wang L, Patton R, Doll R, Njoroge G, Catino J, Schwartz J, Windsor W, et al: Novel tricyclic inhibitors of farnesyl protein transferase. J Biol Chem. 1995, 270: 30611-30618. 10.1074/jbc.270.51.30611.CrossRefPubMed Bishop WR, Bond R, Petrin J, Wang L, Patton R, Doll R, Njoroge G, Catino J, Schwartz J, Windsor W, et al: Novel tricyclic inhibitors of farnesyl protein transferase. J Biol Chem. 1995, 270: 30611-30618. 10.1074/jbc.270.51.30611.CrossRefPubMed
13.
go back to reference End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, Venet M, Sanz G, Poignet H, Skrzat S, et al: Characterisation of the antitumor effects of the selective farnesyl protein transferase inhbitor R115777 in vivo and in vitro. Cancer Res. 2001, 61: 131-137.PubMed End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, Venet M, Sanz G, Poignet H, Skrzat S, et al: Characterisation of the antitumor effects of the selective farnesyl protein transferase inhbitor R115777 in vivo and in vitro. Cancer Res. 2001, 61: 131-137.PubMed
14.
go back to reference Johnston SRD: BMS-214662: a novel farnesyl transferase inhibitor. Curr Opin Invest Drugs. 2003, 6: 72-78. Johnston SRD: BMS-214662: a novel farnesyl transferase inhibitor. Curr Opin Invest Drugs. 2003, 6: 72-78.
15.
go back to reference Britten CD, Rowinsky E, Yao S-L, Soignet S, Rosen N, Eckhardht SG, Drengler R, Hammond L, Siu LL, Smith L, et al: The farnesyl protein transferase (FTPase) inhibitor L-788,123 in patients with solid cancers [abstract]. Proc Am Soc Clin Oncol. 1999, 18: A597- Britten CD, Rowinsky E, Yao S-L, Soignet S, Rosen N, Eckhardht SG, Drengler R, Hammond L, Siu LL, Smith L, et al: The farnesyl protein transferase (FTPase) inhibitor L-788,123 in patients with solid cancers [abstract]. Proc Am Soc Clin Oncol. 1999, 18: A597-
16.
go back to reference Prendergast GC, Davide JP, deSolms SJ, Giuliani E, Graham SL, Gibbs JB, Oliff A, Khol NE: Farnesylytransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of actin cytoskeleton. Mol Cell Biol. 1994, 14: 4193-4202.CrossRefPubMedPubMedCentral Prendergast GC, Davide JP, deSolms SJ, Giuliani E, Graham SL, Gibbs JB, Oliff A, Khol NE: Farnesylytransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of actin cytoskeleton. Mol Cell Biol. 1994, 14: 4193-4202.CrossRefPubMedPubMedCentral
17.
go back to reference Miquel K, Pradines A, Sun J, Qian Y, Hamilton AD, Sebti SM, Favre G: GGTI-298 induces G0-G1 block and apoptosis wheras FTI-277 causes G2-M enrichment in A549 cells. Cancer Res. 1997, 57: 1846-1850.PubMed Miquel K, Pradines A, Sun J, Qian Y, Hamilton AD, Sebti SM, Favre G: GGTI-298 induces G0-G1 block and apoptosis wheras FTI-277 causes G2-M enrichment in A549 cells. Cancer Res. 1997, 57: 1846-1850.PubMed
18.
go back to reference Sepp-Lorenzino L, Rosen N: A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild-type tumor cells. J Biol Chem. 1998, 273: 20243-20251. 10.1074/jbc.273.32.20243.CrossRefPubMed Sepp-Lorenzino L, Rosen N: A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild-type tumor cells. J Biol Chem. 1998, 273: 20243-20251. 10.1074/jbc.273.32.20243.CrossRefPubMed
19.
go back to reference Kelland LR, Smith V, Valenti M, Patterson L, Clarke PA, Detre S, End DW, Howes AJ, Dowsett M, Workman P, et al: Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin Cancer Res. 2001, 7: 3544-3550.PubMed Kelland LR, Smith V, Valenti M, Patterson L, Clarke PA, Detre S, End DW, Howes AJ, Dowsett M, Workman P, et al: Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin Cancer Res. 2001, 7: 3544-3550.PubMed
20.
go back to reference Du W, Liu A, Prendergast GC: Activation of the PI3'K-AKT pathway masks the proapoptotic effects of farnesyltransferase inhibitors. Cancer Res. 1999, 59: 4208-4212.PubMed Du W, Liu A, Prendergast GC: Activation of the PI3'K-AKT pathway masks the proapoptotic effects of farnesyltransferase inhibitors. Cancer Res. 1999, 59: 4208-4212.PubMed
21.
go back to reference Cox AD, Der CJ: Farnesyltransferase inhibitors and cancer treatment: tageting simply ras?. Biochem Biophys Acta. 1997, 1333: F51-F71. 10.1016/S0304-419X(97)00011-5.PubMed Cox AD, Der CJ: Farnesyltransferase inhibitors and cancer treatment: tageting simply ras?. Biochem Biophys Acta. 1997, 1333: F51-F71. 10.1016/S0304-419X(97)00011-5.PubMed
22.
go back to reference Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P: Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem. 2000, 39: 30451-30457. 10.1074/jbc.M003469200.CrossRef Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P: Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem. 2000, 39: 30451-30457. 10.1074/jbc.M003469200.CrossRef
23.
go back to reference James GL, Goldstein JL, Pathak RK, Anderson RG, Brown MS: PxF, a prenylated protein of perioxsomes. J Biol Chem. 1994, 269: 14182-14190.PubMed James GL, Goldstein JL, Pathak RK, Anderson RG, Brown MS: PxF, a prenylated protein of perioxsomes. J Biol Chem. 1994, 269: 14182-14190.PubMed
24.
go back to reference Farnsworth CC, Wolda SL, Gelb MH, Glomset JA: Human lamin B contains a farnesylated cysteine residue. J Biol Chem. 1989, 264: 20422-20429.PubMedPubMedCentral Farnsworth CC, Wolda SL, Gelb MH, Glomset JA: Human lamin B contains a farnesylated cysteine residue. J Biol Chem. 1989, 264: 20422-20429.PubMedPubMedCentral
25.
go back to reference Jiang K, Coppola D, Crespo NC: The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol. 2000, 20: 139-148.CrossRefPubMedPubMedCentral Jiang K, Coppola D, Crespo NC: The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol. 2000, 20: 139-148.CrossRefPubMedPubMedCentral
26.
go back to reference Liu A, Du W, Liu JP, Jessel TM, Prendergast GC: RhoB alteration is necessary for apoptotic and antineoplastic response to farnesyltransferase inhibitors. Mol Cell Biol. 2000, 20: 6105-6113. 10.1128/MCB.20.16.6105-6113.2000.CrossRefPubMedPubMedCentral Liu A, Du W, Liu JP, Jessel TM, Prendergast GC: RhoB alteration is necessary for apoptotic and antineoplastic response to farnesyltransferase inhibitors. Mol Cell Biol. 2000, 20: 6105-6113. 10.1128/MCB.20.16.6105-6113.2000.CrossRefPubMedPubMedCentral
27.
go back to reference Adeji AA: Protein farnesyl transferase as a target for the development of anticancer agents. Drugs Future. 2000, 25: 1069-1079.CrossRef Adeji AA: Protein farnesyl transferase as a target for the development of anticancer agents. Drugs Future. 2000, 25: 1069-1079.CrossRef
28.
go back to reference Moasser MM, Sepp-Lorenzino L, Khol NE, Oliff A, Balog A, Su DS, Danishefsky SJ, Rosen NA: Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci USA. 1998, 95: 1369-1374. 10.1073/pnas.95.4.1369.CrossRefPubMedPubMedCentral Moasser MM, Sepp-Lorenzino L, Khol NE, Oliff A, Balog A, Su DS, Danishefsky SJ, Rosen NA: Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci USA. 1998, 95: 1369-1374. 10.1073/pnas.95.4.1369.CrossRefPubMedPubMedCentral
29.
go back to reference Shi B, Yaremko B, Hajian G, Terracina G, Bishop WR, Liu M, Nielsen LJ: he farnesyl protein transferase inhibitor SCH66336 synergises with taxanes in vitro and enhances their antitumor activity in vivo. Cancer Chemother Pharmacol. 2000, 46: 387-393. 10.1007/s002800000170.CrossRefPubMed Shi B, Yaremko B, Hajian G, Terracina G, Bishop WR, Liu M, Nielsen LJ: he farnesyl protein transferase inhibitor SCH66336 synergises with taxanes in vitro and enhances their antitumor activity in vivo. Cancer Chemother Pharmacol. 2000, 46: 387-393. 10.1007/s002800000170.CrossRefPubMed
30.
go back to reference Skrazt SG, Bowden CR, End DW: Interaction of the farnesyly protein transferase inhibitor R115777 with cytotoxic chemotherapeutics in vitro and in vivo [abstract]. Proc Am Assoc Cancer Res. 1999, 40: 523-(A3447) Skrazt SG, Bowden CR, End DW: Interaction of the farnesyly protein transferase inhibitor R115777 with cytotoxic chemotherapeutics in vitro and in vivo [abstract]. Proc Am Assoc Cancer Res. 1999, 40: 523-(A3447)
31.
go back to reference Nicholson RI, McClelland RA, Robertson JRF, Gee JMW: Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocr Relat Cancer. 1999, 6: 373-387.CrossRefPubMed Nicholson RI, McClelland RA, Robertson JRF, Gee JMW: Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocr Relat Cancer. 1999, 6: 373-387.CrossRefPubMed
32.
go back to reference Bunone G, Briand P, Miksicek R, Picard D: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 1996, 15: 2174-2183.PubMedPubMedCentral Bunone G, Briand P, Miksicek R, Picard D: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 1996, 15: 2174-2183.PubMedPubMedCentral
33.
go back to reference Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK: Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 2000, 407: 538-541. 10.1038/35035131.CrossRefPubMedPubMedCentral Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK: Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 2000, 407: 538-541. 10.1038/35035131.CrossRefPubMedPubMedCentral
34.
go back to reference Gee JMW, Robertson JFR, Ellis IO, Nicholson RI: Phosphorylation of erk 1/2 mitogen activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer. 2001, 95: 247-254. 10.1002/1097-0215(20010720)95:4<247::AID-IJC1042>3.0.CO;2-S.CrossRefPubMed Gee JMW, Robertson JFR, Ellis IO, Nicholson RI: Phosphorylation of erk 1/2 mitogen activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer. 2001, 95: 247-254. 10.1002/1097-0215(20010720)95:4<247::AID-IJC1042>3.0.CO;2-S.CrossRefPubMed
35.
go back to reference Martin L-A, Farmer I, Johnston SRD, Ali S, Marshall C, Dowsett M: Enhanced estrogen receptor (ER) aplha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long-term estrogen deprivation. J Biol Chem. 2003, 278: 30458-30468. 10.1074/jbc.M305226200.CrossRefPubMed Martin L-A, Farmer I, Johnston SRD, Ali S, Marshall C, Dowsett M: Enhanced estrogen receptor (ER) aplha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long-term estrogen deprivation. J Biol Chem. 2003, 278: 30458-30468. 10.1074/jbc.M305226200.CrossRefPubMed
36.
go back to reference Kurokawa H, Lenferink AEG, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, Arteaga CL: Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 2000, 60: 5887-5894.PubMed Kurokawa H, Lenferink AEG, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, Arteaga CL: Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 2000, 60: 5887-5894.PubMed
37.
go back to reference Gee JM, Harper ME, Hutcheson IR, Madden TA, Barrow D, Knowlden JM, McClelland RA, Jodan N, Wakeling AE, Nicholson RI: The anti-EGFR agent gefitinib (ZD 1839/Iressa) improves anti-hormone response and prevents development of resistance in breast cancer in vitro. Endocrinology. 2003, 144: 5105-5117. 10.1210/en.2003-0705.CrossRefPubMed Gee JM, Harper ME, Hutcheson IR, Madden TA, Barrow D, Knowlden JM, McClelland RA, Jodan N, Wakeling AE, Nicholson RI: The anti-EGFR agent gefitinib (ZD 1839/Iressa) improves anti-hormone response and prevents development of resistance in breast cancer in vitro. Endocrinology. 2003, 144: 5105-5117. 10.1210/en.2003-0705.CrossRefPubMed
38.
go back to reference Shou J, Massaraweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R: Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004, 96: 926-935. 10.1093/jnci/djh166.CrossRefPubMed Shou J, Massaraweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R: Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004, 96: 926-935. 10.1093/jnci/djh166.CrossRefPubMed
39.
go back to reference Nicholson RI, Hutcheson IR, Knowlden JM, Jones HE, Harper ME, Jordan N, Hiscox SE, Barrow D, Gee JMW: Nonendocrine pathways and endocrine resistance; observations with antiestrogens and signal transduction inhibitors in combination. Clin Cancer Res. 2004, 10: 346s-354s.CrossRefPubMed Nicholson RI, Hutcheson IR, Knowlden JM, Jones HE, Harper ME, Jordan N, Hiscox SE, Barrow D, Gee JMW: Nonendocrine pathways and endocrine resistance; observations with antiestrogens and signal transduction inhibitors in combination. Clin Cancer Res. 2004, 10: 346s-354s.CrossRefPubMed
40.
go back to reference Johnston SRD, Head J, Valenti M, Detre S, Dowsett M: Endocrine therapy combined with the farnesyltransferase inhibitor R115777 produces enhanced tumour growth inhibition in hormone-sensitive MCF-7 human breast cancer xenografts in-vivo [abstract]. Breast Cancer Res Treat. 2002, 76: A245-10.1023/A:1020820103126.CrossRef Johnston SRD, Head J, Valenti M, Detre S, Dowsett M: Endocrine therapy combined with the farnesyltransferase inhibitor R115777 produces enhanced tumour growth inhibition in hormone-sensitive MCF-7 human breast cancer xenografts in-vivo [abstract]. Breast Cancer Res Treat. 2002, 76: A245-10.1023/A:1020820103126.CrossRef
41.
go back to reference Ellis CA, Vos MD, Wickline M, Riley C, Vallecorsa T, Telford WG, Zujewski J, Clark GJ: Tamoxifen and the farnesyl transferase inhibitor FTI-2777 synergise to inhibit growth in estrogen receptor positive breast tumor cell lines. Breast Cancer Res Treat. 2003, 78: 59-67. 10.1023/A:1022105511409.CrossRefPubMed Ellis CA, Vos MD, Wickline M, Riley C, Vallecorsa T, Telford WG, Zujewski J, Clark GJ: Tamoxifen and the farnesyl transferase inhibitor FTI-2777 synergise to inhibit growth in estrogen receptor positive breast tumor cell lines. Breast Cancer Res Treat. 2003, 78: 59-67. 10.1023/A:1022105511409.CrossRefPubMed
42.
go back to reference Long BJ, Liu G, Marrinan CH, Maxwell E, Black S, Gheyas F, Nomeir A, Liu M, Kirschmeier P, Bishop R: Combining the farnesyl transferase inhibitor (FTI) Lonafarnib (SCH66336) with antiestrogens and aromatase inhibitors results in enhanced growth inhibition of hormone-dependent human breast cancer cells and tumor xenografts [abstract]. Proc Am Assoc Cancer Res. 2004, 45: A3868- Long BJ, Liu G, Marrinan CH, Maxwell E, Black S, Gheyas F, Nomeir A, Liu M, Kirschmeier P, Bishop R: Combining the farnesyl transferase inhibitor (FTI) Lonafarnib (SCH66336) with antiestrogens and aromatase inhibitors results in enhanced growth inhibition of hormone-dependent human breast cancer cells and tumor xenografts [abstract]. Proc Am Assoc Cancer Res. 2004, 45: A3868-
43.
go back to reference Doisneau-Sixou SF, Cestac P, Faye J-C, Favre G, Sutherland RL: Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell cycle progression. Int J Cancer. 2003, 106: 789-798. 10.1002/ijc.11263.CrossRefPubMed Doisneau-Sixou SF, Cestac P, Faye J-C, Favre G, Sutherland RL: Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell cycle progression. Int J Cancer. 2003, 106: 789-798. 10.1002/ijc.11263.CrossRefPubMed
44.
go back to reference Cunningham D, de Gramont A, Scheithauer W, Smakal M, Humblet Y, Kurteva G, Iveson T, Andre T, Dostalova J, Illes A, Jia X, Palmer P: Randomized double-blind placebo controlled trial of the farnesyltransferase inhibitor R-115777 (Zarnestra) in advanced refractory colorectal cancer. Proc Am Soc Clin Oncol. 2002, 21: A502- Cunningham D, de Gramont A, Scheithauer W, Smakal M, Humblet Y, Kurteva G, Iveson T, Andre T, Dostalova J, Illes A, Jia X, Palmer P: Randomized double-blind placebo controlled trial of the farnesyltransferase inhibitor R-115777 (Zarnestra) in advanced refractory colorectal cancer. Proc Am Soc Clin Oncol. 2002, 21: A502-
45.
go back to reference Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, et al: Phase III Trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer (PC). J Clin Oncol. 2004, 22: 1430-1438. 10.1200/JCO.2004.10.112.CrossRefPubMed Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, et al: Phase III Trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer (PC). J Clin Oncol. 2004, 22: 1430-1438. 10.1200/JCO.2004.10.112.CrossRefPubMed
46.
go back to reference Lobell RB, Liu D, Buser CA, Davide JP, DePuy E, Hamilton K, Koblan KS, Lee Y, Mosser S, Motzel SL, et al: Preclinical and clinical pharmacodynamic assessment of L-788,123, a dual inhibitor of farnesyl protein transferase and geranylgeranyl protein transferase-type-1. Mol Cancer Ther. 2002, 9: 747-758. Lobell RB, Liu D, Buser CA, Davide JP, DePuy E, Hamilton K, Koblan KS, Lee Y, Mosser S, Motzel SL, et al: Preclinical and clinical pharmacodynamic assessment of L-788,123, a dual inhibitor of farnesyl protein transferase and geranylgeranyl protein transferase-type-1. Mol Cancer Ther. 2002, 9: 747-758.
47.
go back to reference Adjei AA, Erlichman C, Davis JD, Cutler DL, Sloan JA, Marks RS, Hanson LJ, Svingen PA, Atherton P, Bishop R, et al: A phase I trial of the farnesyl transferase inhibitor SCH66336; evidence for biological and clinical activity. Cancer Res. 2000, 60: 1871-1877.PubMed Adjei AA, Erlichman C, Davis JD, Cutler DL, Sloan JA, Marks RS, Hanson LJ, Svingen PA, Atherton P, Bishop R, et al: A phase I trial of the farnesyl transferase inhibitor SCH66336; evidence for biological and clinical activity. Cancer Res. 2000, 60: 1871-1877.PubMed
48.
go back to reference Eskens F, Awada A, Cutler DL, deJonge MJA, Luyten GPM, Faber MN, Statkevich P, Sparreboom A, Verweij J, Hanauske A, et al: Phase I and pharmacokinetic study of the oral farnesyl transferase inhibitor SCH 66336 given twice daily in patients with advanced solid tumors. J Clin Oncol. 2001, 19: 1167-1175.PubMed Eskens F, Awada A, Cutler DL, deJonge MJA, Luyten GPM, Faber MN, Statkevich P, Sparreboom A, Verweij J, Hanauske A, et al: Phase I and pharmacokinetic study of the oral farnesyl transferase inhibitor SCH 66336 given twice daily in patients with advanced solid tumors. J Clin Oncol. 2001, 19: 1167-1175.PubMed
49.
go back to reference Hudes G, Schol J, Baab J, Rogatko , Bol C, Horak I, Langer C, Goldstein LJ, Szarka C, Meropol NJ, Weiner L: Phase I clinical and pharmacokinetic trial of the farnesylytransferase inhibitor R115777 on a 21-day dosing schedule [abstract]. Proc Am Soc Clin Oncol. 1999, 18: A601- Hudes G, Schol J, Baab J, Rogatko , Bol C, Horak I, Langer C, Goldstein LJ, Szarka C, Meropol NJ, Weiner L: Phase I clinical and pharmacokinetic trial of the farnesylytransferase inhibitor R115777 on a 21-day dosing schedule [abstract]. Proc Am Soc Clin Oncol. 1999, 18: A601-
50.
go back to reference Johnston SRD, Hickish T, Ellis PA, Houston S, Kelland LR, Dowsett M, Salter J, Michiels B, Perez-Ruixo JJ, Palmer PA, et al: Phase II study of the efficacy and tolerability of two dosing regimens of the farnesyltransferase inhibitor R115777 (Zarnestra) in patients with advanced breast cancer. J Clin Oncol. 2003, 21: 2492-2499. 10.1200/JCO.2003.10.064.CrossRefPubMed Johnston SRD, Hickish T, Ellis PA, Houston S, Kelland LR, Dowsett M, Salter J, Michiels B, Perez-Ruixo JJ, Palmer PA, et al: Phase II study of the efficacy and tolerability of two dosing regimens of the farnesyltransferase inhibitor R115777 (Zarnestra) in patients with advanced breast cancer. J Clin Oncol. 2003, 21: 2492-2499. 10.1200/JCO.2003.10.064.CrossRefPubMed
51.
go back to reference Head J, Johnston SRD: Protein farnesyltransferase inhibitors. Expert Opin Emerg Drugs. 2003, 8: 163-178. 10.1517/eoed.8.1.163.21041.CrossRefPubMed Head J, Johnston SRD: Protein farnesyltransferase inhibitors. Expert Opin Emerg Drugs. 2003, 8: 163-178. 10.1517/eoed.8.1.163.21041.CrossRefPubMed
52.
go back to reference Khuri F, Glisson BS, Kim ES, Statkevich P, Thall PF, Meyers ML, Herbst RS, Munden RF, Tendler C, Zhu Y, et al: Phase I study of the farnesyltransferase inhibitor lonafarnib with paclitaxele in solid tumours. Clin Cancer Res. 2004, 10: 2968-2976.CrossRefPubMed Khuri F, Glisson BS, Kim ES, Statkevich P, Thall PF, Meyers ML, Herbst RS, Munden RF, Tendler C, Zhu Y, et al: Phase I study of the farnesyltransferase inhibitor lonafarnib with paclitaxele in solid tumours. Clin Cancer Res. 2004, 10: 2968-2976.CrossRefPubMed
53.
go back to reference Piccart MJ, Branie F, de Valeriola D, Dubuisson M, Hennebert P, Gil T, Forget F, Seifert W, Thibault A, Bol C, et al: A phase I clinical and pharmacokinetic trial of the farnesyl transferase inhibitor R115777 + docetaxel; a promising combination in patients with solid tumours [abstract]. Proc Am Soc Clin Oncol. 2001, 20: 80a-(A318) Piccart MJ, Branie F, de Valeriola D, Dubuisson M, Hennebert P, Gil T, Forget F, Seifert W, Thibault A, Bol C, et al: A phase I clinical and pharmacokinetic trial of the farnesyl transferase inhibitor R115777 + docetaxel; a promising combination in patients with solid tumours [abstract]. Proc Am Soc Clin Oncol. 2001, 20: 80a-(A318)
54.
go back to reference Holden SN, Eckhardht S, Fisher S, Persky M, Mikule C, O'Bryant CL, Morrow M, Richards H, Rodriquez S, Bol C, et al: A phase I pharmacokinetic and biological study of the farnesyl transferase inhibitor R115777 and capecitabine in patients with advanced solid malignancies [abstract]. Proc Am Soc Clin Oncol. 2001, 20: 80a-(A316) Holden SN, Eckhardht S, Fisher S, Persky M, Mikule C, O'Bryant CL, Morrow M, Richards H, Rodriquez S, Bol C, et al: A phase I pharmacokinetic and biological study of the farnesyl transferase inhibitor R115777 and capecitabine in patients with advanced solid malignancies [abstract]. Proc Am Soc Clin Oncol. 2001, 20: 80a-(A316)
55.
go back to reference Lebowitz PF, Eng-Wong J, Balis F, Widemann B, Jayaprakash N, Gantz S, Chow C, Merino M, Zujewski J: A phase I trial of tipifarnib, a farnesyltransferase inhibitor, and tamoxifen in hormone-receptor positive metastatic breast cancer [abstract]. Proc Am Soc Clin Oncol. 2004, 23: 37-(A644) Lebowitz PF, Eng-Wong J, Balis F, Widemann B, Jayaprakash N, Gantz S, Chow C, Merino M, Zujewski J: A phase I trial of tipifarnib, a farnesyltransferase inhibitor, and tamoxifen in hormone-receptor positive metastatic breast cancer [abstract]. Proc Am Soc Clin Oncol. 2004, 23: 37-(A644)
Metadata
Title
New targets for therapy in breast cancer: Farnesyltransferase inhibitors
Authors
Julia Head
Stephen RD Johnston
Publication date
01-12-2004
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 6/2004
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr947

Other articles of this Issue 6/2004

Breast Cancer Research 6/2004 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine