Skip to main content
Top
Published in: Breast Cancer Research 6/2004

Open Access 01-12-2004 | Research article

The Na+–H+exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells

Authors: Angelo Paradiso, Rosa Angela Cardone, Antonia Bellizzi, Anna Bagorda, Lorenzo Guerra, Massimo Tommasino, Valeria Casavola, Stephan J Reshkin

Published in: Breast Cancer Research | Issue 6/2004

Login to get access

Abstract

Introduction

An increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na+–H+ exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues.

Methods

The present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured.

Results

We show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same pattern of RhoA and Rac1 regulation found for NHE1 activity was observed in both basal and serum deprivation dependent increases in motility, invasion and actin cytoskeletal organization.

Conclusion

Our findings suggest that the reported antagonistic roles of RhoA and Rac1 in cell motility/invasion and cytoskeletal organization may be due, in part, to their concerted action on NHE1 activity as a convergence point.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chambers AF: The metastatic process: basic research and clinical implications. Oncol Res. 1999, 11: 161-168.PubMed Chambers AF: The metastatic process: basic research and clinical implications. Oncol Res. 1999, 11: 161-168.PubMed
2.
go back to reference Cuvier C, Jang A, Hill RP: Exposure to hypoxia, glucose starvation and acidosis: effect on invasive capacity of murine tumor cells and correlation with cathepsin (L & B) secretion. Clin Exp Metastasis. 1997, 15: 9-25. Cuvier C, Jang A, Hill RP: Exposure to hypoxia, glucose starvation and acidosis: effect on invasive capacity of murine tumor cells and correlation with cathepsin (L & B) secretion. Clin Exp Metastasis. 1997, 15: 9-25.
3.
go back to reference Park CP, Bissell MJ, Barcellos-Hoff MH: The influence of the microenvironment on the malignant phenotype. Mol Med Today. 2000, 6: 324-329. 10.1016/S1357-4310(00)01756-1.CrossRefPubMed Park CP, Bissell MJ, Barcellos-Hoff MH: The influence of the microenvironment on the malignant phenotype. Mol Med Today. 2000, 6: 324-329. 10.1016/S1357-4310(00)01756-1.CrossRefPubMed
4.
go back to reference Williams AC, Collard TJ, Paraskeva C: An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene. 1999, 18: 3199-3204. 10.1038/sj.onc.1202660.CrossRefPubMed Williams AC, Collard TJ, Paraskeva C: An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene. 1999, 18: 3199-3204. 10.1038/sj.onc.1202660.CrossRefPubMed
5.
go back to reference Boyer MJ, Tannock IF: Regulation of intracellular pH in tumor cell lines: influence of microenvironmental conditions. Cancer Res. 1992, 52: 4441-4447.PubMed Boyer MJ, Tannock IF: Regulation of intracellular pH in tumor cell lines: influence of microenvironmental conditions. Cancer Res. 1992, 52: 4441-4447.PubMed
6.
go back to reference Reshkin SJ, Bellizzi A, Albarani V, Guerra L, Tommasino M, Paradiso A, Casavola V: Phosphoinositide 3-kinase is involved in the tumor-specific activation of human breast cancer cell Na/H exchange, motility and invasion induced by serum deprivation. J Biol Chem. 2000, 275: 5361-5369. 10.1074/jbc.275.8.5361.CrossRefPubMed Reshkin SJ, Bellizzi A, Albarani V, Guerra L, Tommasino M, Paradiso A, Casavola V: Phosphoinositide 3-kinase is involved in the tumor-specific activation of human breast cancer cell Na/H exchange, motility and invasion induced by serum deprivation. J Biol Chem. 2000, 275: 5361-5369. 10.1074/jbc.275.8.5361.CrossRefPubMed
7.
go back to reference Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, Noel J: Regulation of the formation of tumor cell pseudopodia by the Na+/H+ exchanger NHE1. J Cell Sci. 2000, 113: 3649-3662.PubMed Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, Noel J: Regulation of the formation of tumor cell pseudopodia by the Na+/H+ exchanger NHE1. J Cell Sci. 2000, 113: 3649-3662.PubMed
8.
go back to reference Klein M, Seeger P, Schuricht B, Alper SL, Schwa A: Polarization of Na+/H+ and Cl-/HCO3 - exchangers in migrating renal epithelial cells. J Gen Physiol. 2000, 115: 599-607. 10.1085/jgp.115.5.599.CrossRefPubMedPubMedCentral Klein M, Seeger P, Schuricht B, Alper SL, Schwa A: Polarization of Na+/H+ and Cl-/HCO3 - exchangers in migrating renal epithelial cells. J Gen Physiol. 2000, 115: 599-607. 10.1085/jgp.115.5.599.CrossRefPubMedPubMedCentral
9.
go back to reference Iwasaki T, Nakata A, Mukai M, Shinkai K, Yano H, Sabe H, Schaefer E, Tatsuta M, Tsujimura T, Terada N, et al: Involvement of phosphorylation of Tyr-31 and Tyr-118 of paxillin in MM1 cancer cell migration. Int J Cancer. 2002, 97: 330-335. 10.1002/ijc.1609.CrossRefPubMed Iwasaki T, Nakata A, Mukai M, Shinkai K, Yano H, Sabe H, Schaefer E, Tatsuta M, Tsujimura T, Terada N, et al: Involvement of phosphorylation of Tyr-31 and Tyr-118 of paxillin in MM1 cancer cell migration. Int J Cancer. 2002, 97: 330-335. 10.1002/ijc.1609.CrossRefPubMed
10.
go back to reference Hall A: Rho GTPases and the actin cytoskeleton. Science. 1998, 279: 509-514. 10.1126/science.279.5350.509.CrossRefPubMed Hall A: Rho GTPases and the actin cytoskeleton. Science. 1998, 279: 509-514. 10.1126/science.279.5350.509.CrossRefPubMed
11.
go back to reference Welsh CF, Assoian RK: A growing role for Rho family GTPases as intermediaries in growth factor-and adhesion-dependent cell cycle progression. Biochem Biophys Acta. 2000, 1471: M21-M29. 10.1016/S0304-419X(00)00016-0.PubMed Welsh CF, Assoian RK: A growing role for Rho family GTPases as intermediaries in growth factor-and adhesion-dependent cell cycle progression. Biochem Biophys Acta. 2000, 1471: M21-M29. 10.1016/S0304-419X(00)00016-0.PubMed
12.
go back to reference Boshans RL, Szanto S, van Aelst L, D'Souza-Schorey C: ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol Cell Biol. 2000, 20: 3685-3694. 10.1128/MCB.20.10.3685-3694.2000.CrossRefPubMedPubMedCentral Boshans RL, Szanto S, van Aelst L, D'Souza-Schorey C: ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol Cell Biol. 2000, 20: 3685-3694. 10.1128/MCB.20.10.3685-3694.2000.CrossRefPubMedPubMedCentral
13.
go back to reference Yuan X, Jin M, Xu X, Song Y, Wu C, Poo M, Duan S: Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biol. 2003, 5: 38-45. 10.1038/ncb895.CrossRefPubMed Yuan X, Jin M, Xu X, Song Y, Wu C, Poo M, Duan S: Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biol. 2003, 5: 38-45. 10.1038/ncb895.CrossRefPubMed
14.
go back to reference Leemhuis J, Boutillier S, Barth H, Feuerstein TJ, Brock C, Nürnberg B, Aktories K, Meyer DK: Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites. J Biol Chem. 2004, 279: 585-596. 10.1074/jbc.M307066200.CrossRefPubMed Leemhuis J, Boutillier S, Barth H, Feuerstein TJ, Brock C, Nürnberg B, Aktories K, Meyer DK: Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites. J Biol Chem. 2004, 279: 585-596. 10.1074/jbc.M307066200.CrossRefPubMed
15.
go back to reference Nobes CD, Hall A: Rho GTPases control polarity, protrusion and adhesion during cell movement. J Cell Biol. 1999, 144: 1235-1244. 10.1083/jcb.144.6.1235.CrossRefPubMedPubMedCentral Nobes CD, Hall A: Rho GTPases control polarity, protrusion and adhesion during cell movement. J Cell Biol. 1999, 144: 1235-1244. 10.1083/jcb.144.6.1235.CrossRefPubMedPubMedCentral
16.
go back to reference Noren NK, Liu BP, Burridge K, Kreft B: P120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol. 2000, 150: 567-580. 10.1083/jcb.150.3.567.CrossRefPubMedPubMedCentral Noren NK, Liu BP, Burridge K, Kreft B: P120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol. 2000, 150: 567-580. 10.1083/jcb.150.3.567.CrossRefPubMedPubMedCentral
17.
go back to reference Nimnual AS, Taylor LJ, Bar-Sagi D: Redox-dependent down-regulation of Rho by Rac. Nat Cell Biol. 2003, 5: 236-241. 10.1038/ncb938.CrossRefPubMed Nimnual AS, Taylor LJ, Bar-Sagi D: Redox-dependent down-regulation of Rho by Rac. Nat Cell Biol. 2003, 5: 236-241. 10.1038/ncb938.CrossRefPubMed
18.
go back to reference Lozano E, Betson M, Bragg VMM: Tumor progression: small GTPases and loss of cell-cell adhesion. BioEssays. 2003, 25: 452-463. 10.1002/bies.10262.CrossRefPubMed Lozano E, Betson M, Bragg VMM: Tumor progression: small GTPases and loss of cell-cell adhesion. BioEssays. 2003, 25: 452-463. 10.1002/bies.10262.CrossRefPubMed
19.
go back to reference Lin M, van Golen KL: Rho-regulatory proteins in breast cancer cell motility and invasion. Breast Cancer Res Treat. 2004, 84: 49-60. 10.1023/B:BREA.0000018424.43445.f3.CrossRefPubMed Lin M, van Golen KL: Rho-regulatory proteins in breast cancer cell motility and invasion. Breast Cancer Res Treat. 2004, 84: 49-60. 10.1023/B:BREA.0000018424.43445.f3.CrossRefPubMed
20.
go back to reference Frame MC, Brunton VG: Advances in Rho-dependent actin regulation and oncogenic transformation. Curr Opin Genet Dev. 2002, 12: 36-43. 10.1016/S0959-437X(01)00261-1.CrossRefPubMed Frame MC, Brunton VG: Advances in Rho-dependent actin regulation and oncogenic transformation. Curr Opin Genet Dev. 2002, 12: 36-43. 10.1016/S0959-437X(01)00261-1.CrossRefPubMed
21.
go back to reference Burridge K: Crosstalk between Rac and Rho. Science. 1996, 283: 2028-2029. 10.1126/science.283.5410.2028.CrossRef Burridge K: Crosstalk between Rac and Rho. Science. 1996, 283: 2028-2029. 10.1126/science.283.5410.2028.CrossRef
22.
go back to reference Horwitz AR, Parsons JT: Cell migration–movin' on. Science. 1999, 286: 1102-1103. 10.1126/science.286.5442.1102.CrossRefPubMed Horwitz AR, Parsons JT: Cell migration–movin' on. Science. 1999, 286: 1102-1103. 10.1126/science.286.5442.1102.CrossRefPubMed
23.
go back to reference Ridley AJ: Rho family proteins: coordinating cell responses. Trends Cell Biol. 2001, 11: 471-477. 10.1016/S0962-8924(01)02153-5.CrossRefPubMed Ridley AJ: Rho family proteins: coordinating cell responses. Trends Cell Biol. 2001, 11: 471-477. 10.1016/S0962-8924(01)02153-5.CrossRefPubMed
24.
go back to reference Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL: Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 2003, 302: 1775-1779. 10.1126/science.1090772.CrossRefPubMed Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL: Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 2003, 302: 1775-1779. 10.1126/science.1090772.CrossRefPubMed
25.
go back to reference Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL: Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol Cell. 2000, 6: 1425-1436. 10.1016/S1097-2765(00)00139-8.CrossRefPubMed Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL: Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol Cell. 2000, 6: 1425-1436. 10.1016/S1097-2765(00)00139-8.CrossRefPubMed
26.
go back to reference Denker SP, Barber DL: Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol. 2002, 159: 1087-1096. 10.1083/jcb.200208050.CrossRefPubMedPubMedCentral Denker SP, Barber DL: Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol. 2002, 159: 1087-1096. 10.1083/jcb.200208050.CrossRefPubMedPubMedCentral
27.
go back to reference Liotta LA, Kohn EC: The microenvironment of the tumour–host interface. Nature. 2001, 411: 375-379. 10.1038/35077241.CrossRefPubMed Liotta LA, Kohn EC: The microenvironment of the tumour–host interface. Nature. 2001, 411: 375-379. 10.1038/35077241.CrossRefPubMed
28.
go back to reference Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001, 410: 50-56. 10.1038/35065016.CrossRefPubMed Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001, 410: 50-56. 10.1038/35065016.CrossRefPubMed
29.
go back to reference Evers EE, van der Kammen RA, ten Klooster JP, Collard JG: Rho-like GTPases in tumor cell invasion. Methods Enzymol. 2000, 325: 403-415. 10.1016/S0076-6879(00)25461-X.CrossRefPubMed Evers EE, van der Kammen RA, ten Klooster JP, Collard JG: Rho-like GTPases in tumor cell invasion. Methods Enzymol. 2000, 325: 403-415. 10.1016/S0076-6879(00)25461-X.CrossRefPubMed
30.
go back to reference Korichneva I, Hammerling U: F-actin as a functional target for retro-retinoids: a potential role in anhydroretinol-triggered cell death. J Cell Sci. 1999, 112: 2521-2528.PubMed Korichneva I, Hammerling U: F-actin as a functional target for retro-retinoids: a potential role in anhydroretinol-triggered cell death. J Cell Sci. 1999, 112: 2521-2528.PubMed
31.
go back to reference Kurashima K, D'Sousa S, Szászi K, Ramjeesingh R, Orlowski J, Grinstein S: The apical Na+/H+ exchanger isoform NHE3 is regulated by the actin cytoskeleton. J Biol Chem. 1999, 274: 29843-29849. 10.1074/jbc.274.42.29843.CrossRefPubMed Kurashima K, D'Sousa S, Szászi K, Ramjeesingh R, Orlowski J, Grinstein S: The apical Na+/H+ exchanger isoform NHE3 is regulated by the actin cytoskeleton. J Biol Chem. 1999, 274: 29843-29849. 10.1074/jbc.274.42.29843.CrossRefPubMed
32.
go back to reference Tominaga T, Ishizaki T, Narumiya S, Barber DL: p160ROCK mediates RhoA activation of Na-H exchange. EMBO J. 1998, 17: 4712-4722. 10.1093/emboj/17.16.4712.CrossRefPubMedPubMedCentral Tominaga T, Ishizaki T, Narumiya S, Barber DL: p160ROCK mediates RhoA activation of Na-H exchange. EMBO J. 1998, 17: 4712-4722. 10.1093/emboj/17.16.4712.CrossRefPubMedPubMedCentral
33.
go back to reference Wittchen ES, Haskins J, Stevenson BR: NZO-3 expression causes global changes to actin cytoskeleton in Madin–Darby canine kidney cells: linking a tight junction protein to Rho GTPases. Mol Biol Cell. 2003, 14: 1757-1768. 10.1091/mbc.E02-08-0486.CrossRefPubMedPubMedCentral Wittchen ES, Haskins J, Stevenson BR: NZO-3 expression causes global changes to actin cytoskeleton in Madin–Darby canine kidney cells: linking a tight junction protein to Rho GTPases. Mol Biol Cell. 2003, 14: 1757-1768. 10.1091/mbc.E02-08-0486.CrossRefPubMedPubMedCentral
34.
go back to reference McHardy LM, Sinotte R, Troussard A, Sheldon C, Church J, Williams DE, Anderson RJ, Dedhar S, Roberge M, Roskelley CD: The tumor invasion inhibitor dihyromotuporamine C activates RHO, remodels stress fibers and focal adhesions, and stimulates sodium-proton exchange. Cancer Res. 64: 1468-1475. McHardy LM, Sinotte R, Troussard A, Sheldon C, Church J, Williams DE, Anderson RJ, Dedhar S, Roberge M, Roskelley CD: The tumor invasion inhibitor dihyromotuporamine C activates RHO, remodels stress fibers and focal adhesions, and stimulates sodium-proton exchange. Cancer Res. 64: 1468-1475.
35.
go back to reference Arthur WT, Petch LA, Burridge K: Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr Biol. 2000, 10: 719-722. 10.1016/S0960-9822(00)00537-6.CrossRefPubMed Arthur WT, Petch LA, Burridge K: Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr Biol. 2000, 10: 719-722. 10.1016/S0960-9822(00)00537-6.CrossRefPubMed
36.
go back to reference Noren NK, Niessen CM, Gumbiner BM, Burridge K: Cadherin engagement regulates Rho family GTPases. J Biol Chem. 2001, 276: 33305-33308. 10.1074/jbc.C100306200.CrossRefPubMed Noren NK, Niessen CM, Gumbiner BM, Burridge K: Cadherin engagement regulates Rho family GTPases. J Biol Chem. 2001, 276: 33305-33308. 10.1074/jbc.C100306200.CrossRefPubMed
37.
go back to reference Bowden ET, Coopman PJ, Mueller SC: Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol. 2001, 63: 613-627. 10.1016/S0091-679X(01)63033-4.CrossRefPubMed Bowden ET, Coopman PJ, Mueller SC: Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol. 2001, 63: 613-627. 10.1016/S0091-679X(01)63033-4.CrossRefPubMed
38.
go back to reference Hauck CR, Hsia DA, Ilic D, Schlaepfer DD: v-src SH3-enhanced interaction with focal adhesion kinase at β1 integrin-containing invadopodia promotes cell invasion. J Biol Chem. 2002, 277: 12487-12490. 10.1074/jbc.C100760200.CrossRefPubMed Hauck CR, Hsia DA, Ilic D, Schlaepfer DD: v-src SH3-enhanced interaction with focal adhesion kinase at β1 integrin-containing invadopodia promotes cell invasion. J Biol Chem. 2002, 277: 12487-12490. 10.1074/jbc.C100760200.CrossRefPubMed
39.
go back to reference Hancock JF, Moon RT: Cell regulation. Cellular aspects of signal transduction. Curr Opin Cell Biol. 2000, 12: 153-156. 10.1016/S0955-0674(99)00070-8.CrossRef Hancock JF, Moon RT: Cell regulation. Cellular aspects of signal transduction. Curr Opin Cell Biol. 2000, 12: 153-156. 10.1016/S0955-0674(99)00070-8.CrossRef
40.
go back to reference Voltz JW, Weinman EJ, Shenolikar S: Expanding the role of NHERF, a PDZ-domain containing protein adapter, to growth regulation. Oncogene. 2001, 20: 6309-6314. 10.1038/sj.onc.1204774.CrossRefPubMed Voltz JW, Weinman EJ, Shenolikar S: Expanding the role of NHERF, a PDZ-domain containing protein adapter, to growth regulation. Oncogene. 2001, 20: 6309-6314. 10.1038/sj.onc.1204774.CrossRefPubMed
41.
go back to reference Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S: An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 1999, 5: 221-225. 10.1038/5587.CrossRefPubMed Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S: An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 1999, 5: 221-225. 10.1038/5587.CrossRefPubMed
42.
go back to reference Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG: Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity, and epithelial-mesenchymal transition. J Cell Biol. 2000, 149: 775-782. 10.1083/jcb.149.4.775.CrossRefPubMedPubMedCentral Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG: Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity, and epithelial-mesenchymal transition. J Cell Biol. 2000, 149: 775-782. 10.1083/jcb.149.4.775.CrossRefPubMedPubMedCentral
43.
go back to reference Sahai E, Ishizaki T, Narumiya S, Treisman R: Transformation mediated by RhoA requires activity of ROCK kinases. Curr Biol. 1999, 9: 136-145. 10.1016/S0960-9822(99)80067-0.CrossRefPubMed Sahai E, Ishizaki T, Narumiya S, Treisman R: Transformation mediated by RhoA requires activity of ROCK kinases. Curr Biol. 1999, 9: 136-145. 10.1016/S0960-9822(99)80067-0.CrossRefPubMed
44.
go back to reference Yoshioka K, Nakamori S, Itoh K: Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Res. 1999, 59: 2004-2010.PubMed Yoshioka K, Nakamori S, Itoh K: Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Res. 1999, 59: 2004-2010.PubMed
Metadata
Title
The Na+–H+exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells
Authors
Angelo Paradiso
Rosa Angela Cardone
Antonia Bellizzi
Anna Bagorda
Lorenzo Guerra
Massimo Tommasino
Valeria Casavola
Stephan J Reshkin
Publication date
01-12-2004
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 6/2004
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr922

Other articles of this Issue 6/2004

Breast Cancer Research 6/2004 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine