Skip to main content
Top
Published in: Heart Failure Reviews 1/2011

01-01-2011

New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider?

Authors: Constantinos Pantos, Iordanis Mourouzis, Dennis V. Cokkinos

Published in: Heart Failure Reviews | Issue 1/2011

Login to get access

Abstract

Chronic ischemia or pressure overload decreases thyroid hormone (TH) signaling and activates the fetal gene program in the heart. While these features are of physiologic importance in the developing heart, their respective roles in the postnatal heart are debated. Administration of TH can prevent the changes of the fetal gene program and rebuild the heart after an “index event” such as ischemia. TH affects cardiac remodeling by limiting reperfusion injury, and, at later states, by inducing distinct changes in cardiac chamber geometry in a time-dependent manner. Furthermore, administration of TH can convert pathologic to physiologic hypertrophy. These effects are the result of favorable cellular remodeling. While preliminary clinical studies provide encouraging results, the potential and efficacy of TH in the treatment of heart disease still await evaluation in large clinical trials.
Literature
1.
go back to reference Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262PubMed Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262PubMed
2.
go back to reference Pantos C, Mourouzis I, Saranteas T et al (2005) Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia–reperfusion. Basic Res Cardiol 100:422–432PubMed Pantos C, Mourouzis I, Saranteas T et al (2005) Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia–reperfusion. Basic Res Cardiol 100:422–432PubMed
3.
go back to reference Pantos C, Mourouzis I, Cokkinos DV (2007) Protection of the abnormal heart. Heart Fail Rev 12:319–330PubMed Pantos C, Mourouzis I, Cokkinos DV (2007) Protection of the abnormal heart. Heart Fail Rev 12:319–330PubMed
4.
go back to reference Jopling C, Sleep E, Raya M et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609PubMed Jopling C, Sleep E, Raya M et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609PubMed
5.
go back to reference Furlow JD, Yang HY, Hsu M et al (2004) Induction of larval tissue resorption in Xenopus laevis tadpoles by the thyroid hormone receptor agonist GC-1. J Biol Chem 279:26555–26562PubMed Furlow JD, Yang HY, Hsu M et al (2004) Induction of larval tissue resorption in Xenopus laevis tadpoles by the thyroid hormone receptor agonist GC-1. J Biol Chem 279:26555–26562PubMed
6.
go back to reference Heikkila JJ (2010) Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 156:19–33PubMed Heikkila JJ (2010) Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 156:19–33PubMed
7.
go back to reference Morvan-Dubois G, Demeneix BA, Sachs LM (2008) Xenopus laevis as a model for studying thyroid hormone signalling: from development to metamorphosis. Mol Cell Endocrinol 293:71–79PubMed Morvan-Dubois G, Demeneix BA, Sachs LM (2008) Xenopus laevis as a model for studying thyroid hormone signalling: from development to metamorphosis. Mol Cell Endocrinol 293:71–79PubMed
8.
go back to reference Kress E, Samarut J, Plateroti M (2009) Thyroid hormones and the control of cell proliferation or cell differentiation: paradox or duality? Mol Cell Endocrinol 313:36–49PubMed Kress E, Samarut J, Plateroti M (2009) Thyroid hormones and the control of cell proliferation or cell differentiation: paradox or duality? Mol Cell Endocrinol 313:36–49PubMed
9.
go back to reference Mai W, Janier MF, Allioli N et al (2004) Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101:10332–10337PubMed Mai W, Janier MF, Allioli N et al (2004) Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101:10332–10337PubMed
10.
go back to reference Pantos C, Xinaris C, Mourouzis I et al (2008) Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol 59:253–269PubMed Pantos C, Xinaris C, Mourouzis I et al (2008) Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol 59:253–269PubMed
11.
go back to reference De Groot LJ (1999) Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab 84:151–164PubMed De Groot LJ (1999) Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab 84:151–164PubMed
12.
go back to reference Hennemann G (2005) Notes on the history of cellular uptake and deiodination of thyroid hormone. Thyroid 15:753–756PubMed Hennemann G (2005) Notes on the history of cellular uptake and deiodination of thyroid hormone. Thyroid 15:753–756PubMed
13.
go back to reference Bianco AC, Salvatore D, Gereben B et al (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89PubMed Bianco AC, Salvatore D, Gereben B et al (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89PubMed
14.
go back to reference Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 116:2571–2579PubMed Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 116:2571–2579PubMed
15.
go back to reference Lanni A, Moreno M, Lombardi A et al (2005) 3,5-Diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 19:1552–1554PubMed Lanni A, Moreno M, Lombardi A et al (2005) 3,5-Diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 19:1552–1554PubMed
16.
go back to reference Scanlan TS, Suchland KL, Hart ME et al (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10:638–642PubMed Scanlan TS, Suchland KL, Hart ME et al (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10:638–642PubMed
17.
go back to reference Nicoll JB, Gwinn BL, Iwig JS et al (2003) Compartment-specific phosphorylation of rat thyroid hormone receptor alpha1 regulates nuclear localization and retention. Mol Cell Endocrinol 205:65–77PubMed Nicoll JB, Gwinn BL, Iwig JS et al (2003) Compartment-specific phosphorylation of rat thyroid hormone receptor alpha1 regulates nuclear localization and retention. Mol Cell Endocrinol 205:65–77PubMed
18.
go back to reference Kinugawa K, Yonekura K, Ribeiro RC et al (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598PubMed Kinugawa K, Yonekura K, Ribeiro RC et al (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598PubMed
19.
go back to reference Flamant F, Samarut J (2003) Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol Metab 14:85–90PubMed Flamant F, Samarut J (2003) Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol Metab 14:85–90PubMed
20.
go back to reference Kinugawa K, Jeong MY, Bristow MR et al (2005) Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alpha1-specific manner that requires TAK1 and p38 mitogen-activated protein kinase. Mol Endocrinol 19:1618–1628PubMed Kinugawa K, Jeong MY, Bristow MR et al (2005) Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alpha1-specific manner that requires TAK1 and p38 mitogen-activated protein kinase. Mol Endocrinol 19:1618–1628PubMed
21.
go back to reference Pantos C, Mourouzis I, Malliopoulou V et al (2005) Dronedarone administration prevents body weight gain and increases tolerance of the heart to ischemic stress: a possible involvement of thyroid hormone receptor alpha1. Thyroid 15:16–23PubMed Pantos C, Mourouzis I, Malliopoulou V et al (2005) Dronedarone administration prevents body weight gain and increases tolerance of the heart to ischemic stress: a possible involvement of thyroid hormone receptor alpha1. Thyroid 15:16–23PubMed
22.
go back to reference Pantos C, Mourouzis I, Paizis I et al (2007) Pharmacological inhibition of TRalpha1 receptor potentiates the thyroxine effect on body weight reduction in rats: potential therapeutic implications in controlling body weight. Diabetes Obes Metab 9:136–138PubMed Pantos C, Mourouzis I, Paizis I et al (2007) Pharmacological inhibition of TRalpha1 receptor potentiates the thyroxine effect on body weight reduction in rats: potential therapeutic implications in controlling body weight. Diabetes Obes Metab 9:136–138PubMed
23.
go back to reference Gullberg H, Rudling M, Salto C et al (2002) Requirement for thyroid hormone receptor beta in T3 regulation of cholesterol metabolism in mice. Mol Endocrinol 16:1767–1777PubMed Gullberg H, Rudling M, Salto C et al (2002) Requirement for thyroid hormone receptor beta in T3 regulation of cholesterol metabolism in mice. Mol Endocrinol 16:1767–1777PubMed
24.
go back to reference Forrest D, Hanebuth E, Smeyne RJ et al (1996) Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J 15:3006–3015PubMed Forrest D, Hanebuth E, Smeyne RJ et al (1996) Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J 15:3006–3015PubMed
25.
go back to reference Tavi P, Sjogren M, Lunde PK et al (2005) Impaired Ca2+ handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor alpha1. J Mol Cell Cardiol 38:655–663PubMed Tavi P, Sjogren M, Lunde PK et al (2005) Impaired Ca2+ handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor alpha1. J Mol Cell Cardiol 38:655–663PubMed
26.
go back to reference Luidens MK, Mousa SA, Davis FB et al (2010) Thyroid hormone and angiogenesis. Vascul Pharmacol 52:142–145PubMed Luidens MK, Mousa SA, Davis FB et al (2010) Thyroid hormone and angiogenesis. Vascul Pharmacol 52:142–145PubMed
27.
go back to reference Wikstrom L, Johansson C, Salto C et al (1998) Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J 17:455–461PubMed Wikstrom L, Johansson C, Salto C et al (1998) Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J 17:455–461PubMed
28.
go back to reference Venero C, Guadano-Ferraz A, Herrero AI et al (2005) Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19:2152–2163PubMed Venero C, Guadano-Ferraz A, Herrero AI et al (2005) Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19:2152–2163PubMed
29.
go back to reference Kress E, Rezza A, Nadjar J et al (2008) The thyroid hormone receptor-alpha (TRalpha) gene encoding TRalpha1 controls deoxyribonucleic acid damage-induced tissue repair. Mol Endocrinol 22:47–55PubMed Kress E, Rezza A, Nadjar J et al (2008) The thyroid hormone receptor-alpha (TRalpha) gene encoding TRalpha1 controls deoxyribonucleic acid damage-induced tissue repair. Mol Endocrinol 22:47–55PubMed
30.
go back to reference Belakavadi M, Saunders J, Weisleder N et al (2010) Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-{alpha}1 and involves targeted covalent histone modifications. Endocrinology 151:2946–2956PubMed Belakavadi M, Saunders J, Weisleder N et al (2010) Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-{alpha}1 and involves targeted covalent histone modifications. Endocrinology 151:2946–2956PubMed
31.
go back to reference Esaki T, Suzuki H, Cook M et al (2004) Cardiac glucose utilization in mice with mutated alpha- and beta-thyroid hormone receptors. Am J Physiol Endocrinol Metab 287:E1149–E1153PubMed Esaki T, Suzuki H, Cook M et al (2004) Cardiac glucose utilization in mice with mutated alpha- and beta-thyroid hormone receptors. Am J Physiol Endocrinol Metab 287:E1149–E1153PubMed
32.
go back to reference White P, Burton KA, Fowden AL et al (2001) Developmental expression analysis of thyroid hormone receptor isoforms reveals new insights into their essential functions in cardiac and skeletal muscles. FASEB J 15:1367–1376PubMed White P, Burton KA, Fowden AL et al (2001) Developmental expression analysis of thyroid hormone receptor isoforms reveals new insights into their essential functions in cardiac and skeletal muscles. FASEB J 15:1367–1376PubMed
33.
go back to reference Chassande O (2003) Do unliganded thyroid hormone receptors have physiological functions? J Mol Endocrinol 31:9–20PubMed Chassande O (2003) Do unliganded thyroid hormone receptors have physiological functions? J Mol Endocrinol 31:9–20PubMed
34.
go back to reference Li Q, Sachs L, Shi YB et al (1999) Modification of chromatin structure by the thyroid hormone receptor. Trends Endocrinol Metab 10:157–164PubMed Li Q, Sachs L, Shi YB et al (1999) Modification of chromatin structure by the thyroid hormone receptor. Trends Endocrinol Metab 10:157–164PubMed
35.
go back to reference Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62:439–466PubMed Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62:439–466PubMed
36.
go back to reference Flamant F, Poguet AL, Plateroti M et al (2002) Congenital hypothyroid Pax8(−/−) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol 16:24–32PubMed Flamant F, Poguet AL, Plateroti M et al (2002) Congenital hypothyroid Pax8(−/−) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol 16:24–32PubMed
37.
go back to reference Morte B, Manzano J, Scanlan T et al (2002) Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 99:3985–3989PubMed Morte B, Manzano J, Scanlan T et al (2002) Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 99:3985–3989PubMed
38.
go back to reference Kaneshige M, Suzuki H, Kaneshige K et al (2001) A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci USA 98:15095–15100PubMed Kaneshige M, Suzuki H, Kaneshige K et al (2001) A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci USA 98:15095–15100PubMed
39.
go back to reference Tinnikov A, Nordstrom K, Thoren P et al (2002) Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J 21:5079–5087PubMed Tinnikov A, Nordstrom K, Thoren P et al (2002) Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J 21:5079–5087PubMed
40.
go back to reference Cody V, Davis PJ, Davis FB (2007) Molecular modeling of the thyroid hormone interactions with alpha v beta 3 integrin. Steroids 72:165–170PubMed Cody V, Davis PJ, Davis FB (2007) Molecular modeling of the thyroid hormone interactions with alpha v beta 3 integrin. Steroids 72:165–170PubMed
41.
go back to reference Hiroi Y, Kim HH, Ying H et al (2006) Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci USA 103:14104–14109PubMed Hiroi Y, Kim HH, Ying H et al (2006) Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci USA 103:14104–14109PubMed
42.
go back to reference Alpert NR, Brosseau C, Federico A et al (2002) Molecular mechanics of mouse cardiac myosin isoforms. Am J Physiol Heart Circ Physiol 283:H1446–H1454PubMed Alpert NR, Brosseau C, Federico A et al (2002) Molecular mechanics of mouse cardiac myosin isoforms. Am J Physiol Heart Circ Physiol 283:H1446–H1454PubMed
43.
go back to reference Pantos C, Mourouzis I, Xinaris C et al (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294PubMed Pantos C, Mourouzis I, Xinaris C et al (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294PubMed
44.
go back to reference Pantos C, Xinaris C, Mourouzis I et al (2008) TNF-alpha administration in neonatal cardiomyocytes is associated with differential expression of thyroid hormone receptors: a response prevented by T3. Horm Metab Res 40:731–734PubMed Pantos C, Xinaris C, Mourouzis I et al (2008) TNF-alpha administration in neonatal cardiomyocytes is associated with differential expression of thyroid hormone receptors: a response prevented by T3. Horm Metab Res 40:731–734PubMed
45.
go back to reference Simonides WS, Mulcahey MA, Redout EM et al (2008) Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest 118:975–983PubMed Simonides WS, Mulcahey MA, Redout EM et al (2008) Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest 118:975–983PubMed
46.
go back to reference Ojamaa K, Kenessey A, Shenoy R et al (2000) Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol Endocrinol Metab 279:E1319–E1324PubMed Ojamaa K, Kenessey A, Shenoy R et al (2000) Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol Endocrinol Metab 279:E1319–E1324PubMed
47.
go back to reference Olivares EL, Marassi MP, Fortunato RS et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148:4786–4792PubMed Olivares EL, Marassi MP, Fortunato RS et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148:4786–4792PubMed
48.
go back to reference Pol CJ, van Deel ED, Muller A et al (2008) Left ventricular myocardial infarction in mice induces sustained cardiac deiodinase type III activity. J Mol Cell Cardiol 44:722–723 Pol CJ, van Deel ED, Muller A et al (2008) Left ventricular myocardial infarction in mice induces sustained cardiac deiodinase type III activity. J Mol Cell Cardiol 44:722–723
49.
go back to reference Wassen FW, Schiel AE, Kuiper GG et al (2002) Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143:2812–2815PubMed Wassen FW, Schiel AE, Kuiper GG et al (2002) Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143:2812–2815PubMed
50.
go back to reference Pantos C, Mourouzis I, Xinaris C et al (2007) Time-dependent changes in the expression of thyroid hormone receptor {alpha}1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. Eur J Endocrinol 156:415–424PubMed Pantos C, Mourouzis I, Xinaris C et al (2007) Time-dependent changes in the expression of thyroid hormone receptor {alpha}1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. Eur J Endocrinol 156:415–424PubMed
51.
go back to reference Pantos C, Mourouzis I, Galanopoulos G et al (2010) Thyroid hormone receptor α1 down-regulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res (in press). doi:10.1055/s-0030-1255035 Pantos C, Mourouzis I, Galanopoulos G et al (2010) Thyroid hormone receptor α1 down-regulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res (in press). doi:10.​1055/​s-0030-1255035
52.
go back to reference Pantos C, Malliopoulou V, Mourouzis I et al (2003) Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia–reperfusion. J Endocrinol 178:427–435PubMed Pantos C, Malliopoulou V, Mourouzis I et al (2003) Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia–reperfusion. J Endocrinol 178:427–435PubMed
53.
go back to reference Mourouzis I, Dimopoulos A, Saranteas T et al (2009) Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart. Physiol Res 58:29–38PubMed Mourouzis I, Dimopoulos A, Saranteas T et al (2009) Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart. Physiol Res 58:29–38PubMed
54.
go back to reference Pantos C, Mourouzis I, Tsagoulis N et al (2009) Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol 60:49–56PubMed Pantos C, Mourouzis I, Tsagoulis N et al (2009) Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol 60:49–56PubMed
55.
go back to reference Kalofoutis C, Galanopoulos G, Mourouzis I et al (2010) Post-ischemic cardiac remodeling is accelerated in diabetic rats due to tissue hypothyroidism. Journal of Molecular and Cellular Cardiology 48:S133 (abstract) Kalofoutis C, Galanopoulos G, Mourouzis I et al (2010) Post-ischemic cardiac remodeling is accelerated in diabetic rats due to tissue hypothyroidism. Journal of Molecular and Cellular Cardiology 48:S133 (abstract)
56.
go back to reference Trivieri MG, Oudit GY, Sah R et al (2006) Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc Natl Acad Sci USA 103:6043–6048PubMed Trivieri MG, Oudit GY, Sah R et al (2006) Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc Natl Acad Sci USA 103:6043–6048PubMed
57.
go back to reference Belke DD, Gloss B, Swanson EA et al (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and -beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148:2870–2877PubMed Belke DD, Gloss B, Swanson EA et al (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and -beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148:2870–2877PubMed
58.
go back to reference Khalife WI, Tang YD, Kuzman JA et al (2005) Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289:H2409–H2415PubMed Khalife WI, Tang YD, Kuzman JA et al (2005) Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289:H2409–H2415PubMed
59.
go back to reference Ferrari R (1999) The role of TNF in cardiovascular disease. Pharmacol Res 40:97–105PubMed Ferrari R (1999) The role of TNF in cardiovascular disease. Pharmacol Res 40:97–105PubMed
60.
go back to reference Chung ES, Packer M, Lo KH et al (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107:3133–3140 Chung ES, Packer M, Lo KH et al (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107:3133–3140
61.
go back to reference Shannon R, Chaudhry M (2006) Effect of alpha1-adrenergic receptors in cardiac pathophysiology. Am Heart J 152:842–850PubMed Shannon R, Chaudhry M (2006) Effect of alpha1-adrenergic receptors in cardiac pathophysiology. Am Heart J 152:842–850PubMed
62.
go back to reference Xiao L, Pimental DR, Amin JK et al (2001) MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:779–787PubMed Xiao L, Pimental DR, Amin JK et al (2001) MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:779–787PubMed
63.
go back to reference Barron AJ, Finn SG, Fuller SJ (2003) Chronic activation of extracellular-signal-regulated protein kinases by phenylephrine is required to elicit a hypertrophic response in cardiac myocytes. Biochem J 371:71–79PubMed Barron AJ, Finn SG, Fuller SJ (2003) Chronic activation of extracellular-signal-regulated protein kinases by phenylephrine is required to elicit a hypertrophic response in cardiac myocytes. Biochem J 371:71–79PubMed
64.
go back to reference Proud CG (2004) Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res 63:403–413PubMed Proud CG (2004) Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res 63:403–413PubMed
65.
go back to reference Dorn GW II, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537PubMed Dorn GW II, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537PubMed
66.
go back to reference Miki T, Miura T, Tanno M et al (2007) Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol 102:163–170PubMed Miki T, Miura T, Tanno M et al (2007) Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol 102:163–170PubMed
67.
go back to reference Kehat I, Molkentin JD (2010) Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann N Y Acad Sci 1188:96–102PubMed Kehat I, Molkentin JD (2010) Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann N Y Acad Sci 1188:96–102PubMed
68.
go back to reference Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319(Pt 3):657–667PubMed Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319(Pt 3):657–667PubMed
69.
go back to reference Pantos C, Mourouzis I, Markakis K et al (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318PubMed Pantos C, Mourouzis I, Markakis K et al (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318PubMed
70.
go back to reference Frost RJ, van Rooij E (2010) miRNAs as therapeutic targets in ischemic heart disease. J Cardiovasc Transl Res 3:280–289PubMed Frost RJ, van Rooij E (2010) miRNAs as therapeutic targets in ischemic heart disease. J Cardiovasc Transl Res 3:280–289PubMed
71.
go back to reference van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579PubMed van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579PubMed
72.
go back to reference Callis TE, Pandya K, Seok HY et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786PubMed Callis TE, Pandya K, Seok HY et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786PubMed
73.
go back to reference Pantos C, Mourouzis I, Markakis K et al (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339PubMed Pantos C, Mourouzis I, Markakis K et al (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339PubMed
74.
go back to reference Hambleton M, Hahn H, Pleger ST et al (2006) Pharmacological- and gene therapy-based inhibition of protein kinase C alpha/beta enhances cardiac contractility and attenuates heart failure. Circulation 114:574–582PubMed Hambleton M, Hahn H, Pleger ST et al (2006) Pharmacological- and gene therapy-based inhibition of protein kinase C alpha/beta enhances cardiac contractility and attenuates heart failure. Circulation 114:574–582PubMed
75.
go back to reference Scruggs SB, Walker LA, Lyu T et al (2006) Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKCepsilon phosphorylation. J Mol Cell Cardiol 40:465–473PubMed Scruggs SB, Walker LA, Lyu T et al (2006) Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKCepsilon phosphorylation. J Mol Cell Cardiol 40:465–473PubMed
76.
go back to reference Kim YK, Suarez J, Hu Y et al (2006) Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy. Circulation 113:2589–2597PubMed Kim YK, Suarez J, Hu Y et al (2006) Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy. Circulation 113:2589–2597PubMed
77.
go back to reference Lembcke A, Dushe S, Dohmen PM et al (2006) Early and late effects of passive epicardial constraint on left ventricular geometry: ellipsoidal re-shaping confirmed by electron-beam computed tomography. J Heart Lung Transplant 25:90–98PubMed Lembcke A, Dushe S, Dohmen PM et al (2006) Early and late effects of passive epicardial constraint on left ventricular geometry: ellipsoidal re-shaping confirmed by electron-beam computed tomography. J Heart Lung Transplant 25:90–98PubMed
78.
go back to reference Pantos C, Xinaris C, Mourouzis I et al (2007) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297:65–72PubMed Pantos C, Xinaris C, Mourouzis I et al (2007) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297:65–72PubMed
79.
go back to reference Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672PubMed Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672PubMed
80.
go back to reference Ziegelhoffer-Mihalovicova B, Briest W, Baba HA et al (2003) The expression of mRNA of cytokines and of extracellular matrix proteins in triiodothyronine-treated rat hearts. Mol Cell Biochem 247:61–68PubMed Ziegelhoffer-Mihalovicova B, Briest W, Baba HA et al (2003) The expression of mRNA of cytokines and of extracellular matrix proteins in triiodothyronine-treated rat hearts. Mol Cell Biochem 247:61–68PubMed
81.
go back to reference Yao J, Eghbali M (1992) Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res 71:831–839PubMed Yao J, Eghbali M (1992) Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res 71:831–839PubMed
82.
go back to reference Wong K, Boheler KR, Petrou M et al (1997) Pharmacological modulation of pressure-overload cardiac hypertrophy: changes in ventricular function, extracellular matrix, and gene expression. Circulation 96:2239–2246PubMed Wong K, Boheler KR, Petrou M et al (1997) Pharmacological modulation of pressure-overload cardiac hypertrophy: changes in ventricular function, extracellular matrix, and gene expression. Circulation 96:2239–2246PubMed
83.
go back to reference Wang X, Zheng W, Christensen LP et al (2003) DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. Am J Physiol Heart Circ Physiol 284:H613–H618PubMed Wang X, Zheng W, Christensen LP et al (2003) DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. Am J Physiol Heart Circ Physiol 284:H613–H618PubMed
84.
go back to reference Bergh JJ, Lin HY, Lansing L et al (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871PubMed Bergh JJ, Lin HY, Lansing L et al (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871PubMed
85.
go back to reference Mousa SA, O’Connor L, Davis FB et al (2006) Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology 147:1602–1607PubMed Mousa SA, O’Connor L, Davis FB et al (2006) Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology 147:1602–1607PubMed
86.
go back to reference Mousa SA, Davis FB, Mohamed S et al (2006) Pro-angiogenesis action of thyroid hormone and analogs in a three-dimensional in vitro microvascular endothelial sprouting model. Int Angiol 25:407–413PubMed Mousa SA, Davis FB, Mohamed S et al (2006) Pro-angiogenesis action of thyroid hormone and analogs in a three-dimensional in vitro microvascular endothelial sprouting model. Int Angiol 25:407–413PubMed
87.
go back to reference Mousa SA, O’Connor LJ, Bergh JJ et al (2005) The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol 46:356–360PubMed Mousa SA, O’Connor LJ, Bergh JJ et al (2005) The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol 46:356–360PubMed
88.
go back to reference Makino A, Suarez J, Wang H et al (2009) Thyroid hormone receptor-beta is associated with coronary angiogenesis during pathological cardiac hypertrophy. Endocrinology 150:2008–2015PubMed Makino A, Suarez J, Wang H et al (2009) Thyroid hormone receptor-beta is associated with coronary angiogenesis during pathological cardiac hypertrophy. Endocrinology 150:2008–2015PubMed
89.
go back to reference Sirlak M, Yazicioglu L, Inan MB et al (2004) Oral thyroid hormone pretreatment in left ventricular dysfunction. Eur J Cardiothorac Surg 26:720–725PubMed Sirlak M, Yazicioglu L, Inan MB et al (2004) Oral thyroid hormone pretreatment in left ventricular dysfunction. Eur J Cardiothorac Surg 26:720–725PubMed
90.
go back to reference Pantos CI, Tzilalis V, Giannakakis S et al (2001) Phenylephrine induced aortic vasoconstriction is attenuated in hyperthyroid rats. Int Angiol 20:181–186PubMed Pantos CI, Tzilalis V, Giannakakis S et al (2001) Phenylephrine induced aortic vasoconstriction is attenuated in hyperthyroid rats. Int Angiol 20:181–186PubMed
91.
go back to reference Pappas M, Mourouzis K, Karageorgiou H et al (2009) Thyroid hormone modulates the responsiveness of rat aorta to a1-adrenergic stimulation: an effect due to increased activation of b2-adrenergic signaling. Int Angiol 28:474–478PubMed Pappas M, Mourouzis K, Karageorgiou H et al (2009) Thyroid hormone modulates the responsiveness of rat aorta to a1-adrenergic stimulation: an effect due to increased activation of b2-adrenergic signaling. Int Angiol 28:474–478PubMed
92.
go back to reference Pantos C, Mourouzis I, Cokkinos DV (2006) Myocardial ischemia: basic concepts. In: Cokkinos DV, Pantos C, Heusch G, Taegtmeyer H (eds) Myocardial ischemia: from mechanisms to therapeutic potentials. Springer, New York, pp 11–77 Pantos C, Mourouzis I, Cokkinos DV (2006) Myocardial ischemia: basic concepts. In: Cokkinos DV, Pantos C, Heusch G, Taegtmeyer H (eds) Myocardial ischemia: from mechanisms to therapeutic potentials. Springer, New York, pp 11–77
93.
go back to reference Skyschally A, van Caster P, Iliodromitis EK et al (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483PubMed Skyschally A, van Caster P, Iliodromitis EK et al (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483PubMed
94.
go back to reference Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154PubMed Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154PubMed
95.
go back to reference Ovize M, Baxter GF, Di Lisa F et al (2010) Postconditioning and protection from reperfusion injury: where do we stand?: position paper from the working group of cellular biology of the heart of the european society of cardiology. Cardiovasc Res. doi:10.1093/cvr/cvq1129 Ovize M, Baxter GF, Di Lisa F et al (2010) Postconditioning and protection from reperfusion injury: where do we stand?: position paper from the working group of cellular biology of the heart of the european society of cardiology. Cardiovasc Res. doi:10.​1093/​cvr/​cvq1129
96.
go back to reference Klemperer JD, Zelano J, Helm RE et al (1995) Triiodothyronine improves left ventricular function without oxygen wasting effects after global hypothermic ischemia. J Thorac Cardiovasc Surg 109:457–465PubMed Klemperer JD, Zelano J, Helm RE et al (1995) Triiodothyronine improves left ventricular function without oxygen wasting effects after global hypothermic ischemia. J Thorac Cardiovasc Surg 109:457–465PubMed
97.
go back to reference Walker JD, Crawford FA Jr, Spinale FG (1995) 3,5,3′ Triiodo-l-thyronine pretreatment with cardioplegic arrest and chronic left ventricular dysfunction. Ann Thorac Surg 60:292–299PubMed Walker JD, Crawford FA Jr, Spinale FG (1995) 3,5,3′ Triiodo-l-thyronine pretreatment with cardioplegic arrest and chronic left ventricular dysfunction. Ann Thorac Surg 60:292–299PubMed
98.
go back to reference Liu Q, Clanachan AS, Lopaschuk GD (1998) Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Physiol 275:E392–E399PubMed Liu Q, Clanachan AS, Lopaschuk GD (1998) Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Physiol 275:E392–E399PubMed
99.
go back to reference Spinale FG (1999) Cellular and molecular therapeutic targets for treatment of contractile dysfunction after cardioplegic arrest. Ann Thorac Surg 68:1934–1941PubMed Spinale FG (1999) Cellular and molecular therapeutic targets for treatment of contractile dysfunction after cardioplegic arrest. Ann Thorac Surg 68:1934–1941PubMed
100.
go back to reference Zinman T, Shneyvays V, Tribulova N et al (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207:220–231PubMed Zinman T, Shneyvays V, Tribulova N et al (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207:220–231PubMed
101.
go back to reference Buser PT, Wikman-Coffelt J, Wu ST et al (1990) Postischemic recovery of mechanical performance and energy metabolism in the presence of left ventricular hypertrophy. A 31P-MRS study. Circ Res 66:735–746PubMed Buser PT, Wikman-Coffelt J, Wu ST et al (1990) Postischemic recovery of mechanical performance and energy metabolism in the presence of left ventricular hypertrophy. A 31P-MRS study. Circ Res 66:735–746PubMed
102.
go back to reference Pantos CI, Malliopoulou VA, Mourouzis IS et al (2001) Long-term thyroxine administration increases heat stress protein-70 mRNA expression and attenuates p38 MAP kinase activity in response to ischaemia. J Endocrinol 170:207–215PubMed Pantos CI, Malliopoulou VA, Mourouzis IS et al (2001) Long-term thyroxine administration increases heat stress protein-70 mRNA expression and attenuates p38 MAP kinase activity in response to ischaemia. J Endocrinol 170:207–215PubMed
103.
go back to reference Pantos CI, Malliopoulou VA, Mourouzis IS et al (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12:325–329PubMed Pantos CI, Malliopoulou VA, Mourouzis IS et al (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12:325–329PubMed
104.
go back to reference Pantos C, Malliopoulou V, Mourouzis I et al (2003) Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. Eur J Pharmacol 478:53–60PubMed Pantos C, Malliopoulou V, Mourouzis I et al (2003) Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. Eur J Pharmacol 478:53–60PubMed
105.
go back to reference Pantos C, Malliopoulou V, Mourouzis I et al (2003) Involvement of p38 MAPK and JNK in heat stress-induced cardioprotection. Basic Res Cardiol 98:158–164PubMed Pantos C, Malliopoulou V, Mourouzis I et al (2003) Involvement of p38 MAPK and JNK in heat stress-induced cardioprotection. Basic Res Cardiol 98:158–164PubMed
106.
go back to reference Kuzman JA, Gerdes AM, Kobayashi S et al (2005) Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39:841–844PubMed Kuzman JA, Gerdes AM, Kobayashi S et al (2005) Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39:841–844PubMed
107.
go back to reference Pantos C, Malliopoulou V, Mourouzis I et al (2006) Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res 38:308–313PubMed Pantos C, Malliopoulou V, Mourouzis I et al (2006) Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res 38:308–313PubMed
108.
go back to reference Pantos CI, Mourouzis IS, Tzeis SM et al (2000) Propranolol diminishes cardiac hypertrophy but does not abolish acceleration of the ischemic contracture in hyperthyroid hearts. J Cardiovasc Pharmacol 36:384–389PubMed Pantos CI, Mourouzis IS, Tzeis SM et al (2000) Propranolol diminishes cardiac hypertrophy but does not abolish acceleration of the ischemic contracture in hyperthyroid hearts. J Cardiovasc Pharmacol 36:384–389PubMed
109.
go back to reference Pantos CI, Cokkinos DD, Tzeis SM et al (1999) Hyperthyroidism is associated with preserved preconditioning capacity but intensified and accelerated ischaemic contracture in rat heart. Basic Res Cardiol 94:254–260PubMed Pantos CI, Cokkinos DD, Tzeis SM et al (1999) Hyperthyroidism is associated with preserved preconditioning capacity but intensified and accelerated ischaemic contracture in rat heart. Basic Res Cardiol 94:254–260PubMed
110.
go back to reference Pantos C, Paizis I, Mourouzis I et al (2005) Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy, but does not abolish thyroxin-induced preconditioning. Horm Metab Res 37:500–504PubMed Pantos C, Paizis I, Mourouzis I et al (2005) Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy, but does not abolish thyroxin-induced preconditioning. Horm Metab Res 37:500–504PubMed
111.
go back to reference Speechly-Dick ME, Mocanu MM, Yellon DM (1994) Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res 75:586–590PubMed Speechly-Dick ME, Mocanu MM, Yellon DM (1994) Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res 75:586–590PubMed
112.
go back to reference Zhao J, Renner O, Wightman L et al (1998) The expression of constitutively active isotypes of protein kinase C to investigate preconditioning. J Biol Chem 273:23072–23079PubMed Zhao J, Renner O, Wightman L et al (1998) The expression of constitutively active isotypes of protein kinase C to investigate preconditioning. J Biol Chem 273:23072–23079PubMed
113.
go back to reference Maizels ET, Peters CA, Kline M et al (1998) Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 332(Pt 3):703–712PubMed Maizels ET, Peters CA, Kline M et al (1998) Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 332(Pt 3):703–712PubMed
114.
go back to reference Pantos C, Malliopoulou V, Paizis I et al (2003) Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem 242:173–180PubMed Pantos C, Malliopoulou V, Paizis I et al (2003) Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem 242:173–180PubMed
115.
go back to reference Martin JL, Mestril R, Hilal-Dandan R et al (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348PubMed Martin JL, Mestril R, Hilal-Dandan R et al (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348PubMed
116.
go back to reference Venditti P, Di Meo S (2006) Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 63:414–434PubMed Venditti P, Di Meo S (2006) Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 63:414–434PubMed
117.
go back to reference Downey JM, Davis AM, Cohen MV (2007) Signaling pathways in ischemic preconditioning. Heart Fail Rev 12:181–188PubMed Downey JM, Davis AM, Cohen MV (2007) Signaling pathways in ischemic preconditioning. Heart Fail Rev 12:181–188PubMed
118.
go back to reference Novitzky D, Cooper DK, Swanepoel A (1989) Inotropic effect of triiodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery. Eur J Cardiothorac Surg 3:140–145PubMed Novitzky D, Cooper DK, Swanepoel A (1989) Inotropic effect of triiodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery. Eur J Cardiothorac Surg 3:140–145PubMed
119.
go back to reference Dyke CM, Yeh T Jr, Lehman JD et al (1991) Triiodothyronine-enhanced left ventricular function after ischemic injury. Ann Thorac Surg 52:14–19PubMed Dyke CM, Yeh T Jr, Lehman JD et al (1991) Triiodothyronine-enhanced left ventricular function after ischemic injury. Ann Thorac Surg 52:14–19PubMed
120.
go back to reference Novitzky D, Matthews N, Shawley D et al (1991) Triiodothyronine in the recovery of stunned myocardium in dogs. Ann Thorac Surg 51:10–16; discussion 16–17 Novitzky D, Matthews N, Shawley D et al (1991) Triiodothyronine in the recovery of stunned myocardium in dogs. Ann Thorac Surg 51:10–16; discussion 16–17
121.
go back to reference Holland FW II, Brown PS Jr, Clark RE (1992) Acute severe postischemic myocardial depression reversed by triiodothyronine. Ann Thorac Surg 54:301–305PubMed Holland FW II, Brown PS Jr, Clark RE (1992) Acute severe postischemic myocardial depression reversed by triiodothyronine. Ann Thorac Surg 54:301–305PubMed
122.
go back to reference Dyke CM, Ding M, Abd-Elfattah AS et al (1993) Effects of triiodothyronine supplementation after myocardial ischemia. Ann Thorac Surg 56:215–222PubMed Dyke CM, Ding M, Abd-Elfattah AS et al (1993) Effects of triiodothyronine supplementation after myocardial ischemia. Ann Thorac Surg 56:215–222PubMed
123.
go back to reference Kadletz M, Mullen PG, Ding M et al (1994) Effect of triiodothyronine on postischemic myocardial function in the isolated heart. Ann Thorac Surg 57:657–662PubMed Kadletz M, Mullen PG, Ding M et al (1994) Effect of triiodothyronine on postischemic myocardial function in the isolated heart. Ann Thorac Surg 57:657–662PubMed
124.
go back to reference Klemperer JD, Klein I, Gomez M et al (1995) Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 333:1522–1527PubMed Klemperer JD, Klein I, Gomez M et al (1995) Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 333:1522–1527PubMed
125.
go back to reference Ranasinghe AM, Quinn DW, Pagano D et al (2006) Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114:I245–I250PubMed Ranasinghe AM, Quinn DW, Pagano D et al (2006) Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114:I245–I250PubMed
126.
go back to reference Pantos C, Mourouzis I, Tzeis S et al (2003) Dobutamine administration exacerbates postischaemic myocardial dysfunction in isolated rat hearts: an effect reversed by thyroxine pretreatment. Eur J Pharmacol 460:155–161PubMed Pantos C, Mourouzis I, Tzeis S et al (2003) Dobutamine administration exacerbates postischaemic myocardial dysfunction in isolated rat hearts: an effect reversed by thyroxine pretreatment. Eur J Pharmacol 460:155–161PubMed
127.
go back to reference Chen YF, Kobayashi S, Chen J et al (2008) Short term triiodo-l-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44:180–187PubMed Chen YF, Kobayashi S, Chen J et al (2008) Short term triiodo-l-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44:180–187PubMed
128.
129.
go back to reference Marin-Garcia J (2010) Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol 52:120–130PubMed Marin-Garcia J (2010) Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol 52:120–130PubMed
130.
go back to reference Chang KC, Figueredo VM, Schreur JH et al (1997) Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and alpha-myosin heavy chain in rat hearts. J Clin Invest 100:1742–1749 Chang KC, Figueredo VM, Schreur JH et al (1997) Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and alpha-myosin heavy chain in rat hearts. J Clin Invest 100:1742–1749
131.
go back to reference Thomas TA, Kuzman JA, Anderson BE et al (2005) Thyroid hormones induce unique and potentially beneficial changes in cardiac myocyte shape in hypertensive rats near heart failure. Am J Physiol Heart Circ Physiol 288:H2118–H2122PubMed Thomas TA, Kuzman JA, Anderson BE et al (2005) Thyroid hormones induce unique and potentially beneficial changes in cardiac myocyte shape in hypertensive rats near heart failure. Am J Physiol Heart Circ Physiol 288:H2118–H2122PubMed
132.
go back to reference Ito K, Kagaya Y, Shimokawa H (2010) Thyroid hormone and chronically unloaded hearts. Vascul Pharmacol 52:138–141PubMed Ito K, Kagaya Y, Shimokawa H (2010) Thyroid hormone and chronically unloaded hearts. Vascul Pharmacol 52:138–141PubMed
133.
go back to reference Minatoya Y, Ito K, Kagaya Y et al (2007) Depressed contractile reserve and impaired calcium handling of cardiac myocytes from chronically unloaded hearts are ameliorated with the administration of physiological treatment dose of T3 in rats. Acta Physiol (Oxf) 189:221–231 Minatoya Y, Ito K, Kagaya Y et al (2007) Depressed contractile reserve and impaired calcium handling of cardiac myocytes from chronically unloaded hearts are ameliorated with the administration of physiological treatment dose of T3 in rats. Acta Physiol (Oxf) 189:221–231
134.
go back to reference Klein I, Ojamaa K (2001) Thyroid hormone-targeting the heart. Endocrinology 142:11–12PubMed Klein I, Ojamaa K (2001) Thyroid hormone-targeting the heart. Endocrinology 142:11–12PubMed
135.
go back to reference Abo-Zenah HA, Shoeb SA, Sabry AA et al (2008) Relating circulating thyroid hormone concentrations to serum interleukins-6 and 10 in association with non-thyroidal illnesses including chronic renal insufficiency. BMC Endocr Disord 8:1–7PubMed Abo-Zenah HA, Shoeb SA, Sabry AA et al (2008) Relating circulating thyroid hormone concentrations to serum interleukins-6 and 10 in association with non-thyroidal illnesses including chronic renal insufficiency. BMC Endocr Disord 8:1–7PubMed
136.
go back to reference Kimura T, Kanda T, Kotajima N et al (2000) Involvement of circulating interleukin-6 and its receptor in the development of euthyroid sick syndrome in patients with acute myocardial infarction. Eur J Endocrinol 143:179–184PubMed Kimura T, Kanda T, Kotajima N et al (2000) Involvement of circulating interleukin-6 and its receptor in the development of euthyroid sick syndrome in patients with acute myocardial infarction. Eur J Endocrinol 143:179–184PubMed
137.
go back to reference Eber B, Schumacher M, Langsteger W et al (1995) Changes in thyroid hormone parameters after acute myocardial infarction. Cardiology 86:152–156PubMed Eber B, Schumacher M, Langsteger W et al (1995) Changes in thyroid hormone parameters after acute myocardial infarction. Cardiology 86:152–156PubMed
138.
go back to reference Holland FW II, Brown PS Jr, Weintraub BD et al (1991) Cardiopulmonary bypass and thyroid function: a “euthyroid sick syndrome”. Ann Thorac Surg 52:46–50PubMed Holland FW II, Brown PS Jr, Weintraub BD et al (1991) Cardiopulmonary bypass and thyroid function: a “euthyroid sick syndrome”. Ann Thorac Surg 52:46–50PubMed
139.
go back to reference Friberg L, Werner S, Eggertsen G et al (2002) Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch Intern Med 162:1388–1394PubMed Friberg L, Werner S, Eggertsen G et al (2002) Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch Intern Med 162:1388–1394PubMed
140.
go back to reference Iervasi G, Pingitore A, Landi P et al (2003) Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation 107:708–713PubMed Iervasi G, Pingitore A, Landi P et al (2003) Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation 107:708–713PubMed
141.
go back to reference Pingitore A, Iervasi G, Barison A et al (2006) Early activation of an altered thyroid hormone profile in asymptomatic or mildly symptomatic idiopathic left ventricular dysfunction. J Card Fail 12:520–526PubMed Pingitore A, Iervasi G, Barison A et al (2006) Early activation of an altered thyroid hormone profile in asymptomatic or mildly symptomatic idiopathic left ventricular dysfunction. J Card Fail 12:520–526PubMed
142.
go back to reference Pantos C, Dritsas A, Mourouzis I et al (2007) Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. Eur J Endocrinol 157:515–520PubMed Pantos C, Dritsas A, Mourouzis I et al (2007) Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. Eur J Endocrinol 157:515–520PubMed
143.
go back to reference Moruzzi P, Doria E, Agostoni PG et al (1994) Usefulness of l-thyroxine to improve cardiac and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol 73:374–378PubMed Moruzzi P, Doria E, Agostoni PG et al (1994) Usefulness of l-thyroxine to improve cardiac and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol 73:374–378PubMed
144.
go back to reference Moruzzi P, Doria E, Agostoni PG (1996) Medium-term effectiveness of l-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med 101:461–467PubMed Moruzzi P, Doria E, Agostoni PG (1996) Medium-term effectiveness of l-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med 101:461–467PubMed
145.
go back to reference Pingitore A, Galli E, Barison A et al (2008) Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab 93:1351–1358PubMed Pingitore A, Galli E, Barison A et al (2008) Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab 93:1351–1358PubMed
146.
go back to reference Liu Z, Wu J, Zhang YY et al (2009) Therapeutic effect of low-dose thyroxin in elderly patients with refractory heart failure and euthyroid sick syndrome. Nan Fang Yi Ke Da Xue Xue Bao 29:1848–1850PubMed Liu Z, Wu J, Zhang YY et al (2009) Therapeutic effect of low-dose thyroxin in elderly patients with refractory heart failure and euthyroid sick syndrome. Nan Fang Yi Ke Da Xue Xue Bao 29:1848–1850PubMed
147.
go back to reference Goldman S, McCarren M, Morkin E et al (2009) DITPA (3,5-diiodothyropropionic acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation 119:3093–3100PubMed Goldman S, McCarren M, Morkin E et al (2009) DITPA (3,5-diiodothyropropionic acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation 119:3093–3100PubMed
148.
go back to reference Pantos C, Mourouzis I, Saranteas T et al (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 104:69–77PubMed Pantos C, Mourouzis I, Saranteas T et al (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 104:69–77PubMed
Metadata
Title
New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider?
Authors
Constantinos Pantos
Iordanis Mourouzis
Dennis V. Cokkinos
Publication date
01-01-2011
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 1/2011
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-010-9185-3

Other articles of this Issue 1/2011

Heart Failure Reviews 1/2011 Go to the issue