Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2024

Open Access 01-12-2024 | Neurorehabilitation | Review

NSF DARE—Transforming modeling in neurorehabilitation: Four threads for catalyzing progress

Authors: Francisco J. Valero-Cuevas, James Finley, Amy Orsborn, Natalie Fung, Jennifer L. Hicks, He (Helen) Huang, David Reinkensmeyer, Nicolas Schweighofer, Douglas Weber, Katherine M. Steele

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2024

Login to get access

Abstract

We present an overview of the Conference on Transformative Opportunities for Modeling in Neurorehabilitation held in March 2023. It was supported by the Disability and Rehabilitation Engineering (DARE) program from the National Science Foundation’s Engineering Biology and Health Cluster. The conference brought together experts and trainees from around the world to discuss critical questions, challenges, and opportunities at the intersection of computational modeling and neurorehabilitation to understand, optimize, and improve clinical translation of neurorehabilitation. We organized the conference around four key, relevant, and promising Focus Areas for modeling: Adaptation & Plasticity, Personalization, Human-Device Interactions, and Modeling ‘In-the-Wild’. We identified four common threads across the Focus Areas that, if addressed, can catalyze progress in the short, medium, and long terms. These were: (i) the need to capture and curate appropriate and useful data necessary to develop, validate, and deploy useful computational models (ii) the need to create multi-scale models that span the personalization spectrum from individuals to populations, and from cellular to behavioral levels (iii) the need for algorithms that extract as much information from available data, while requiring as little data as possible from each client (iv) the insistence on leveraging readily available sensors and data systems to push model-driven treatments from the lab, and into the clinic, home, workplace, and community. The conference archive can be found at (dare2023.usc.edu). These topics are also extended by three perspective papers prepared by trainees and junior faculty, clinician researchers, and federal funding agency representatives who attended the conference.
Appendix
Available only for authorised users
Footnotes
1
RESNA was started in August 1979 at a meeting of the Inter-Agency Conference on Rehabilitation Engineering when participants Douglas Hobson, Colin McLaurin, James Reswick, Anthony Staros, and Joseph Traub offered a resolution to form the ‘Rehabilitation Engineering Society of North America’ first housed at Rancho Los Amigos Medical Center in Los Angeles, CA.
 
Literature
1.
go back to reference Loeb GE. Neural prosthetics: A review of empirical vs. systems engineering strategies. Appl Bionics Biomech. 2018;2018. Loeb GE. Neural prosthetics: A review of empirical vs. systems engineering strategies. Appl Bionics Biomech. 2018;2018.
2.
3.
go back to reference Reinkensmeyer DJ, Burdet E, Casadio M, Krakauer JW, Kwakkel G, Lang CE, Swinnen SP, Ward NS, Schweighofer N. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J Neuroeng Rehabil. 2016;13(1):1–25.CrossRef Reinkensmeyer DJ, Burdet E, Casadio M, Krakauer JW, Kwakkel G, Lang CE, Swinnen SP, Ward NS, Schweighofer N. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J Neuroeng Rehabil. 2016;13(1):1–25.CrossRef
4.
go back to reference Goodall S, Reggia JA, Chen Y, Ruppin E, Whitney C. A computational model of acute focal cortical lesions. Stroke. 1997;28(1):101–9.PubMedCrossRef Goodall S, Reggia JA, Chen Y, Ruppin E, Whitney C. A computational model of acute focal cortical lesions. Stroke. 1997;28(1):101–9.PubMedCrossRef
5.
go back to reference Reggia JA. Neurocomputational models of the remote effects of focal brain damage. Med Eng Phys. 2004;26(9):711–22.PubMedCrossRef Reggia JA. Neurocomputational models of the remote effects of focal brain damage. Med Eng Phys. 2004;26(9):711–22.PubMedCrossRef
6.
go back to reference Takiyama K, Okada M. Recovery in stroke rehabilitation through the rotation of preferred directions induced by bimanual movements: a computational study. PLoS ONE. 2012;7(5):37594.CrossRef Takiyama K, Okada M. Recovery in stroke rehabilitation through the rotation of preferred directions induced by bimanual movements: a computational study. PLoS ONE. 2012;7(5):37594.CrossRef
7.
go back to reference Han CE, Arbib MA, Schweighofer N. Stroke rehabilitation reaches a threshold. PLoS Comput Biol. 2008;4(8):1000133.CrossRef Han CE, Arbib MA, Schweighofer N. Stroke rehabilitation reaches a threshold. PLoS Comput Biol. 2008;4(8):1000133.CrossRef
8.
go back to reference Hidaka Y, Han CE, Wolf SL, Winstein CJ, Schweighofer N. Use it and improve it or lose it: interactions between arm function and use in humans post-stroke. PLoS Comput Biol. 2012;8(2):1002343.CrossRef Hidaka Y, Han CE, Wolf SL, Winstein CJ, Schweighofer N. Use it and improve it or lose it: interactions between arm function and use in humans post-stroke. PLoS Comput Biol. 2012;8(2):1002343.CrossRef
9.
go back to reference Scheidt RA, Stoeckmann T. Reach adaptation and final position control amid environmental uncertainty after stroke. J Neurophysiol. 2007;97(4):2824–36.PubMedCrossRef Scheidt RA, Stoeckmann T. Reach adaptation and final position control amid environmental uncertainty after stroke. J Neurophysiol. 2007;97(4):2824–36.PubMedCrossRef
10.
go back to reference Reinkensmeyer DJ, Guigon E, Maier MA. A computational model of use-dependent motor recovery following a stroke: optimizing corticospinal activations via reinforcement learning can explain residual capacity and other strength recovery dynamics. Neural Netw. 2012;29:60–9.PubMedCrossRef Reinkensmeyer DJ, Guigon E, Maier MA. A computational model of use-dependent motor recovery following a stroke: optimizing corticospinal activations via reinforcement learning can explain residual capacity and other strength recovery dynamics. Neural Netw. 2012;29:60–9.PubMedCrossRef
11.
go back to reference Bains AS, Schweighofer N. Time-sensitive reorganization of the somatosensory cortex poststroke depends on interaction between hebbian and homeoplasticity: a simulation study. J Neurophysiol. 2014;112(12):3240–50.PubMedPubMedCentralCrossRef Bains AS, Schweighofer N. Time-sensitive reorganization of the somatosensory cortex poststroke depends on interaction between hebbian and homeoplasticity: a simulation study. J Neurophysiol. 2014;112(12):3240–50.PubMedPubMedCentralCrossRef
12.
go back to reference Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez JA, Ichinose W, Kerdanyan G, Maneekobkunwong S, Minakata K, Nessler JA, Weber R, et al. Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev. 2014;43(5):657–70.CrossRef Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez JA, Ichinose W, Kerdanyan G, Maneekobkunwong S, Minakata K, Nessler JA, Weber R, et al. Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev. 2014;43(5):657–70.CrossRef
13.
go back to reference Ballester BR, Nirme J, Duarte E, Cuxart A, Rodriguez S, Verschure P, Duff A. The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients. J Neuroeng Rehabil. 2015;12:1–11.CrossRef Ballester BR, Nirme J, Duarte E, Cuxart A, Rodriguez S, Verschure P, Duff A. The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients. J Neuroeng Rehabil. 2015;12:1–11.CrossRef
14.
go back to reference Burdet E, Li Y, Kager S, Chua KS-G, Hussain A, Campolo D. Interactive robot assistance for upper-limb training. In: Rehabilitation robotics, Elsevier; 2018; pp. 137–148. Burdet E, Li Y, Kager S, Chua KS-G, Hussain A, Campolo D. Interactive robot assistance for upper-limb training. In: Rehabilitation robotics, Elsevier; 2018; pp. 137–148.
15.
go back to reference Reinkensmeyer DJ. How to retrain movement after neurologic injury: a computational rationale for incorporating robot (or therapist) assistance. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 2, IEEE; 2003; p. 1479–1482. Reinkensmeyer DJ. How to retrain movement after neurologic injury: a computational rationale for incorporating robot (or therapist) assistance. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 2, IEEE; 2003; p. 1479–1482.
16.
go back to reference Casadio M, Sanguineti V. Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):286–96.PubMedCrossRef Casadio M, Sanguineti V. Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):286–96.PubMedCrossRef
17.
go back to reference Crouch DL, Huang H. Lumped-parameter electromyogram-driven musculoskeletal hand model: a potential platform for real-time prosthesis control. J Biomech. 2016;49(16):3901–7.PubMedCrossRef Crouch DL, Huang H. Lumped-parameter electromyogram-driven musculoskeletal hand model: a potential platform for real-time prosthesis control. J Biomech. 2016;49(16):3901–7.PubMedCrossRef
18.
go back to reference Sartori M, Durandau G, Došen S, Farina D. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J Neural Eng. 2018;15(6):066026.PubMedCrossRef Sartori M, Durandau G, Došen S, Farina D. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J Neural Eng. 2018;15(6):066026.PubMedCrossRef
19.
go back to reference Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM. Motor learning Compr Physiol. 2019;9(2):613–63.PubMedCrossRef Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM. Motor learning Compr Physiol. 2019;9(2):613–63.PubMedCrossRef
21.
go back to reference Nudo R. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehab Med-Suppl. 2003;41:7–10.CrossRef Nudo R. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehab Med-Suppl. 2003;41:7–10.CrossRef
23.
go back to reference Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedCrossRef Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedCrossRef
25.
go back to reference Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.PubMedCrossRef Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.PubMedCrossRef
26.
go back to reference Silasi G, Murphy TH. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron. 2014;83(6):1354–68.PubMedCrossRef Silasi G, Murphy TH. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron. 2014;83(6):1354–68.PubMedCrossRef
27.
go back to reference Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–16.PubMedCrossRef Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–16.PubMedCrossRef
28.
go back to reference Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract. 2020;2(1):1–10.CrossRef Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract. 2020;2(1):1–10.CrossRef
29.
go back to reference Jang SH. Motor function-related maladaptive plasticity in stroke: a review. NeuroRehabilitation. 2013;32(2):311–6.PubMedCrossRef Jang SH. Motor function-related maladaptive plasticity in stroke: a review. NeuroRehabilitation. 2013;32(2):311–6.PubMedCrossRef
30.
go back to reference Takeuchi N, Izumi S-I, et al. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat. 2013;2013. Takeuchi N, Izumi S-I, et al. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat. 2013;2013.
31.
go back to reference Jinnah H, Berardelli A, Comella C, DeFazio G, DeLong MR, Factor S, Galpern WR, Hallett M, Ludlow CL, Perlmutter JS, et al. The focal dystonias: current views and challenges for future research. Mov Disord. 2013;28(7):926–43.PubMedPubMedCentralCrossRef Jinnah H, Berardelli A, Comella C, DeFazio G, DeLong MR, Factor S, Galpern WR, Hallett M, Ludlow CL, Perlmutter JS, et al. The focal dystonias: current views and challenges for future research. Mov Disord. 2013;28(7):926–43.PubMedPubMedCentralCrossRef
32.
go back to reference Stahl CM, Frucht SJ. Focal task specific dystonia: a review and update. J Neurol. 2017;264:1536–41.PubMedCrossRef Stahl CM, Frucht SJ. Focal task specific dystonia: a review and update. J Neurol. 2017;264:1536–41.PubMedCrossRef
33.
go back to reference Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6:1–3. Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6:1–3.
36.
go back to reference Kudithipudi D, Aguilar-Simon M, Babb J, Bazhenov M, Blackiston D, Bongard J, Brna AP, Chakravarthi Raja S, Cheney N, Clune J, Daram A, Fusi S, Helfer P, Kay L, Ketz N, Kira Z, Kolouri S, Krichmar JL, Kriegman S, Levin M, Madireddy S, Manicka S, Marjaninejad A, McNaughton B, Miikkulainen R, Navratilova Z, Pandit T, Parker A, Pilly PK, Risi S, Sejnowski TJ, Soltoggio A, Soures N, Tolias AS, Urbina-Meléndez D, Valero-Cuevas FJ, Ven GM, Vogelstein JT, Wang F, Weiss R, Yanguas-Gil A, Zou X, Siegelmann H. Biological underpinnings for lifelong learning machines. Nat Mach Intell. 2022;4(3):196–210. https://doi.org/10.1038/s42256-022-00452-0.CrossRef Kudithipudi D, Aguilar-Simon M, Babb J, Bazhenov M, Blackiston D, Bongard J, Brna AP, Chakravarthi Raja S, Cheney N, Clune J, Daram A, Fusi S, Helfer P, Kay L, Ketz N, Kira Z, Kolouri S, Krichmar JL, Kriegman S, Levin M, Madireddy S, Manicka S, Marjaninejad A, McNaughton B, Miikkulainen R, Navratilova Z, Pandit T, Parker A, Pilly PK, Risi S, Sejnowski TJ, Soltoggio A, Soures N, Tolias AS, Urbina-Meléndez D, Valero-Cuevas FJ, Ven GM, Vogelstein JT, Wang F, Weiss R, Yanguas-Gil A, Zou X, Siegelmann H. Biological underpinnings for lifelong learning machines. Nat Mach Intell. 2022;4(3):196–210. https://​doi.​org/​10.​1038/​s42256-022-00452-0.CrossRef
37.
go back to reference Hebb DO. The organization of behavior: A neuropsychological theory. Psychology press; 2005.CrossRef Hebb DO. The organization of behavior: A neuropsychological theory. Psychology press; 2005.CrossRef
39.
go back to reference Bloch J, Greaves-Tunnell A, Shea-Brown E, Harchaoui Z, Shojaie A, Yazdan-Shahmorad A. Network structure mediates functional reorganization induced by optogenetic stimulation of non-human primate sensorimotor cortex. Iscience. 2022;25(5). Bloch J, Greaves-Tunnell A, Shea-Brown E, Harchaoui Z, Shojaie A, Yazdan-Shahmorad A. Network structure mediates functional reorganization induced by optogenetic stimulation of non-human primate sensorimotor cortex. Iscience. 2022;25(5).
40.
go back to reference Schweighofer N. Computational neurorehabilitation. In: Neurorehabilitation Technology, Springer; 2022; p. 345–355. Schweighofer N. Computational neurorehabilitation. In: Neurorehabilitation Technology, Springer; 2022; p. 345–355.
41.
go back to reference Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130(7):1861–72.PubMedCrossRef Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130(7):1861–72.PubMedCrossRef
42.
go back to reference Yazdan-Shahmorad A, Silversmith DB, Kharazia V, Sabes PN. Targeted cortical reorganization using optogenetics in non-human primates. Elife. 2018;7:31034.CrossRef Yazdan-Shahmorad A, Silversmith DB, Kharazia V, Sabes PN. Targeted cortical reorganization using optogenetics in non-human primates. Elife. 2018;7:31034.CrossRef
43.
go back to reference Zanos S, Rembado I, Chen D, Fetz EE. Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys. Curr Biol. 2018;28(16):2515–26.PubMedPubMedCentralCrossRef Zanos S, Rembado I, Chen D, Fetz EE. Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys. Curr Biol. 2018;28(16):2515–26.PubMedPubMedCentralCrossRef
44.
go back to reference Jackson A, Mavoori J, Fetz EE. Long-term motor cortex plasticity induced by an electronic neural implant. Nature. 2006;444(7115):56–60.PubMedCrossRef Jackson A, Mavoori J, Fetz EE. Long-term motor cortex plasticity induced by an electronic neural implant. Nature. 2006;444(7115):56–60.PubMedCrossRef
45.
go back to reference McPherson JG, Miller RR, Perlmutter SI. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc Natl Acad Sci. 2015;112(39):12193–8.PubMedPubMedCentralCrossRef McPherson JG, Miller RR, Perlmutter SI. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc Natl Acad Sci. 2015;112(39):12193–8.PubMedPubMedCentralCrossRef
46.
go back to reference Capogrosso M, Milekovic T, Borton D, Wagner F, Moraud EM, Mignardot J-B, Buse N, Gandar J, Barraud Q, Xing D, et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 2016;539(7628):284–8.PubMedPubMedCentralCrossRef Capogrosso M, Milekovic T, Borton D, Wagner F, Moraud EM, Mignardot J-B, Buse N, Gandar J, Barraud Q, Xing D, et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 2016;539(7628):284–8.PubMedPubMedCentralCrossRef
47.
go back to reference Lorach H, Galvez A, Spagnolo V, Martel F, Karakas S, Intering N, Vat M, Faivre O, Harte C, Komi S, Ravier J. Walking naturally after spinal cord injury using a brain–spine interface. Nature. 2023:1–8. Lorach H, Galvez A, Spagnolo V, Martel F, Karakas S, Intering N, Vat M, Faivre O, Harte C, Komi S, Ravier J. Walking naturally after spinal cord injury using a brain–spine interface. Nature. 2023:1–8.
48.
go back to reference Liew S-L, Zavaliangos-Petropulu A, Jahanshad N, Lang CE, Hayward KS, Lohse KR, Juliano JM, Assogna F, Baugh LA, Bhattacharya AK, et al. The enigma stroke recovery working group: big data neuroimaging to study brain–behavior relationships after stroke. Hum Brain Mapp. 2022;43(1):129–48.PubMedCrossRef Liew S-L, Zavaliangos-Petropulu A, Jahanshad N, Lang CE, Hayward KS, Lohse KR, Juliano JM, Assogna F, Baugh LA, Bhattacharya AK, et al. The enigma stroke recovery working group: big data neuroimaging to study brain–behavior relationships after stroke. Hum Brain Mapp. 2022;43(1):129–48.PubMedCrossRef
49.
go back to reference Hammer EM, Halder S, Blankertz B, Sannelli C, Dickhaus T, Kleih S, Müller K-R, Kübler A. Psychological predictors of smr-bci performance. Biol Psychol. 2012;89(1):80–6.PubMedCrossRef Hammer EM, Halder S, Blankertz B, Sannelli C, Dickhaus T, Kleih S, Müller K-R, Kübler A. Psychological predictors of smr-bci performance. Biol Psychol. 2012;89(1):80–6.PubMedCrossRef
50.
go back to reference Alkoby O, Abu-Rmileh A, Shriki O, Todder D. Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful eeg neurofeedback learning. Neuroscience. 2018;378:155–64.PubMedCrossRef Alkoby O, Abu-Rmileh A, Shriki O, Todder D. Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful eeg neurofeedback learning. Neuroscience. 2018;378:155–64.PubMedCrossRef
51.
go back to reference Boutet A, Madhavan R, Elias GJ, Joel SE, Gramer R, Ranjan M, Paramanandam V, Xu D, Germann J, Loh A, et al. Predicting optimal deep brain stimulation parameters for parkinson’s disease using functional mri and machine learning. Nat Commun. 2021;12(1):3043.PubMedPubMedCentralCrossRef Boutet A, Madhavan R, Elias GJ, Joel SE, Gramer R, Ranjan M, Paramanandam V, Xu D, Germann J, Loh A, et al. Predicting optimal deep brain stimulation parameters for parkinson’s disease using functional mri and machine learning. Nat Commun. 2021;12(1):3043.PubMedPubMedCentralCrossRef
52.
go back to reference Schweighofer N, Ye D, Luo H, D’Argenio DZ, Winstein C. Long-term forecasting of a motor outcome following rehabilitation in chronic stroke via a hierarchical bayesian dynamic model. J Neuroeng Rehabil. 2023;20(1):1–13.CrossRef Schweighofer N, Ye D, Luo H, D’Argenio DZ, Winstein C. Long-term forecasting of a motor outcome following rehabilitation in chronic stroke via a hierarchical bayesian dynamic model. J Neuroeng Rehabil. 2023;20(1):1–13.CrossRef
54.
go back to reference Sawers A, Ting LH. Perspectives on human-human sensorimotor interactions for the design of rehabilitation robots. J Neuroeng Rehabil. 2014;11:1–13.CrossRef Sawers A, Ting LH. Perspectives on human-human sensorimotor interactions for the design of rehabilitation robots. J Neuroeng Rehabil. 2014;11:1–13.CrossRef
55.
56.
go back to reference Box GE, Lucefio A. Quality quandaries models, assumptions, and robustness. Qual Eng. 1998;10(3):595–8.CrossRef Box GE, Lucefio A. Quality quandaries models, assumptions, and robustness. Qual Eng. 1998;10(3):595–8.CrossRef
57.
go back to reference Valero-Cuevas FJ, Anand VV, Saxena A, Lipson H. Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology. IEEE Trans Biomed Eng. 2007;54(11):1951–64.PubMedCrossRef Valero-Cuevas FJ, Anand VV, Saxena A, Lipson H. Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology. IEEE Trans Biomed Eng. 2007;54(11):1951–64.PubMedCrossRef
59.
go back to reference Cohn BA, Szedlák M, Gärtner B, Valero-Cuevas FJ. Feasibility theory reconciles and informs alternative approaches to neuromuscular control. Front Comput Neurosci. 2018;12:62.PubMedPubMedCentralCrossRef Cohn BA, Szedlák M, Gärtner B, Valero-Cuevas FJ. Feasibility theory reconciles and informs alternative approaches to neuromuscular control. Front Comput Neurosci. 2018;12:62.PubMedPubMedCentralCrossRef
60.
go back to reference Mulla DM, Keir PJ. Neuromuscular control: from a biomechanist's perspective. Front Sports Act Living. 2023;5. Mulla DM, Keir PJ. Neuromuscular control: from a biomechanist's perspective. Front Sports Act Living. 2023;5.
61.
go back to reference Wang C, Winstein C, D’Argenio DZ, Schweighofer N. The efficiency, efficacy, and retention of task practice in chronic stroke. Neurorehabil Neural Repair. 2020;34(10):881–90.PubMedPubMedCentralCrossRef Wang C, Winstein C, D’Argenio DZ, Schweighofer N. The efficiency, efficacy, and retention of task practice in chronic stroke. Neurorehabil Neural Repair. 2020;34(10):881–90.PubMedPubMedCentralCrossRef
62.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Sys. 2017;30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Sys. 2017;30.
63.
go back to reference Barlas G, Stamatatos E. A transfer learning approach to cross-domain authorship attribution. Evol Syst. 2021;12(3):625–43.CrossRef Barlas G, Stamatatos E. A transfer learning approach to cross-domain authorship attribution. Evol Syst. 2021;12(3):625–43.CrossRef
64.
go back to reference Tummala S, Kadry S, Bukhari SAC, Rauf HT. Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling. Curr Oncol. 2022;29(10):7498–511.PubMedPubMedCentralCrossRef Tummala S, Kadry S, Bukhari SAC, Rauf HT. Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling. Curr Oncol. 2022;29(10):7498–511.PubMedPubMedCentralCrossRef
66.
go back to reference Valero-Cuevas FJ, Santello M. On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J Neuroeng Rehabil. 2017;14:1–20.CrossRef Valero-Cuevas FJ, Santello M. On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J Neuroeng Rehabil. 2017;14:1–20.CrossRef
68.
go back to reference Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54(4):443–6.PubMedCrossRef Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54(4):443–6.PubMedCrossRef
69.
70.
go back to reference Schweighofer N, Choi Y, Winstein C, Gordon J. Task-oriented rehabilitation robotics. Am J Phys Med Rehabil. 2012;91(11):270–9.CrossRef Schweighofer N, Choi Y, Winstein C, Gordon J. Task-oriented rehabilitation robotics. Am J Phys Med Rehabil. 2012;91(11):270–9.CrossRef
71.
go back to reference Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66.PubMedCrossRef Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66.PubMedCrossRef
72.
go back to reference Colombo G, Joerg M, Schreier R, Dietz V, et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.PubMed Colombo G, Joerg M, Schreier R, Dietz V, et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.PubMed
73.
go back to reference Lange BS, Requejo P, Flynn SM, Rizzo AA, Valero-Cuevas F, Baker L, Winstein C. The potential of virtual reality and gaming to assist successful aging with disability. Phys Med Rehabil Clin. 2010;21(2):339–56.CrossRef Lange BS, Requejo P, Flynn SM, Rizzo AA, Valero-Cuevas F, Baker L, Winstein C. The potential of virtual reality and gaming to assist successful aging with disability. Phys Med Rehabil Clin. 2010;21(2):339–56.CrossRef
74.
go back to reference Rodríguez-Fernández A, Lobo-Prat J, Font-Llagunes JM. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil. 2021;18(1):1–21.CrossRef Rodríguez-Fernández A, Lobo-Prat J, Font-Llagunes JM. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil. 2021;18(1):1–21.CrossRef
75.
go back to reference Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412(1):84–95.PubMedCrossRef Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412(1):84–95.PubMedCrossRef
76.
go back to reference Reinkensmeyer DJ, Akoner OM, Ferris DP, Gordon KE, Slacking by the human motor system: computational models and implications for robotic orthoses. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2009;2009:2129–32. Reinkensmeyer DJ, Akoner OM, Ferris DP, Gordon KE, Slacking by the human motor system: computational models and implications for robotic orthoses. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2009;2009:2129–32.
77.
go back to reference Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (alex). IEEE Trans Neural Syst Rehabil Eng. 2008;17(1):2–8.CrossRef Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (alex). IEEE Trans Neural Syst Rehabil Eng. 2008;17(1):2–8.CrossRef
78.
go back to reference Hebert JS, Rehani M, Stiegelmar R. Osseointegration for lower-limb amputation: a systematic review of clinical outcomes. JBJS reviews. 2017;5(10):10.CrossRef Hebert JS, Rehani M, Stiegelmar R. Osseointegration for lower-limb amputation: a systematic review of clinical outcomes. JBJS reviews. 2017;5(10):10.CrossRef
79.
go back to reference Donaghy AC, Morgan SJ, Kaufman GE, Morgenroth DC. Team approach to prosthetic prescription decision-making. Curr Phys Med Rehabil Rep. 2020;8:386–95.CrossRef Donaghy AC, Morgan SJ, Kaufman GE, Morgenroth DC. Team approach to prosthetic prescription decision-making. Curr Phys Med Rehabil Rep. 2020;8:386–95.CrossRef
80.
go back to reference Mallik A, Weir A. Nerve conduction studies: essentials and pitfalls in practice. J Neurol Neurosurg Psychiatry. 2005;76(suppl 2):23–31. Mallik A, Weir A. Nerve conduction studies: essentials and pitfalls in practice. J Neurol Neurosurg Psychiatry. 2005;76(suppl 2):23–31.
81.
go back to reference Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130(1):170–80.PubMedCrossRef Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130(1):170–80.PubMedCrossRef
82.
go back to reference Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The prep algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(8):2527–35.PubMedCrossRef Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The prep algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(8):2527–35.PubMedCrossRef
83.
go back to reference Groiss S, Wojtecki L, Südmeyer M, Schnitzler A. Deep brain stimulation in parkinson’s disease. Ther Adv Neurol Disord. 2009;2(6):379–91.CrossRef Groiss S, Wojtecki L, Südmeyer M, Schnitzler A. Deep brain stimulation in parkinson’s disease. Ther Adv Neurol Disord. 2009;2(6):379–91.CrossRef
84.
go back to reference Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, Alexander J, Ali R, Brown BL, Feng W, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (vns-rehab): a randomised, blinded, pivotal, device trial. Lancet. 2021;397(10284):1545–53.PubMedPubMedCentralCrossRef Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, Alexander J, Ali R, Brown BL, Feng W, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (vns-rehab): a randomised, blinded, pivotal, device trial. Lancet. 2021;397(10284):1545–53.PubMedPubMedCentralCrossRef
85.
go back to reference Baig SS, Kamarova M, Ali A, Su L, Dawson J, Redgrave JN, Majid A. Transcutaneous vagus nerve stimulation (tvns) in stroke: the evidence, challenges and future directions. Auton Neurosci. 2022;237.PubMedCrossRef Baig SS, Kamarova M, Ali A, Su L, Dawson J, Redgrave JN, Majid A. Transcutaneous vagus nerve stimulation (tvns) in stroke: the evidence, challenges and future directions. Auton Neurosci. 2022;237.PubMedCrossRef
86.
go back to reference Wolpert DM, Flanagan JR. Computations underlying sensorimotor learning. Curr Opin Neurobiol. 2016;37:7–11.PubMedCrossRef Wolpert DM, Flanagan JR. Computations underlying sensorimotor learning. Curr Opin Neurobiol. 2016;37:7–11.PubMedCrossRef
87.
go back to reference Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 2006;4(6):179.CrossRef Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 2006;4(6):179.CrossRef
89.
go back to reference Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):286–97.PubMedCrossRef Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):286–97.PubMedCrossRef
90.
go back to reference Sulzer JS, Gordon KE, Dhaher YY, Peshkin MA, Patton JL. Preswing knee flexion assistance is coupled with hip abduction in people with stiff-knee gait after stroke. Stroke. 2010;41(8):1709–14.PubMedPubMedCentralCrossRef Sulzer JS, Gordon KE, Dhaher YY, Peshkin MA, Patton JL. Preswing knee flexion assistance is coupled with hip abduction in people with stiff-knee gait after stroke. Stroke. 2010;41(8):1709–14.PubMedPubMedCentralCrossRef
91.
go back to reference Finley JM, Perreault EJ, Dhaher YY. Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke. Exp Brain Res. 2008;188:529–40.PubMedPubMedCentralCrossRef Finley JM, Perreault EJ, Dhaher YY. Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke. Exp Brain Res. 2008;188:529–40.PubMedPubMedCentralCrossRef
92.
go back to reference Rebula JR, Schaal S, Finley J, Righetti L. A robustness analysis of inverse optimal control of bipedal walking. IEEE Robot Autom Lett. 2019;4(4):4531–8.CrossRef Rebula JR, Schaal S, Finley J, Righetti L. A robustness analysis of inverse optimal control of bipedal walking. IEEE Robot Autom Lett. 2019;4(4):4531–8.CrossRef
93.
go back to reference Clever D, Hu Y, Mombaur K. Humanoid gait generation in complex environments based on template models and optimality principles learned from human beings. Int J Robot Res. 2018;37(10):1184–204.CrossRef Clever D, Hu Y, Mombaur K. Humanoid gait generation in complex environments based on template models and optimality principles learned from human beings. Int J Robot Res. 2018;37(10):1184–204.CrossRef
94.
go back to reference Nguyen VQ, Johnson RT, Sup FC, Umberger BR. Bilevel optimization for cost function determination in dynamic simulation of human gait. IEEE Trans Neural Syst Rehabil Eng. 2019;27(7):1426–35.PubMedCrossRef Nguyen VQ, Johnson RT, Sup FC, Umberger BR. Bilevel optimization for cost function determination in dynamic simulation of human gait. IEEE Trans Neural Syst Rehabil Eng. 2019;27(7):1426–35.PubMedCrossRef
96.
98.
go back to reference Valero-Cuevas FJ, Erwin A. Bio-robots step towards brain-body co-adaptation. Nat Mach Intell. 2022;4(9):737–8.CrossRef Valero-Cuevas FJ, Erwin A. Bio-robots step towards brain-body co-adaptation. Nat Mach Intell. 2022;4(9):737–8.CrossRef
99.
go back to reference Berry JA, Marjaninejad A, Valero-Cuevas FJ. Edge computing in nature: Minimal pre-processing of multi-muscle ensembles of spindle signals improves discriminability of limb movements. Front Physiol. 2023;14:1183492.PubMedPubMedCentralCrossRef Berry JA, Marjaninejad A, Valero-Cuevas FJ. Edge computing in nature: Minimal pre-processing of multi-muscle ensembles of spindle signals improves discriminability of limb movements. Front Physiol. 2023;14:1183492.PubMedPubMedCentralCrossRef
100.
go back to reference Damush TM, Plue L, Bakas T, Schmid A, Williams LS. Barriers and facilitators to exercise among stroke survivors. Rehabil Nurs. 2007;32(6):253–62.PubMedCrossRef Damush TM, Plue L, Bakas T, Schmid A, Williams LS. Barriers and facilitators to exercise among stroke survivors. Rehabil Nurs. 2007;32(6):253–62.PubMedCrossRef
101.
go back to reference Marzolini S, Fong K, Jagroop D, Neirinckx J, Liu J, Reyes R, Grace SL, Oh P, Colella TJ. Eligibility, enrollment, and completion of exercise-based cardiac rehabilitation following stroke rehabilitation: what are the barriers? Phys Ther. 2020;100(1):44–56.PubMedCrossRef Marzolini S, Fong K, Jagroop D, Neirinckx J, Liu J, Reyes R, Grace SL, Oh P, Colella TJ. Eligibility, enrollment, and completion of exercise-based cardiac rehabilitation following stroke rehabilitation: what are the barriers? Phys Ther. 2020;100(1):44–56.PubMedCrossRef
102.
go back to reference Bezyak JL, Sabella S, Hammel J, McDonald K, Jones RA, Barton D. Community participation and public transportation barriers experienced by people with disabilities. Disabil Rehabil. 2020;42(23):3275–83.PubMedCrossRef Bezyak JL, Sabella S, Hammel J, McDonald K, Jones RA, Barton D. Community participation and public transportation barriers experienced by people with disabilities. Disabil Rehabil. 2020;42(23):3275–83.PubMedCrossRef
103.
go back to reference Ellis T, Boudreau JK, DeAngelis TR, Brown LE, Cavanaugh JT, Earhart GM, Ford MP, Foreman KB, Dibble LE. Barriers to exercise in people with parkinson disease. Phys Ther. 2013;93(5):628–36.PubMedPubMedCentralCrossRef Ellis T, Boudreau JK, DeAngelis TR, Brown LE, Cavanaugh JT, Earhart GM, Ford MP, Foreman KB, Dibble LE. Barriers to exercise in people with parkinson disease. Phys Ther. 2013;93(5):628–36.PubMedPubMedCentralCrossRef
104.
go back to reference Chang MC, Boudier-Revéret M. Usefulness of telerehabilitation for stroke patients during the COVID-19 pandemic. Am J Phys Med Rehabil. 2020. Chang MC, Boudier-Revéret M. Usefulness of telerehabilitation for stroke patients during the COVID-19 pandemic. Am J Phys Med Rehabil. 2020.
105.
go back to reference Nuara A, Fabbri-Destro M, Scalona E, Lenzi SE, Rizzolatti G, Avanzini P. Telerehabilitation in response to constrained physical distance: an opportunity to rethink neurorehabilitative routines. J Neurol. 2022;269(2):627–38.PubMedCrossRef Nuara A, Fabbri-Destro M, Scalona E, Lenzi SE, Rizzolatti G, Avanzini P. Telerehabilitation in response to constrained physical distance: an opportunity to rethink neurorehabilitative routines. J Neurol. 2022;269(2):627–38.PubMedCrossRef
106.
go back to reference Rogante M, Grigioni M, Cordella D, Giacomozzi C. Ten years of telerehabilitation: a literature overview of technologies and clinical applications. NeuroRehabilitation. 2010;27(4):287–304.PubMedCrossRef Rogante M, Grigioni M, Cordella D, Giacomozzi C. Ten years of telerehabilitation: a literature overview of technologies and clinical applications. NeuroRehabilitation. 2010;27(4):287–304.PubMedCrossRef
107.
go back to reference Winters JM. Telerehabilitation research: emerging opportunities. Annu Rev Biomed Eng. 2002;4(1):287–320.PubMedCrossRef Winters JM. Telerehabilitation research: emerging opportunities. Annu Rev Biomed Eng. 2002;4(1):287–320.PubMedCrossRef
108.
go back to reference Ding D, Morris L, Messina K, Fairman A. Providing mainstream smart home technology as assistive technology for persons with disabilities: a qualitative study with professionals. Disabil Rehabil Assist Technol. 2023;18(7):1192–9. Ding D, Morris L, Messina K, Fairman A. Providing mainstream smart home technology as assistive technology for persons with disabilities: a qualitative study with professionals. Disabil Rehabil Assist Technol. 2023;18(7):1192–9.
109.
go back to reference Ding D, Morris L. Provider perspectives on providing mainstream smart home technologies as assistive technology. Assist Technol Outcomes Benefits (ATOB). 2023;17. Ding D, Morris L. Provider perspectives on providing mainstream smart home technologies as assistive technology. Assist Technol Outcomes Benefits (ATOB). 2023;17.
110.
go back to reference Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9(1):1–17.CrossRef Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9(1):1–17.CrossRef
111.
go back to reference Maceira-Elvira P, Popa T, Schmid A-C, Hummel FC. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. J Neuroeng Rehabil. 2019;16(1):1–18.CrossRef Maceira-Elvira P, Popa T, Schmid A-C, Hummel FC. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. J Neuroeng Rehabil. 2019;16(1):1–18.CrossRef
112.
go back to reference Rodgers MM, Alon G, Pai VM, Conroy RS. Wearable technologies for active living and rehabilitation: current research challenges and future opportunities. Journal of rehabilitation and assistive technologies engineering. 2019;6:2055668319839607.PubMedPubMedCentralCrossRef Rodgers MM, Alon G, Pai VM, Conroy RS. Wearable technologies for active living and rehabilitation: current research challenges and future opportunities. Journal of rehabilitation and assistive technologies engineering. 2019;6:2055668319839607.PubMedPubMedCentralCrossRef
113.
go back to reference Liu Y, Zhang G, Tarolli CG, Hristov R, Jensen-Roberts S, Waddell EM, Myers TL, Pawlik ME, Soto JM, Wilson RM, et al. Monitoring gait at home with radio waves in Parkinson’s disease: a marker of severity, progression, and medication response. Sci Transl Med. 2022;14(663):9669.CrossRef Liu Y, Zhang G, Tarolli CG, Hristov R, Jensen-Roberts S, Waddell EM, Myers TL, Pawlik ME, Soto JM, Wilson RM, et al. Monitoring gait at home with radio waves in Parkinson’s disease: a marker of severity, progression, and medication response. Sci Transl Med. 2022;14(663):9669.CrossRef
114.
go back to reference Moral-Munoz JA, Zhang W, Cobo MJ, Herrera-Viedma E, Kaber DB. Smartphone-based systems for physical rehabilitation applications: A systematic review. Assist Technol. 2021;33(4):223–36.PubMedCrossRef Moral-Munoz JA, Zhang W, Cobo MJ, Herrera-Viedma E, Kaber DB. Smartphone-based systems for physical rehabilitation applications: A systematic review. Assist Technol. 2021;33(4):223–36.PubMedCrossRef
115.
go back to reference Milani P, Coccetta CA, Rabini A, Sciarra T, Massazza G, Ferriero G. Mobile smartphone applications for body position measurement in rehabilitation: a review of goniometric tools. PM &R. 2014;6(11):1038–43. Milani P, Coccetta CA, Rabini A, Sciarra T, Massazza G, Ferriero G. Mobile smartphone applications for body position measurement in rehabilitation: a review of goniometric tools. PM &R. 2014;6(11):1038–43.
116.
go back to reference Arora S, Venkataraman V, Zhan A, Donohue S, Biglan KM, Dorsey ER, Little MA. Detecting and monitoring the symptoms of parkinson’s disease using smartphones: a pilot study. Parkinsonism Relat Disord. 2015;21(6):650–3.PubMedCrossRef Arora S, Venkataraman V, Zhan A, Donohue S, Biglan KM, Dorsey ER, Little MA. Detecting and monitoring the symptoms of parkinson’s disease using smartphones: a pilot study. Parkinsonism Relat Disord. 2015;21(6):650–3.PubMedCrossRef
117.
go back to reference Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, Eskofier BM, Merola A, Horak F, Lang AE, et al. Technology in parkinson’s disease: challenges and opportunities. Mov Disord. 2016;31(9):1272–82.PubMedPubMedCentralCrossRef Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, Eskofier BM, Merola A, Horak F, Lang AE, et al. Technology in parkinson’s disease: challenges and opportunities. Mov Disord. 2016;31(9):1272–82.PubMedPubMedCentralCrossRef
118.
go back to reference Harwin WS, Patton JL, Edgerton VR. Challenges and opportunities for robot-mediated neurorehabilitation. Proc IEEE. 2006;94(9):1717–26.CrossRef Harwin WS, Patton JL, Edgerton VR. Challenges and opportunities for robot-mediated neurorehabilitation. Proc IEEE. 2006;94(9):1717–26.CrossRef
119.
go back to reference Canning CG, Ada L, Paul SS. Is automaticity of walking regained after stroke? Disabil Rehabil. 2006;28(2):97–102.PubMedCrossRef Canning CG, Ada L, Paul SS. Is automaticity of walking regained after stroke? Disabil Rehabil. 2006;28(2):97–102.PubMedCrossRef
120.
go back to reference Zhu M, Zhang Z, Hirdes JP, Stolee P. Using machine learning algorithms to guide rehabilitation planning for home care clients. BMC Med Inform Decis Mak. 2007;7:1–13.CrossRef Zhu M, Zhang Z, Hirdes JP, Stolee P. Using machine learning algorithms to guide rehabilitation planning for home care clients. BMC Med Inform Decis Mak. 2007;7:1–13.CrossRef
121.
go back to reference Boukhennoufa I, Zhai X, Utti V, Jackson J, McDonald-Maier KD. Wearable sensors and machine learning in post-stroke rehabilitation assessment: a systematic review. Biomed Signal Process Control. 2022;71.CrossRef Boukhennoufa I, Zhai X, Utti V, Jackson J, McDonald-Maier KD. Wearable sensors and machine learning in post-stroke rehabilitation assessment: a systematic review. Biomed Signal Process Control. 2022;71.CrossRef
122.
go back to reference Campagnini S, Arienti C, Patrini M, Liuzzi P, Mannini A, Carrozza MC. Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil. 2022;19(1):1–22. Campagnini S, Arienti C, Patrini M, Liuzzi P, Mannini A, Carrozza MC. Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil. 2022;19(1):1–22.
123.
go back to reference Delp SL, Arnold AS, Piazza SJ, Ruina A. Clinical applications of musculoskeletal models in orthopedics and rehabilitation. In: Biomechanics and Neural Control of Posture and Movement, Springer; 2000; p. 477–489. Delp SL, Arnold AS, Piazza SJ, Ruina A. Clinical applications of musculoskeletal models in orthopedics and rehabilitation. In: Biomechanics and Neural Control of Posture and Movement, Springer; 2000; p. 477–489.
124.
go back to reference Smith SH, Coppack RJ, van den Bogert AJ, Bennett AN, Bull AM. Review of musculoskeletal modelling in a clinical setting: Current use in rehabilitation design, surgical decision making and healthcare interventions. Clin Biomech. 2021;83:105292. Smith SH, Coppack RJ, van den Bogert AJ, Bennett AN, Bull AM. Review of musculoskeletal modelling in a clinical setting: Current use in rehabilitation design, surgical decision making and healthcare interventions. Clin Biomech. 2021;83:105292.
125.
go back to reference Shourijeh MS, Mehrabi N, McPhee JJ, Fregly BJ. Advances in musculoskeletal modeling and their application to neurorehabilitation. Front Neurorobot. 2020;14:65. Shourijeh MS, Mehrabi N, McPhee JJ, Fregly BJ. Advances in musculoskeletal modeling and their application to neurorehabilitation. Front Neurorobot. 2020;14:65.
126.
go back to reference Nilsen P, Birken SA, editors. Handbook on implementation science. Edward Elgar Publishing; 2020. Nilsen P, Birken SA, editors. Handbook on implementation science. Edward Elgar Publishing; 2020.
127.
go back to reference Green LW. Making research relevant: if it is an evidence-based practice, where’s the practice-based evidence? Fam Pract. 2008;25(suppl1):20–4.CrossRef Green LW. Making research relevant: if it is an evidence-based practice, where’s the practice-based evidence? Fam Pract. 2008;25(suppl1):20–4.CrossRef
128.
go back to reference Hajiheydari N, Delgosha MS, Olya H. Scepticism and resistance to IoMT in healthcare: Application of behavioural reasoning theory with configurational perspective. Technological Forecasting and Social Change. 2021 Aug 1;169:120807. Hajiheydari N, Delgosha MS, Olya H. Scepticism and resistance to IoMT in healthcare: Application of behavioural reasoning theory with configurational perspective. Technological Forecasting and Social Change. 2021 Aug 1;169:120807.
129.
go back to reference Wang H, Cao L, Huang C, Jia J, Dong Y, Fan C, De Albuquerque VH. A novel algorithmic structure of EEG Channel Attention combined with Swin Transformer for motor patterns classification. IEEE Transact Neural Syst Rehabil Eng. 2023. Wang H, Cao L, Huang C, Jia J, Dong Y, Fan C, De Albuquerque VH. A novel algorithmic structure of EEG Channel Attention combined with Swin Transformer for motor patterns classification. IEEE Transact Neural Syst Rehabil Eng. 2023.
130.
go back to reference Bary T, Macq B. Transformers for EEG classification: architectures, pre-training, and applications to epileptic seizure forecasting. Bary T, Macq B. Transformers for EEG classification: architectures, pre-training, and applications to epileptic seizure forecasting.
131.
go back to reference Reza S, Ferreira MC, Machado JJ, Tavares JM. A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Syst Appl. 2022;202:117275. Reza S, Ferreira MC, Machado JJ, Tavares JM. A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Syst Appl. 2022;202:117275.
132.
go back to reference Yhdego H, Li J, Paolini C, Audette M. Wearable sensor gait analysis of fall detection using attention network. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2021; p. 3137–3141. IEEE. Yhdego H, Li J, Paolini C, Audette M. Wearable sensor gait analysis of fall detection using attention network. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2021; p. 3137–3141. IEEE.
133.
go back to reference Li Y, Carboni G, Gonzalez F, Campolo D, Burdet E. Differential game theory for versatile physical human-robot interaction. Nat Mach Intell. 2019;1(1):36–43.CrossRef Li Y, Carboni G, Gonzalez F, Campolo D, Burdet E. Differential game theory for versatile physical human-robot interaction. Nat Mach Intell. 2019;1(1):36–43.CrossRef
137.
go back to reference Schwock F, Bloch J, Atlas L, Abadi S, Yazdan-Shahmorad A. Estimating and analyzing neural information flow using signal processing on graphs. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2023. p. 1–5. IEEE. Schwock F, Bloch J, Atlas L, Abadi S, Yazdan-Shahmorad A. Estimating and analyzing neural information flow using signal processing on graphs. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2023. p. 1–5. IEEE.
138.
go back to reference Khateeb K, Bloch J, Zhou J, Rahimi M, Griggs DJ, Kharazia VN, Le MN, Wang RK, Yazdan-Shahmorad A. A versatile toolbox for studying cortical physiology in primates. Cell Rep Methods. 2022;2(3). Khateeb K, Bloch J, Zhou J, Rahimi M, Griggs DJ, Kharazia VN, Le MN, Wang RK, Yazdan-Shahmorad A. A versatile toolbox for studying cortical physiology in primates. Cell Rep Methods. 2022;2(3).
140.
go back to reference Caswell-Midwinter B, Doney EM, Arjmandi MK, Jahn KN, Herrmann BS, Arenberg JG. The relationship between impedance, programming and word recognition in a large clinical dataset of cochlear implant recipients. Trends Hear 26, 23312165211060983 2022; https://doi.org/10.1177/23312165211060983 Caswell-Midwinter B, Doney EM, Arjmandi MK, Jahn KN, Herrmann BS, Arenberg JG. The relationship between impedance, programming and word recognition in a large clinical dataset of cochlear implant recipients. Trends Hear 26, 23312165211060983 2022; https://​doi.​org/​10.​1177/​2331216521106098​3
148.
go back to reference Wu W, Saul KR, Huang HH. Using reinforcement learning to estimate human joint moments from electromyography or joint kinematics: an alternative solution to musculoskeletal-based biomechanics. J Biomech Eng. 2021;143(4). Wu W, Saul KR, Huang HH. Using reinforcement learning to estimate human joint moments from electromyography or joint kinematics: an alternative solution to musculoskeletal-based biomechanics. J Biomech Eng. 2021;143(4).
150.
go back to reference Mao X, Chang Y-C, Zanos S, Lajoie G. Rapidly inferring personalized neurostimulation parameters with meta-learning: a case study of individualized fiber recruitment in vagus nerve stimulation. bioRxiv; 2022; https://doi.org/10.1101/2022.09.06.506839, https://www.biorxiv.org/content/early/2022/09/08/2022.09.06.506839.full.pdf. Mao X, Chang Y-C, Zanos S, Lajoie G. Rapidly inferring personalized neurostimulation parameters with meta-learning: a case study of individualized fiber recruitment in vagus nerve stimulation. bioRxiv; 2022; https://​doi.​org/​10.​1101/​2022.​09.​06.​506839, https://​www.​biorxiv.​org/​content/​early/​2022/​09/​08/​2022.​09.​06.​506839.​full.​pdf.​
151.
go back to reference Weerdesteyn V, Niet M, Duijnhoven HJ, Geurts AC. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45(8):1195–214.PubMedCrossRef Weerdesteyn V, Niet M, Duijnhoven HJ, Geurts AC. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45(8):1195–214.PubMedCrossRef
152.
go back to reference Crenshaw JR, Bernhardt KA, Achenbach SJ, Atkinson EJ, Khosla S, Kaufman KR, Amin S. The circumstances, orientations, and impact locations of falls in community-dwelling older women. Arch Gerontol Geriatr. 2017;73:240–7.PubMedPubMedCentralCrossRef Crenshaw JR, Bernhardt KA, Achenbach SJ, Atkinson EJ, Khosla S, Kaufman KR, Amin S. The circumstances, orientations, and impact locations of falls in community-dwelling older women. Arch Gerontol Geriatr. 2017;73:240–7.PubMedPubMedCentralCrossRef
153.
154.
go back to reference Allen JL, McKay JL, Sawers A, Hackney ME, Ting LH. Increased neuromuscular consistency in gait and balance after partnered, dance-based rehabilitation in parkinson’s disease. J Neurophysiol. 2017;118(1):363–73.PubMedPubMedCentralCrossRef Allen JL, McKay JL, Sawers A, Hackney ME, Ting LH. Increased neuromuscular consistency in gait and balance after partnered, dance-based rehabilitation in parkinson’s disease. J Neurophysiol. 2017;118(1):363–73.PubMedPubMedCentralCrossRef
155.
go back to reference Allen JL, Carey HD, Ting LH, Sawers A. Generalization of motor module recruitment across standing reactive balance and walking is associated with beam walking performance in young adults. Gait Posture. 2020;82:242–7.PubMedPubMedCentralCrossRef Allen JL, Carey HD, Ting LH, Sawers A. Generalization of motor module recruitment across standing reactive balance and walking is associated with beam walking performance in young adults. Gait Posture. 2020;82:242–7.PubMedPubMedCentralCrossRef
156.
go back to reference Lin DJ, Cloutier AM, Erler KS, Cassidy JM, Snider SB, Ranford J, Parlman K, Giatsidis F, Burke JF, Schwamm LH, et al. Corticospinal tract injury estimated from acute stroke imaging predicts upper extremity motor recovery after stroke. Stroke. 2019;50(12):3569–77.PubMedPubMedCentralCrossRef Lin DJ, Cloutier AM, Erler KS, Cassidy JM, Snider SB, Ranford J, Parlman K, Giatsidis F, Burke JF, Schwamm LH, et al. Corticospinal tract injury estimated from acute stroke imaging predicts upper extremity motor recovery after stroke. Stroke. 2019;50(12):3569–77.PubMedPubMedCentralCrossRef
157.
go back to reference Lin DJ, Erler KS, Snider SB, Bonkhoff AK, DiCarlo JA, Lam N, Ranford J, Parlman K, Cohen A, Freeburn J, et al. Cognitive demands influence upper extremity motor performance during recovery from acute stroke. Neurology. 2021;96(21):2576–86.CrossRef Lin DJ, Erler KS, Snider SB, Bonkhoff AK, DiCarlo JA, Lam N, Ranford J, Parlman K, Cohen A, Freeburn J, et al. Cognitive demands influence upper extremity motor performance during recovery from acute stroke. Neurology. 2021;96(21):2576–86.CrossRef
158.
go back to reference Erler KS, Wu R, DiCarlo JA, Petrilli MF, Gochyyev P, Hochberg LR, Kautz SA, Schwamm LH, Cramer SC, Finklestein SP, et al. Association of modified rankin scale with recovery phenotypes in patients with upper extremity weakness after stroke. Neurology. 2022;98(18):1877–85.CrossRef Erler KS, Wu R, DiCarlo JA, Petrilli MF, Gochyyev P, Hochberg LR, Kautz SA, Schwamm LH, Cramer SC, Finklestein SP, et al. Association of modified rankin scale with recovery phenotypes in patients with upper extremity weakness after stroke. Neurology. 2022;98(18):1877–85.CrossRef
159.
go back to reference Lin DJ, Hardstone R, DiCarlo JA, Mckiernan S, Snider SB, Jacobs H, Erler KS, Rishe K, Boyne P, Goldsmith J, Ranford J. Distinguishing Distinct Neural Systems for Proximal vs Distal Upper Extremity Motor Control After Acute Stroke. Neurology. 2023. Lin DJ, Hardstone R, DiCarlo JA, Mckiernan S, Snider SB, Jacobs H, Erler KS, Rishe K, Boyne P, Goldsmith J, Ranford J. Distinguishing Distinct Neural Systems for Proximal vs Distal Upper Extremity Motor Control After Acute Stroke. Neurology. 2023.
161.
go back to reference Rose CG, Deshpande AD, Carducci J, Brown JD. The road forward for upper-extremity rehabilitation robotics. Curr Opin Biomed Eng. 2021;19:100291.CrossRef Rose CG, Deshpande AD, Carducci J, Brown JD. The road forward for upper-extremity rehabilitation robotics. Curr Opin Biomed Eng. 2021;19:100291.CrossRef
162.
go back to reference Conner BC, Fang Y, Lerner ZF. Under pressure: design and validation of a pressure-sensitive insole for ankle plantar flexion biofeedback during neuromuscular gait training. J Neuroeng Rehabil. 2022;19(1):135.PubMedPubMedCentralCrossRef Conner BC, Fang Y, Lerner ZF. Under pressure: design and validation of a pressure-sensitive insole for ankle plantar flexion biofeedback during neuromuscular gait training. J Neuroeng Rehabil. 2022;19(1):135.PubMedPubMedCentralCrossRef
163.
go back to reference Harshe K, Williams JR, Hocking TD, Lerner ZF. Predicting Neuromuscular Engagement to Improve Gait Training with a Robotic Ankle Exoskeleton. IEEE Robot Autom Lett. 2023. Harshe K, Williams JR, Hocking TD, Lerner ZF. Predicting Neuromuscular Engagement to Improve Gait Training with a Robotic Ankle Exoskeleton. IEEE Robot Autom Lett. 2023.
164.
go back to reference Pariser KM, Donlin MC, Downer KE, Higginson JS. Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed. J Biomech. 2022;133.PubMedPubMedCentralCrossRef Pariser KM, Donlin MC, Downer KE, Higginson JS. Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed. J Biomech. 2022;133.PubMedPubMedCentralCrossRef
165.
go back to reference Pariser KM, Higginson JS. Development and validation of a framework for predictive simulation of treadmill gait. J Biomech Eng. 2022;144(11).PubMedCrossRef Pariser KM, Higginson JS. Development and validation of a framework for predictive simulation of treadmill gait. J Biomech Eng. 2022;144(11).PubMedCrossRef
166.
go back to reference Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord. 2013;28(11):1483–91.PubMedCrossRef Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord. 2013;28(11):1483–91.PubMedCrossRef
167.
go back to reference Strzalkowski ND, Peters RM, Inglis JT, Bent LR. Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? J Neurophysiol. 2018;120(3):1233–46.PubMedPubMedCentralCrossRef Strzalkowski ND, Peters RM, Inglis JT, Bent LR. Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? J Neurophysiol. 2018;120(3):1233–46.PubMedPubMedCentralCrossRef
168.
go back to reference Katic N, Siqueira RK, Cleland L, Strzalkowski N, Bent L, Raspopovic S, Saal H. Modeling foot sole cutaneous afferents: FootSim. Iscience. 2023;26(1):105874.PubMedCrossRef Katic N, Siqueira RK, Cleland L, Strzalkowski N, Bent L, Raspopovic S, Saal H. Modeling foot sole cutaneous afferents: FootSim. Iscience. 2023;26(1):105874.PubMedCrossRef
169.
go back to reference Cimorelli A, Patel A, Karakostas T, Cotton RJ. Portable in-clinic video-based gait analysis: validation study on prosthetic users. medRxiv; 2022; https://doi.org/10.1101/2022.11.10.22282089, https://www.medrxiv.org/content/early/2022/11/14/2022.11.10.22282089.full.pdf. Cimorelli A, Patel A, Karakostas T, Cotton RJ. Portable in-clinic video-based gait analysis: validation study on prosthetic users. medRxiv; 2022; https://​doi.​org/​10.​1101/​2022.​11.​10.​22282089, https://​www.​medrxiv.​org/​content/​early/​2022/​11/​14/​2022.​11.​10.​22282089.​full.​pdf.​
170.
go back to reference VanDyk T, Meyer B, DePetrillo P, Donahue N, O’Leary A, Fox S, Cheney N, Ceruolo M, Solomon AJ, McGinnis RS. Digital phenotypes of instability and fatigue derived from daily standing transitions in persons with multiple sclerosis. IEEE Transact Neural Syst Rehabil Eng. 2023. VanDyk T, Meyer B, DePetrillo P, Donahue N, O’Leary A, Fox S, Cheney N, Ceruolo M, Solomon AJ, McGinnis RS. Digital phenotypes of instability and fatigue derived from daily standing transitions in persons with multiple sclerosis. IEEE Transact Neural Syst Rehabil Eng. 2023.
171.
go back to reference Meyer BM, Tulipani LJ, Gurchiek RD, Allen DA, Solomon AJ, Cheney N, McGinnis RS. Open-source dataset reveals relationship between walking bout duration and fall risk classification performance in persons with multiple sclerosis. PLOS Digital Health. 2022;1(10):0000120.CrossRef Meyer BM, Tulipani LJ, Gurchiek RD, Allen DA, Solomon AJ, Cheney N, McGinnis RS. Open-source dataset reveals relationship between walking bout duration and fall risk classification performance in persons with multiple sclerosis. PLOS Digital Health. 2022;1(10):0000120.CrossRef
172.
go back to reference Meyer BM, Depetrillo P, Franco J, Donahue N, Fox SR, O’Leary A, Loftness BC, Gurchiek RD, Buckley M, Solomon AJ, et al. How much data is enough? a reliable methodology to examine long-term wearable data acquisition in gait and postural sway. Sensors. 2022;22(18):6982.PubMedPubMedCentralCrossRef Meyer BM, Depetrillo P, Franco J, Donahue N, Fox SR, O’Leary A, Loftness BC, Gurchiek RD, Buckley M, Solomon AJ, et al. How much data is enough? a reliable methodology to examine long-term wearable data acquisition in gait and postural sway. Sensors. 2022;22(18):6982.PubMedPubMedCentralCrossRef
173.
go back to reference Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Tung AS, Li VL. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metabolism. 2023. Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Tung AS, Li VL. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metabolism. 2023.
174.
go back to reference Song S, Geyer H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J Physiol. 2015;593(16):3493–511.PubMedPubMedCentralCrossRef Song S, Geyer H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J Physiol. 2015;593(16):3493–511.PubMedPubMedCentralCrossRef
175.
176.
go back to reference Song S, Kidziński Ł, Peng XB, Ong C, Hicks J, Levine S, Atkeson CG, Delp SL. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation. J Neuroeng Rehabil. 2021;18:1–17.CrossRef Song S, Kidziński Ł, Peng XB, Ong C, Hicks J, Levine S, Atkeson CG, Delp SL. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation. J Neuroeng Rehabil. 2021;18:1–17.CrossRef
177.
go back to reference Miller HL, Bugnariu N, Patterson RM, Wijayasinghe I, Popa DO. Development of a novel visuomotor integration paradigm by integrating a virtual environment with mobile eye-tracking and motion-capture systems. In: 2017 International Conference on Virtual Rehabilitation (ICVR); 2017; p. 1–6. https://doi.org/10.1109/ICVR.2017.8007481. Miller HL, Bugnariu N, Patterson RM, Wijayasinghe I, Popa DO. Development of a novel visuomotor integration paradigm by integrating a virtual environment with mobile eye-tracking and motion-capture systems. In: 2017 International Conference on Virtual Rehabilitation (ICVR); 2017; p. 1–6. https://​doi.​org/​10.​1109/​ICVR.​2017.​8007481.
178.
go back to reference Miller HL, Zurutuza IR, Fears NE, Polat SO, Nielsen R. Post-processing integration and semi-automated analysis of eye-tracking and motion-capture data obtained in immersive virtual reality environments to measure visuomotor integration. In: ACM Symposium on Eye Tracking Research and Applications; 2021; p. 1–4. Miller HL, Zurutuza IR, Fears NE, Polat SO, Nielsen R. Post-processing integration and semi-automated analysis of eye-tracking and motion-capture data obtained in immersive virtual reality environments to measure visuomotor integration. In: ACM Symposium on Eye Tracking Research and Applications; 2021; p. 1–4.
179.
go back to reference Fears NE, Sherrod GMC, Templin TN, Bugnariu NL, Patterson RM, Miller HL. Community-based postural control assessment in autistic individuals indicates a similar but delayed trajectory compared to neurotypical individuals. Autism Res. 16(3):543–557. https://doi.org/10.1002/aur.2889. Fears NE, Sherrod GMC, Templin TN, Bugnariu NL, Patterson RM, Miller HL. Community-based postural control assessment in autistic individuals indicates a similar but delayed trajectory compared to neurotypical individuals. Autism Res. 16(3):543–557. https://​doi.​org/​10.​1002/​aur.​2889.
181.
go back to reference Tamplain P, Miller HL. What can we do to promote mental health among individuals with developmental coordination disorder? Curr Dev Disord Rep. 2021;8:24–31.PubMedCrossRef Tamplain P, Miller HL. What can we do to promote mental health among individuals with developmental coordination disorder? Curr Dev Disord Rep. 2021;8:24–31.PubMedCrossRef
Metadata
Title
NSF DARE—Transforming modeling in neurorehabilitation: Four threads for catalyzing progress
Authors
Francisco J. Valero-Cuevas
James Finley
Amy Orsborn
Natalie Fung
Jennifer L. Hicks
He (Helen) Huang
David Reinkensmeyer
Nicolas Schweighofer
Douglas Weber
Katherine M. Steele
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2024
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-024-01324-x

Other articles of this Issue 1/2024

Journal of NeuroEngineering and Rehabilitation 1/2024 Go to the issue