Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Review

On neuromechanical approaches for the study of biological and robotic grasp and manipulation

Authors: Francisco J. Valero-Cuevas, Marco Santello

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.
Literature
1.
go back to reference Nussbaum MC. Aristotle’s De Motu Animalium. Princeton: Princeton University Press; 1985. Nussbaum MC. Aristotle’s De Motu Animalium. Princeton: Princeton University Press; 1985.
2.
go back to reference Wilson FR. The Hand: How Its Use Shapes the Brain, Language, and Human Culture. New York: Vintage; 2010. Wilson FR. The Hand: How Its Use Shapes the Brain, Language, and Human Culture. New York: Vintage; 2010.
3.
go back to reference Bell C. The Hand: Its Mechanism and Vital Endowments, as Evincing Design. vol 4.London: Bell & Daldy; 1865. Bell C. The Hand: Its Mechanism and Vital Endowments, as Evincing Design. vol 4.London: Bell & Daldy; 1865.
5.
go back to reference Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, Zollo L. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016; 10:209.PubMedPubMedCentralCrossRef Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, Zollo L. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016; 10:209.PubMedPubMedCentralCrossRef
6.
go back to reference Löffler L. Der Ersatz Für die Obere Extremität: die Entwicklung Von Den Ersten Zeugnissen Bis heute. Stuttgart: Ferdinand Enke Verlag; 1984. Löffler L. Der Ersatz Für die Obere Extremität: die Entwicklung Von Den Ersten Zeugnissen Bis heute. Stuttgart: Ferdinand Enke Verlag; 1984.
7.
go back to reference Thurston AJ. Paré and prosthetics: the early history of artificial limbs. ANZ J Surg. 2007; 77(12):1114–9.PubMedCrossRef Thurston AJ. Paré and prosthetics: the early history of artificial limbs. ANZ J Surg. 2007; 77(12):1114–9.PubMedCrossRef
8.
go back to reference Norton K. A brief history of prosthetics. InMotion. 2007; 17(7):11–3. Norton K. A brief history of prosthetics. InMotion. 2007; 17(7):11–3.
9.
go back to reference Hillman M. 2 rehabilitation robotics from past to present–a historical perspective. In: Advances in Rehabilitation Robotics. New York: Springer: 2004. p. 25–44. Hillman M. 2 rehabilitation robotics from past to present–a historical perspective. In: Advances in Rehabilitation Robotics. New York: Springer: 2004. p. 25–44.
10.
go back to reference Schlesinger IG. Der mechanische aufbau der künstlichen glieder. In: Ersatzglieder und Arbeitshilfen. Springer: 1919. p. 321–661. ISBN: 978-3-662-32182-9, 978-3-662-33009-8. DOI:10.1007/978-3-662-33009-8_13. Schlesinger IG. Der mechanische aufbau der künstlichen glieder. In: Ersatzglieder und Arbeitshilfen. Springer: 1919. p. 321–661. ISBN: 978-3-662-32182-9, 978-3-662-33009-8. DOI:10.​1007/​978-3-662-33009-8_​13.
11.
go back to reference Kluge CAF, Fritze HE. Arthroplastik Oder die Sämmtlichen, Bisher Bekannt Gewordenen Künstlichen Hände und Füsse, zum Ersatz Dieser Verloren Gegangenen Gliedmassen: Mit 26 in Stein gravirten Tafeln.Meyer; 1842. p. 128. Kluge CAF, Fritze HE. Arthroplastik Oder die Sämmtlichen, Bisher Bekannt Gewordenen Künstlichen Hände und Füsse, zum Ersatz Dieser Verloren Gegangenen Gliedmassen: Mit 26 in Stein gravirten Tafeln.Meyer; 1842. p. 128.
12.
go back to reference Panchasi R. Reconstructions: prosthetics and the rehabilitation of the male body in world war i france. Differ J Fem Cultural Stud. 1995; 7(3):109–41. Panchasi R. Reconstructions: prosthetics and the rehabilitation of the male body in world war i france. Differ J Fem Cultural Stud. 1995; 7(3):109–41.
13.
go back to reference Serlin D, Ott K, Mihm S, (eds).Artificial Parts, Practical Lives: Modern Histories of Prosthetics. NYU Press; 2002. p. 359. ISBN 0814761976, 9780814761977. Serlin D, Ott K, Mihm S, (eds).Artificial Parts, Practical Lives: Modern Histories of Prosthetics. NYU Press; 2002. p. 359. ISBN 0814761976, 9780814761977.
14.
go back to reference McSorley K, (ed).War and the Body: Militarisation, Practice and Experience War, Politics and Experience. Routledge; 2013. p. 264. ISBN 1136173544, 9781136173547. McSorley K, (ed).War and the Body: Militarisation, Practice and Experience War, Politics and Experience. Routledge; 2013. p. 264. ISBN 1136173544, 9781136173547.
15.
go back to reference Ling GS, Rhee P, Ecklund JM. Surgical innovations arising from the iraq and afghanistan wars. Annu Rev Med. 2010; 61:457–68.PubMedCrossRef Ling GS, Rhee P, Ecklund JM. Surgical innovations arising from the iraq and afghanistan wars. Annu Rev Med. 2010; 61:457–68.PubMedCrossRef
16.
go back to reference Riskin J. Eighteenth-century wetware. Bernadette Bensaude-Vincent and William R. Newmaneds, Eds. The Artificial and the Natural: an Evolving Polarity. Cambridge: Mass;2007;239–74. Riskin J. Eighteenth-century wetware. Bernadette Bensaude-Vincent and William R. Newmaneds, Eds. The Artificial and the Natural: an Evolving Polarity. Cambridge: Mass;2007;239–74.
17.
go back to reference Feinglass J, Pearce WH, Martin GJ, Gibbs J, Cowper D, Sorensen M, Henderson WG, Daley J, Khuri S. Postoperative and late survival outcomes after major amputation: findings from the department of veterans affairs national surgical quality improvement program. Surgery. 2001; 130(1):21–9.PubMedCrossRef Feinglass J, Pearce WH, Martin GJ, Gibbs J, Cowper D, Sorensen M, Henderson WG, Daley J, Khuri S. Postoperative and late survival outcomes after major amputation: findings from the department of veterans affairs national surgical quality improvement program. Surgery. 2001; 130(1):21–9.PubMedCrossRef
18.
go back to reference Kristensen MT, Holm G, Kirketerp-Møller K, Krasheninnikoff M, Gebuhr P. Very low survival rates after non-traumatic lower limb amputation in a consecutive series: what to do?Interact Cardiovasc Thorac Surg. 2012; 14(5):543–7.PubMedPubMedCentralCrossRef Kristensen MT, Holm G, Kirketerp-Møller K, Krasheninnikoff M, Gebuhr P. Very low survival rates after non-traumatic lower limb amputation in a consecutive series: what to do?Interact Cardiovasc Thorac Surg. 2012; 14(5):543–7.PubMedPubMedCentralCrossRef
19.
go back to reference McCorduck P, Minsky M, Selfridge OG, Simon HA. History of artificial intelligence. In: IJCAI.Hong Kong: IJCAI Organization: 1977. p. 951–4. McCorduck P, Minsky M, Selfridge OG, Simon HA. History of artificial intelligence. In: IJCAI.Hong Kong: IJCAI Organization: 1977. p. 951–4.
20.
go back to reference Benko A, Lányi CS. History of artificial intelligence. In: Encyclopedia of Information Science and Technology, Second Edition. IGI Global: 2009. p. 1759–62. Benko A, Lányi CS. History of artificial intelligence. In: Encyclopedia of Information Science and Technology, Second Edition. IGI Global: 2009. p. 1759–62.
21.
go back to reference Gershenfeld N. Fab: the Coming Revolution on Your Desktop–from Personal Computers to Personal Fabrication.New York: Basic Books; 2008. Gershenfeld N. Fab: the Coming Revolution on Your Desktop–from Personal Computers to Personal Fabrication.New York: Basic Books; 2008.
22.
go back to reference Prince JD. 3d printing: an industrial revolution. J Electron Resour Med Librar. 2014; 11(1):39–45.CrossRef Prince JD. 3d printing: an industrial revolution. J Electron Resour Med Librar. 2014; 11(1):39–45.CrossRef
24.
go back to reference Weir RF, Sensinger JW. Design of artificial arms and hands for prosthetic applications. 2003. Weir RF, Sensinger JW. Design of artificial arms and hands for prosthetic applications. 2003.
25.
go back to reference Childress DS. Historical aspects of powered limb prostheses. Clin Prosthet Orthot. 1985; 9(1):2–13. Childress DS. Historical aspects of powered limb prostheses. Clin Prosthet Orthot. 1985; 9(1):2–13.
26.
go back to reference Wellerson TL. A Manual for Occupational Therapists on the Rehabilitation of Upper Extremity Amputees.Dubuque: Kendall/Hunt Publishing Company; 1958. Wellerson TL. A Manual for Occupational Therapists on the Rehabilitation of Upper Extremity Amputees.Dubuque: Kendall/Hunt Publishing Company; 1958.
27.
go back to reference Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom. 1989; 5(3):269–79.CrossRef Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom. 1989; 5(3):269–79.CrossRef
28.
go back to reference Colgate JE, Hogan N. Robust control of dynamically interacting systems. Int J Control. 1988; 48(1):65–88.CrossRef Colgate JE, Hogan N. Robust control of dynamically interacting systems. Int J Control. 1988; 48(1):65–88.CrossRef
29.
go back to reference Murray RM, Li Z, Sastry SS. A Mathematical Introduction to Robotic Manipulation.Boca Raton: CRC Press; 1994. Murray RM, Li Z, Sastry SS. A Mathematical Introduction to Robotic Manipulation.Boca Raton: CRC Press; 1994.
30.
go back to reference Uchiyama M, Konno A, Uchiyama T, Kanda S. Development of a flexible dual-arm manipulator testbed for space robotics. In: Intelligent Robots and Systems’ 90.’Towards a New Frontier of Applications’, Proceedings. IROS’90. IEEE International Workshop On. New York: IEEE Corporate Headquarters: 1990. p. 375–81. Uchiyama M, Konno A, Uchiyama T, Kanda S. Development of a flexible dual-arm manipulator testbed for space robotics. In: Intelligent Robots and Systems’ 90.’Towards a New Frontier of Applications’, Proceedings. IROS’90. IEEE International Workshop On. New York: IEEE Corporate Headquarters: 1990. p. 375–81.
31.
go back to reference Aikenhead BA, Daniell RG, Davis FM. Canadarm and the space shuttle. J Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 1983; 1(2):126–32.CrossRef Aikenhead BA, Daniell RG, Davis FM. Canadarm and the space shuttle. J Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 1983; 1(2):126–32.CrossRef
32.
go back to reference Nguyen CC, Pooran FJ. Dynamic analysis of a 6 dof ckcm robot end-effector for dual-arm telerobot systems. Robot Auton Syst. 1989; 5(4):377–94.CrossRef Nguyen CC, Pooran FJ. Dynamic analysis of a 6 dof ckcm robot end-effector for dual-arm telerobot systems. Robot Auton Syst. 1989; 5(4):377–94.CrossRef
33.
go back to reference Winslow JB. Exposition Anatomique de la Structure du Corps Humain.chez Guillaume Desprez... et Jean Desessartz; 1732. Winslow JB. Exposition Anatomique de la Structure du Corps Humain.chez Guillaume Desprez... et Jean Desessartz; 1732.
34.
go back to reference Galilei G. Il Saggiatore (Roma, 1623). Italian translation by L. Sosio. Milano: Feltrinelli; 1979. Galilei G. Il Saggiatore (Roma, 1623). Italian translation by L. Sosio. Milano: Feltrinelli; 1979.
35.
go back to reference Valero-Cuevas FJ, Hoffmann H, Kurse MU, Kutch JJ, Theodorou EA. Computational models for neuromuscular function. Biomedical Engineering, IEEE Reviews in. 2009; 2:110–35.CrossRef Valero-Cuevas FJ, Hoffmann H, Kurse MU, Kutch JJ, Theodorou EA. Computational models for neuromuscular function. Biomedical Engineering, IEEE Reviews in. 2009; 2:110–35.CrossRef
36.
go back to reference Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D. Neuroscience needs behavior: correcting a reductionist bias. Neuron. 2017; 93(3):480–90.PubMedCrossRef Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D. Neuroscience needs behavior: correcting a reductionist bias. Neuron. 2017; 93(3):480–90.PubMedCrossRef
38.
go back to reference Santello M. Getting a grasp of theories of sensorimotor control of the hand: Identification of underlying neural mechanisms. Motor Control. 2015; 19(2):149–53.PubMedCrossRef Santello M. Getting a grasp of theories of sensorimotor control of the hand: Identification of underlying neural mechanisms. Motor Control. 2015; 19(2):149–53.PubMedCrossRef
39.
go back to reference Jacobs S, Danielmeier C, Frey SH. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. J Cogn Neurosci. 2010; 22(11):2594–608.PubMedCrossRef Jacobs S, Danielmeier C, Frey SH. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. J Cogn Neurosci. 2010; 22(11):2594–608.PubMedCrossRef
40.
go back to reference Davare M, Kraskov A, Rothwell JC, Lemon RN. Interactions between areas of the cortical grasping network. Curr Opin Neurobio. 2011; 21(4):565–70.CrossRef Davare M, Kraskov A, Rothwell JC, Lemon RN. Interactions between areas of the cortical grasping network. Curr Opin Neurobio. 2011; 21(4):565–70.CrossRef
42.
go back to reference Mosier K, Lau C, Wang Y, Venkadesan M, Valero-Cuevas FJ. Controlling instabilities in manipulation requires specific cortical-striatal-cerebellar networks. J Neurophysiol. 2011; 105(3):1295–305.PubMedPubMedCentralCrossRef Mosier K, Lau C, Wang Y, Venkadesan M, Valero-Cuevas FJ. Controlling instabilities in manipulation requires specific cortical-striatal-cerebellar networks. J Neurophysiol. 2011; 105(3):1295–305.PubMedPubMedCentralCrossRef
43.
go back to reference Ejaz N, Hamada M, Diedrichsen J. Hand use predicts the structure of representations in sensorimotor cortex. Nature Neurosci. 2015; 18(7):1034–40.PubMedCrossRef Ejaz N, Hamada M, Diedrichsen J. Hand use predicts the structure of representations in sensorimotor cortex. Nature Neurosci. 2015; 18(7):1034–40.PubMedCrossRef
44.
go back to reference Jonas E, Kording KP. Could a neuroscientist understand a microprocessor?PLoS Comput Biol. 2017; 13(1):1005268.CrossRef Jonas E, Kording KP. Could a neuroscientist understand a microprocessor?PLoS Comput Biol. 2017; 13(1):1005268.CrossRef
45.
go back to reference Valero-Cuevas FJ, Anand VV, Saxena A, Lipson H. Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology. IEEE Trans Biomed Eng. 2007; 54:1951–64.PubMedCrossRef Valero-Cuevas FJ, Anand VV, Saxena A, Lipson H. Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology. IEEE Trans Biomed Eng. 2007; 54:1951–64.PubMedCrossRef
46.
go back to reference Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A. Adaptive synergies for the design and control of the pisa/iit softhand. nternational J Robot Res. 2014; 33(5):768–82.CrossRef Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A. Adaptive synergies for the design and control of the pisa/iit softhand. nternational J Robot Res. 2014; 33(5):768–82.CrossRef
47.
go back to reference Santello M, Flanders M, Soechting JF. Postural hand synergies for tool use. J Neurosci. 1998; 18(23):10105–15.PubMed Santello M, Flanders M, Soechting JF. Postural hand synergies for tool use. J Neurosci. 1998; 18(23):10105–15.PubMed
48.
go back to reference Brock O, Valero-Cuevas F. Transferring synergies from neuroscience to robotics: Comment on “hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands” by m. santello et al. Phys Life Rev. 2016; 17:27–32.PubMedPubMedCentralCrossRef Brock O, Valero-Cuevas F. Transferring synergies from neuroscience to robotics: Comment on “hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands” by m. santello et al. Phys Life Rev. 2016; 17:27–32.PubMedPubMedCentralCrossRef
49.
go back to reference Pfeifer R, Gómez G. Morphological computation–connecting brain, body, and environment. Creating Brain-like Intell. 2009;66–83. Pfeifer R, Gómez G. Morphological computation–connecting brain, body, and environment. Creating Brain-like Intell. 2009;66–83.
50.
go back to reference Valero-Cuevas FJ, Yi JW, Brown D, McNamara RV, Paul C, Lipson H. The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans Biomed Eng. 2007; 54(6):1161–6.PubMedCrossRef Valero-Cuevas FJ, Yi JW, Brown D, McNamara RV, Paul C, Lipson H. The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans Biomed Eng. 2007; 54(6):1161–6.PubMedCrossRef
51.
go back to reference Alexander RM. Animal mechanics. Seattle: University of Washington Press; 1968. Alexander RM. Animal mechanics. Seattle: University of Washington Press; 1968.
52.
go back to reference Mardula KL, Balasubramanian R, Allan CH. Implanted passive engineering mechanism improves hand function after tendon transfer surgery: a cadaver-based study. Hand. 2015; 10(1):116–22.PubMedCrossRef Mardula KL, Balasubramanian R, Allan CH. Implanted passive engineering mechanism improves hand function after tendon transfer surgery: a cadaver-based study. Hand. 2015; 10(1):116–22.PubMedCrossRef
53.
go back to reference Odhner LU, Jentoft LP, Claffee MR, Corson N, Tenzer Y, Ma RR, Buehler M, Kohout R, Howe RD, Dollar AM. A compliant, underactuated hand for robust manipulation. Int J Robot Res. 2014; 33(5):736–52.CrossRef Odhner LU, Jentoft LP, Claffee MR, Corson N, Tenzer Y, Ma RR, Buehler M, Kohout R, Howe RD, Dollar AM. A compliant, underactuated hand for robust manipulation. Int J Robot Res. 2014; 33(5):736–52.CrossRef
54.
go back to reference Valero-Cuevas FJ. Fundamentals of Neuromechanics. Biosystems and Biorobotics, vol 8.New York: Springer; 2015. Valero-Cuevas FJ. Fundamentals of Neuromechanics. Biosystems and Biorobotics, vol 8.New York: Springer; 2015.
55.
go back to reference Ogata K. Modern Control Engineering, 3rd ed. Upper Saddle River: Prentice Hall; 1997. Katsuhiko Ogata. Includes bibliographical references (p. 983-986) and index. Ogata K. Modern Control Engineering, 3rd ed. Upper Saddle River: Prentice Hall; 1997. Katsuhiko Ogata. Includes bibliographical references (p. 983-986) and index.
56.
go back to reference Stengel RF. Optimal Control and Estimation. North Chelmsford: Courier Corporation; 2012. Stengel RF. Optimal Control and Estimation. North Chelmsford: Courier Corporation; 2012.
57.
go back to reference Verhaegen M, Verdult V. Filtering and System Identification: a Least Squares Approach.New York: Cambridge University Press; 2007.CrossRef Verhaegen M, Verdult V. Filtering and System Identification: a Least Squares Approach.New York: Cambridge University Press; 2007.CrossRef
58.
go back to reference Ljung L. System Identification - Theory for the User.Prentice-Hall; 1999, p. 672. ISBN: 0136566952, 9780136566953. Ljung L. System Identification - Theory for the User.Prentice-Hall; 1999, p. 672. ISBN: 0136566952, 9780136566953.
59.
go back to reference Van der Helm FC, Schouten AC, de Vlugt E, Brouwn GG. Identification of intrinsic and reflexive components of human arm dynamics during postural control. J Neurosci Methods. 2002; 119(1):1–14.PubMedCrossRef Van der Helm FC, Schouten AC, de Vlugt E, Brouwn GG. Identification of intrinsic and reflexive components of human arm dynamics during postural control. J Neurosci Methods. 2002; 119(1):1–14.PubMedCrossRef
60.
go back to reference Jalaleddini K, Tehrani ES, Kearney RE. A subspace approach to the structural decomposition and identification of ankle joint dynamic stiffness. IEEE Trans Biomed Eng. 2017; 64(6):1357–68.PubMedCrossRef Jalaleddini K, Tehrani ES, Kearney RE. A subspace approach to the structural decomposition and identification of ankle joint dynamic stiffness. IEEE Trans Biomed Eng. 2017; 64(6):1357–68.PubMedCrossRef
61.
go back to reference Perreault EJ, Kirsch RF, Acosta AM. Multiple-input, multiple-output system identification for characterization of limb stiffness dynamics. Biol Cybern. 1999; 80(5):327–37.PubMedCrossRef Perreault EJ, Kirsch RF, Acosta AM. Multiple-input, multiple-output system identification for characterization of limb stiffness dynamics. Biol Cybern. 1999; 80(5):327–37.PubMedCrossRef
62.
go back to reference Hollerbach JM, Lokhorst DM. Closed-loop kinematic calibration of the rsi 6-dof hand controller. IEEE Trans Robot Autom. 1995; 11(3):352–9.CrossRef Hollerbach JM, Lokhorst DM. Closed-loop kinematic calibration of the rsi 6-dof hand controller. IEEE Trans Robot Autom. 1995; 11(3):352–9.CrossRef
63.
go back to reference Bobrow JE, McDonell BW. Modeling, identification, and control of a pneumatically actuated, force controllable robot. IEEE Trans Robot Autom. 1998; 14(5):732–42.CrossRef Bobrow JE, McDonell BW. Modeling, identification, and control of a pneumatically actuated, force controllable robot. IEEE Trans Robot Autom. 1998; 14(5):732–42.CrossRef
64.
go back to reference Johansson R, Robertsson A, Nilsson K, Verhaegen M. State-space system identification of robot manipulator dynamics. Mechatronics. 2000; 10(3):403–18.CrossRef Johansson R, Robertsson A, Nilsson K, Verhaegen M. State-space system identification of robot manipulator dynamics. Mechatronics. 2000; 10(3):403–18.CrossRef
65.
go back to reference Lewis FW, Jagannathan S, Yesildirak A. Neural network control of robot manipulators and non-linear systems.CRC Press; 1998, p. 468. ISBN: 978-0748405961. Lewis FW, Jagannathan S, Yesildirak A. Neural network control of robot manipulators and non-linear systems.CRC Press; 1998, p. 468. ISBN: 978-0748405961.
66.
go back to reference Ortega R, Spong MW. Adaptive motion control of rigid robots: A tutorial. Automatica. 1989; 25(6):877–88.CrossRef Ortega R, Spong MW. Adaptive motion control of rigid robots: A tutorial. Automatica. 1989; 25(6):877–88.CrossRef
67.
go back to reference Doyle JC. Guaranteed Margins for LQG Regulators. IEEE Trans Autom Control. 1978; AC-23(4):756–7.CrossRef Doyle JC. Guaranteed Margins for LQG Regulators. IEEE Trans Autom Control. 1978; AC-23(4):756–7.CrossRef
68.
go back to reference Williams G, Drews P, Goldfain B, Rehg JM, Theodorou EA. Aggressive driving with model predictive path integral control. In: Robotics and Automation (ICRA), 2016 IEEE International Conference On. New York: IEEE Corporate Headquarters: 2016. p. 1433–40. Williams G, Drews P, Goldfain B, Rehg JM, Theodorou EA. Aggressive driving with model predictive path integral control. In: Robotics and Automation (ICRA), 2016 IEEE International Conference On. New York: IEEE Corporate Headquarters: 2016. p. 1433–40.
69.
go back to reference Enoka R. Neuromechanical basis of kinesiology: ERIC; 1998, p. 352. ISBN: 978-0873221795. Enoka R. Neuromechanical basis of kinesiology: ERIC; 1998, p. 352. ISBN: 978-0873221795.
70.
go back to reference Lisberger S, Thach W, Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth A. Principles of neural science. 2013. Lisberger S, Thach W, Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth A. Principles of neural science. 2013.
71.
go back to reference Sherrington CS. Reflex inhibition as a factor in the co-ordination of movements and postures. Exp Physiol. 1913; 6(3):251–310.CrossRef Sherrington CS. Reflex inhibition as a factor in the co-ordination of movements and postures. Exp Physiol. 1913; 6(3):251–310.CrossRef
72.
go back to reference Niu CM, Jalaleddini K, Sohn WJ, Rocamora J, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part i: the methodology and implementation. J Neural Eng. 2017; 14(2):025001.PubMedCrossRef Niu CM, Jalaleddini K, Sohn WJ, Rocamora J, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part i: the methodology and implementation. J Neural Eng. 2017; 14(2):025001.PubMedCrossRef
73.
go back to reference Jalaleddini K, Niu CM, Raja SC, Sohn WJ, Loeb GE, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part ii: the role of fusimotor drive. J Neural Eng. 2017; 14(2):025002.PubMedCrossRef Jalaleddini K, Niu CM, Raja SC, Sohn WJ, Loeb GE, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part ii: the role of fusimotor drive. J Neural Eng. 2017; 14(2):025002.PubMedCrossRef
74.
75.
go back to reference Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996; 381(6583):607.PubMedCrossRef Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996; 381(6583):607.PubMedCrossRef
76.
go back to reference Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neurosci. 2009; 10(5):345–59.CrossRef Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neurosci. 2009; 10(5):345–59.CrossRef
77.
go back to reference Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature. 2002; 415(6870):429–33.PubMedCrossRef Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature. 2002; 415(6870):429–33.PubMedCrossRef
78.
go back to reference Shibata D, Kappers AM, Santello M. Digit forces bias sensorimotor transformations underlying control of fingertip position. Front Human Neurosci. 2014; 8:564.CrossRef Shibata D, Kappers AM, Santello M. Digit forces bias sensorimotor transformations underlying control of fingertip position. Front Human Neurosci. 2014; 8:564.CrossRef
79.
go back to reference Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nature Neurosci. 2000; 3:1212–7.PubMedCrossRef Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nature Neurosci. 2000; 3:1212–7.PubMedCrossRef
80.
go back to reference Wolpert DM, Ghahramani Z, Flanagan JR. Perspectives and problems in motor learning. Trends Cogn Sci. 2001; 5(11):487–94.PubMedCrossRef Wolpert DM, Ghahramani Z, Flanagan JR. Perspectives and problems in motor learning. Trends Cogn Sci. 2001; 5(11):487–94.PubMedCrossRef
81.
go back to reference Johansson R, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res. 1984; 56(3):550–64.PubMedCrossRef Johansson R, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res. 1984; 56(3):550–64.PubMedCrossRef
82.
go back to reference Johansson RS, Westling G. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res. 1988; 71:59–71.PubMed Johansson RS, Westling G. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res. 1988; 71:59–71.PubMed
83.
go back to reference Celikel T, Sakmann B. Sensory integration across space and in time for decision making in the somatosensory system of rodents. Proc Natl Acad Sci. 2007; 104(4):1395–400.PubMedPubMedCentralCrossRef Celikel T, Sakmann B. Sensory integration across space and in time for decision making in the somatosensory system of rodents. Proc Natl Acad Sci. 2007; 104(4):1395–400.PubMedPubMedCentralCrossRef
84.
go back to reference Solomon JH, Hartmann MJ. Biomechanics: robotic whiskers used to sense features. Nature. 2006; 443(7111):525–5.PubMedCrossRef Solomon JH, Hartmann MJ. Biomechanics: robotic whiskers used to sense features. Nature. 2006; 443(7111):525–5.PubMedCrossRef
85.
go back to reference Lederman SJ, Klatzky RL. Hand movements: A window into haptic object recognition. Cogn Psychol. 1987; 19(3):342–68.PubMedCrossRef Lederman SJ, Klatzky RL. Hand movements: A window into haptic object recognition. Cogn Psychol. 1987; 19(3):342–68.PubMedCrossRef
86.
go back to reference Lederman SJ, Klatzky RL. Extracting object properties through haptic exploration. Acta psychologica. 1993; 84(1):29–40.PubMedCrossRef Lederman SJ, Klatzky RL. Extracting object properties through haptic exploration. Acta psychologica. 1993; 84(1):29–40.PubMedCrossRef
87.
go back to reference Eggermann E, Kremer Y, Crochet S, Petersen CC. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell reports. 2014; 9(5):1654–60.PubMedCrossRef Eggermann E, Kremer Y, Crochet S, Petersen CC. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell reports. 2014; 9(5):1654–60.PubMedCrossRef
88.
go back to reference Vallbo ÅB, Johansson RS, et al. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol. 1984; 3(1):3–14.PubMed Vallbo ÅB, Johansson RS, et al. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol. 1984; 3(1):3–14.PubMed
89.
go back to reference Siciliano B, Sciavicco L, Villani L, Oriolo G. Robotics: Modelling, Planning and Control.New York: Springer; 2010. Siciliano B, Sciavicco L, Villani L, Oriolo G. Robotics: Modelling, Planning and Control.New York: Springer; 2010.
90.
go back to reference Uhl T. The inverse identification problem and its technical application. Arch Appl Mech. 2007; 77(5):325–37.CrossRef Uhl T. The inverse identification problem and its technical application. Arch Appl Mech. 2007; 77(5):325–37.CrossRef
91.
go back to reference Westwick DT, Kearney RE. Identification of Nonlinear Physiological Systems. vol 7.San Francisco: John Wiley & Sons; 2003.CrossRef Westwick DT, Kearney RE. Identification of Nonlinear Physiological Systems. vol 7.San Francisco: John Wiley & Sons; 2003.CrossRef
92.
go back to reference Yang Y, Solis-Escalante T, Yao J, van der Helm FC, Dewald JP, Schouten AC. Nonlinear connectivity in the human stretch reflex assessed by cross-frequency phase coupling. Int J Neural Syst. 2016; 26(08):1650043.PubMedCrossRef Yang Y, Solis-Escalante T, Yao J, van der Helm FC, Dewald JP, Schouten AC. Nonlinear connectivity in the human stretch reflex assessed by cross-frequency phase coupling. Int J Neural Syst. 2016; 26(08):1650043.PubMedCrossRef
93.
go back to reference Jalaleddini K, Kearney RE. Subspace identification of siso hammerstein systems: application to stretch reflex identification. IEEE Trans Biomed Eng. 2013; 60(10):2725–34.PubMedCrossRef Jalaleddini K, Kearney RE. Subspace identification of siso hammerstein systems: application to stretch reflex identification. IEEE Trans Biomed Eng. 2013; 60(10):2725–34.PubMedCrossRef
94.
go back to reference de Vlugt E, Schouten AC, van der Helm FC. Closed-loop multivariable system identification for the characterization of the dynamic arm compliance using continuous force disturbances: a model study. J Neurosci Methods. 2003; 122(2):123–40.PubMedCrossRef de Vlugt E, Schouten AC, van der Helm FC. Closed-loop multivariable system identification for the characterization of the dynamic arm compliance using continuous force disturbances: a model study. J Neurosci Methods. 2003; 122(2):123–40.PubMedCrossRef
95.
96.
go back to reference Shamanna V, Das S, Çelik-Butler Z, Butler DP, Lawrence KL. Micromachined integrated pressure–thermal sensors on flexible substrates. J Micromech Microeng. 2006; 16(10):1984.CrossRef Shamanna V, Das S, Çelik-Butler Z, Butler DP, Lawrence KL. Micromachined integrated pressure–thermal sensors on flexible substrates. J Micromech Microeng. 2006; 16(10):1984.CrossRef
97.
go back to reference Lowe M, King A, Lovett E, Papakostas T. Flexible tactile sensor technology: bringing haptics to life. Sensor review. 2004; 24(1):33–6.CrossRef Lowe M, King A, Lovett E, Papakostas T. Flexible tactile sensor technology: bringing haptics to life. Sensor review. 2004; 24(1):33–6.CrossRef
98.
go back to reference Loeb GE, Johansson R. Biomimetic tactile sensor. US Patent 7,658,119. 2010. University of Southern California, assignee. Loeb GE, Johansson R. Biomimetic tactile sensor. US Patent 7,658,119. 2010. University of Southern California, assignee.
99.
go back to reference Wettels N, Santos VJ, Johansson RS, Loeb GE. Biomimetic tactile sensor array. Adv Robot. 2008; 22(8):829–49.CrossRef Wettels N, Santos VJ, Johansson RS, Loeb GE. Biomimetic tactile sensor array. Adv Robot. 2008; 22(8):829–49.CrossRef
100.
go back to reference Fishel J, Lin G, Loeb G. Biotac product manual v. 16. SynTouch LLC. Tech. Rep. 2013. Fishel J, Lin G, Loeb G. Biotac product manual v. 16. SynTouch LLC. Tech. Rep. 2013.
101.
go back to reference Horch K, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng. 2011; 19(5):483–9.PubMedCrossRef Horch K, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng. 2011; 19(5):483–9.PubMedCrossRef
102.
go back to reference Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sc. 2013; 110(45):18279–84.CrossRef Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sc. 2013; 110(45):18279–84.CrossRef
103.
go back to reference Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E, Granata G, Oddo CM, Citi L, Ciancio AL, Cipriani C, Carrozza MC, Jensen W, Guglielmelli E, Stieglitz T, Rossini PM, Micera S. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci Transl Med. 2014; 6(222):222–1922219. doi:10.1126/scitranslmed.3006820.CrossRef Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E, Granata G, Oddo CM, Citi L, Ciancio AL, Cipriani C, Carrozza MC, Jensen W, Guglielmelli E, Stieglitz T, Rossini PM, Micera S. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci Transl Med. 2014; 6(222):222–1922219. doi:10.​1126/​scitranslmed.​3006820.CrossRef
104.
go back to reference Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, et al.Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Commun. 2014; 5:5747.CrossRef Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, et al.Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Commun. 2014; 5:5747.CrossRef
105.
go back to reference Antfolk C, D’Alonzo M, Controzzi M, Lundborg G, Rosén B, Sebelius F, Cipriani C. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng. 2013; 21(1):112–20.PubMedCrossRef Antfolk C, D’Alonzo M, Controzzi M, Lundborg G, Rosén B, Sebelius F, Cipriani C. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng. 2013; 21(1):112–20.PubMedCrossRef
106.
go back to reference Valero-Cuevas FJ, Yi JW, Brown D, McNamara III RV, Paul C, Lipson H. The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans Biomed Eng. 2007; 54(6 Pt 2):1161–6.PubMedCrossRef Valero-Cuevas FJ, Yi JW, Brown D, McNamara III RV, Paul C, Lipson H. The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans Biomed Eng. 2007; 54(6 Pt 2):1161–6.PubMedCrossRef
107.
go back to reference Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res. 2016; 35(1-3):161–85.CrossRef Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res. 2016; 35(1-3):161–85.CrossRef
108.
go back to reference Imai Y, Namiki A, Hashimoto K, Ishikawa M. Dynamic active catching using a high-speed multifingered hand and a high-speed vision system. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference On. New York: IEEE Corporate Headquarters: 2004. p. 1849–54. Imai Y, Namiki A, Hashimoto K, Ishikawa M. Dynamic active catching using a high-speed multifingered hand and a high-speed vision system. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference On. New York: IEEE Corporate Headquarters: 2004. p. 1849–54.
109.
go back to reference Schulte H. The characteristics of the mckibben artificial muscle. Appl External Power Prosthetics Orthot. 1961; 874:94–115. Schulte H. The characteristics of the mckibben artificial muscle. Appl External Power Prosthetics Orthot. 1961; 874:94–115.
110.
go back to reference Gavrilović M, Marić M. Positional servo-mechanism activated by artificial muscles. Med Biol Eng Comput. 1969; 7(1):77–82.CrossRef Gavrilović M, Marić M. Positional servo-mechanism activated by artificial muscles. Med Biol Eng Comput. 1969; 7(1):77–82.CrossRef
111.
go back to reference Chou CP, Hannaford B. Measurement and modeling of mckibben pneumatic artificial muscles. IEEE Trans Robot Autom. 1996; 12(1):90–102.CrossRef Chou CP, Hannaford B. Measurement and modeling of mckibben pneumatic artificial muscles. IEEE Trans Robot Autom. 1996; 12(1):90–102.CrossRef
112.
go back to reference Kodama T, Okabe A, Kogiso K. Simultaneous estimation of contraction ratio and parameter of mckibben pneumatic artificial muscle model using log-normalized unscented kalman filter. In: Cyber-Physical Systems, Networks, and Applications (CPSNA), 2016 IEEE 4th International Conference On. New York: IEEE Corporate Headquarters: 2016. p. 44–8. Kodama T, Okabe A, Kogiso K. Simultaneous estimation of contraction ratio and parameter of mckibben pneumatic artificial muscle model using log-normalized unscented kalman filter. In: Cyber-Physical Systems, Networks, and Applications (CPSNA), 2016 IEEE 4th International Conference On. New York: IEEE Corporate Headquarters: 2016. p. 44–8.
113.
go back to reference Gordon KE, Sawicki GS, Ferris DP. Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis. J Biomech. 2006; 39(10):1832–41.PubMedCrossRef Gordon KE, Sawicki GS, Ferris DP. Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis. J Biomech. 2006; 39(10):1832–41.PubMedCrossRef
114.
go back to reference Jackson RW, Collins SH. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. J Appl Physiol. 2015; 119(5):541–57.PubMedCrossRef Jackson RW, Collins SH. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. J Appl Physiol. 2015; 119(5):541–57.PubMedCrossRef
115.
go back to reference Van Ham R, Sugar TG, Vanderborght B, Hollander KW, Lefeber D. Compliant actuator designs. IEEE Robotics & Automation Magazine. 2009; 16(3):81–94.CrossRef Van Ham R, Sugar TG, Vanderborght B, Hollander KW, Lefeber D. Compliant actuator designs. IEEE Robotics & Automation Magazine. 2009; 16(3):81–94.CrossRef
116.
go back to reference Pons J, Rodriguez H, Luyckx I, Reynaerts D, Ceres R, Brussel HV. High torque ultrasonic motors for hand prosthetics: current status and trends. Technol Health Care. 2002; 10(2):121–33.PubMed Pons J, Rodriguez H, Luyckx I, Reynaerts D, Ceres R, Brussel HV. High torque ultrasonic motors for hand prosthetics: current status and trends. Technol Health Care. 2002; 10(2):121–33.PubMed
117.
go back to reference Bogue R. Exoskeletons and robotic prosthetics: a review of recent developments. Ind Robot Int J. 2009; 36(5):421–7.CrossRef Bogue R. Exoskeletons and robotic prosthetics: a review of recent developments. Ind Robot Int J. 2009; 36(5):421–7.CrossRef
120.
go back to reference Yoshino A. Development of the lithium-ion battery and recent technological trends In: Pistoia G, editor. Lithium-Ion Batteries. San Diego: Elsevier: 2014. p. 1–20.CrossRef Yoshino A. Development of the lithium-ion battery and recent technological trends In: Pistoia G, editor. Lithium-Ion Batteries. San Diego: Elsevier: 2014. p. 1–20.CrossRef
121.
go back to reference Dickinson MH, Farley CT, Full RJ, Koehl M, Kram R, Lehman S. How animals move: an integrative view. Science. 2000; 288(5463):100–6.PubMedCrossRef Dickinson MH, Farley CT, Full RJ, Koehl M, Kram R, Lehman S. How animals move: an integrative view. Science. 2000; 288(5463):100–6.PubMedCrossRef
122.
go back to reference Biewener AA. Locomotion as an emergent property of muscle contractile dynamics. J Exp Biol. 2016; 219(2):285–94.PubMedCrossRef Biewener AA. Locomotion as an emergent property of muscle contractile dynamics. J Exp Biol. 2016; 219(2):285–94.PubMedCrossRef
123.
go back to reference Lieber RL. Skeletal Muscle Structure and Function: Implications for Rehabilitation and Sports Medicine.Williams & Wilkins; 1992. p. 303. ISBN: 978-0683050264. Lieber RL. Skeletal Muscle Structure and Function: Implications for Rehabilitation and Sports Medicine.Williams & Wilkins; 1992. p. 303. ISBN: 978-0683050264.
124.
go back to reference Enoka RM. Neuromechanics of Human Movement.Human kinetics; 2008. p. 560. ISBN: 978-0736066792. Enoka RM. Neuromechanics of Human Movement.Human kinetics; 2008. p. 560. ISBN: 978-0736066792.
125.
go back to reference Martin P, Johnson E, Murphey T, Egerstedt M. Constructing and implementing motion programs for robotic marionettes. IEEE Trans Autom Control. 2011; 56(4):902–7.CrossRef Martin P, Johnson E, Murphey T, Egerstedt M. Constructing and implementing motion programs for robotic marionettes. IEEE Trans Autom Control. 2011; 56(4):902–7.CrossRef
126.
go back to reference Shinjiro S, Andrew K, Dinesh KP. Musculotendon simulation for hand animation. ACM Trans Graph. 2008; 27(3):1–8. 1360682. Shinjiro S, Andrew K, Dinesh KP. Musculotendon simulation for hand animation. ACM Trans Graph. 2008; 27(3):1–8. 1360682.
127.
go back to reference Kaufman DM, Edmunds T, Pai DK. Fast frictional dynamics for rigid bodies. In: International Conference on Computer Graphics and Interactive Techniques. New York: ACM: 2005. p. 946–56. Kaufman DM, Edmunds T, Pai DK. Fast frictional dynamics for rigid bodies. In: International Conference on Computer Graphics and Interactive Techniques. New York: ACM: 2005. p. 946–56.
128.
go back to reference Mao Y, Agrawal SK. Design of a cable-driven arm exoskeleton (carex) for neural rehabilitation. IEEE Trans Robot. 2012; 28(4):922–31.CrossRef Mao Y, Agrawal SK. Design of a cable-driven arm exoskeleton (carex) for neural rehabilitation. IEEE Trans Robot. 2012; 28(4):922–31.CrossRef
129.
go back to reference Oh SR, Agrawal SK. Cable suspended planar robots with redundant cables: Controllers with positive tensions. IEEE Trans Robot. 2005; 21(3):457–65.CrossRef Oh SR, Agrawal SK. Cable suspended planar robots with redundant cables: Controllers with positive tensions. IEEE Trans Robot. 2005; 21(3):457–65.CrossRef
132.
go back to reference Fu Q, Zhang W, Santello M. Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation. J Neurosci. 2010; 30(27):9117–26.PubMedPubMedCentralCrossRef Fu Q, Zhang W, Santello M. Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation. J Neurosci. 2010; 30(27):9117–26.PubMedPubMedCentralCrossRef
133.
go back to reference Fu Q, Hasan Z, Santello M. Transfer of learned manipulation following changes in degrees of freedom. J Neurosci. 2011; 31(38):13527–34.CrossRef Fu Q, Hasan Z, Santello M. Transfer of learned manipulation following changes in degrees of freedom. J Neurosci. 2011; 31(38):13527–34.CrossRef
136.
go back to reference Marneweck M, Lee-miller T, Santello M, Gordon AM, Gordon AM. Digit Position and Forces Covary during Anticipatory Control of Whole-Hand Manipulation. Front Hum Neurosci. 2016; 10(September):1–10. doi:10.3389/fnhum.2016.00461. Marneweck M, Lee-miller T, Santello M, Gordon AM, Gordon AM. Digit Position and Forces Covary during Anticipatory Control of Whole-Hand Manipulation. Front Hum Neurosci. 2016; 10(September):1–10. doi:10.​3389/​fnhum.​2016.​00461.
137.
go back to reference Yamaguchi GT, Zajac FE. Restoring unassisted natural gait to paraplegics via functionalneuromuscular stimulation: a computer simulation study. IEEE Trans Biomed Eng. 1990; 37(9):886–902.PubMedCrossRef Yamaguchi GT, Zajac FE. Restoring unassisted natural gait to paraplegics via functionalneuromuscular stimulation: a computer simulation study. IEEE Trans Biomed Eng. 1990; 37(9):886–902.PubMedCrossRef
138.
go back to reference Shadmehr R, Mussa-Ivaldi S. Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions.Cambridge: Mit Press; 2012.CrossRef Shadmehr R, Mussa-Ivaldi S. Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions.Cambridge: Mit Press; 2012.CrossRef
139.
go back to reference Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nature Neurosci. 2002; 5(11):1226–35.PubMedCrossRef Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nature Neurosci. 2002; 5(11):1226–35.PubMedCrossRef
140.
go back to reference Scott SH. Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci. 2004; 5(7):532–46.PubMedCrossRef Scott SH. Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci. 2004; 5(7):532–46.PubMedCrossRef
141.
go back to reference Loeb G, Brown I, Cheng E. A hierarchical foundation for models of sensorimotor control. Exp Brain Res. 1999; 126(1):1–18.PubMedCrossRef Loeb G, Brown I, Cheng E. A hierarchical foundation for models of sensorimotor control. Exp Brain Res. 1999; 126(1):1–18.PubMedCrossRef
142.
go back to reference Loeb G, Levine W, He J. Understanding sensorimotor feedback through optimal control. In: Cold Spring Harbor Symposia on Quantitative Biology, vol 55. Cold Spring Harbor: Cold Spring Harbor Laboratory Press: 1990. p. 791–803. Loeb G, Levine W, He J. Understanding sensorimotor feedback through optimal control. In: Cold Spring Harbor Symposia on Quantitative Biology, vol 55. Cold Spring Harbor: Cold Spring Harbor Laboratory Press: 1990. p. 791–803.
143.
go back to reference Peterka R. Sensorimotor integration in human postural control. J neurophysiol. 2002; 88(3):1097–118.PubMed Peterka R. Sensorimotor integration in human postural control. J neurophysiol. 2002; 88(3):1097–118.PubMed
144.
go back to reference Khoo MC. Physiological Control Systems. New York: IEEE Corporate Headquarters; 2000. Khoo MC. Physiological Control Systems. New York: IEEE Corporate Headquarters; 2000.
145.
go back to reference McIntyre J, Bizzi E. Servo hypotheses for the biological control of movement. J Motor Behav. 1993; 25(3):193–202.CrossRef McIntyre J, Bizzi E. Servo hypotheses for the biological control of movement. J Motor Behav. 1993; 25(3):193–202.CrossRef
146.
go back to reference Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci. 2008; 31:125–50.PubMedCrossRef Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci. 2008; 31:125–50.PubMedCrossRef
147.
go back to reference Ranjbaran M, Galiana HL. Hybrid model of the context dependent vestibulo-ocular reflex: implications for vergence-version interactions. Front Comput Neurosci. 2015; 9:6.PubMedPubMedCentralCrossRef Ranjbaran M, Galiana HL. Hybrid model of the context dependent vestibulo-ocular reflex: implications for vergence-version interactions. Front Comput Neurosci. 2015; 9:6.PubMedPubMedCentralCrossRef
148.
go back to reference Iberall T, Arbib MA. Schemes for the control of hand. Vis action control grasping. 1990; 2:204. Iberall T, Arbib MA. Schemes for the control of hand. Vis action control grasping. 1990; 2:204.
149.
go back to reference MacKenzie CL, Iberall T. The Grasping Hand. vol 104. Amsterdam: Elsevier B.V. Registered Office; 1994. MacKenzie CL, Iberall T. The Grasping Hand. vol 104. Amsterdam: Elsevier B.V. Registered Office; 1994.
150.
go back to reference Mechsner F, Kerzel D, Knoblich G, Prinz W. Perceptual basis of bimanual coordination. Nature. 2001; 414(6859):69–73.PubMedCrossRef Mechsner F, Kerzel D, Knoblich G, Prinz W. Perceptual basis of bimanual coordination. Nature. 2001; 414(6859):69–73.PubMedCrossRef
151.
go back to reference Charpentier A. Analyse experimentale de quelgues elements de la sensation de poids. Arch Physiol Norm Pathol. 1891; 3:122–35. Charpentier A. Analyse experimentale de quelgues elements de la sensation de poids. Arch Physiol Norm Pathol. 1891; 3:122–35.
152.
go back to reference Yue G, Cole KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol. 1992; 67(5):1114–23.PubMed Yue G, Cole KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol. 1992; 67(5):1114–23.PubMed
153.
go back to reference Gordon AM, Westling G, Cole KJ, Johansson RS. Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol. 1993; 69(6):1789–96.PubMed Gordon AM, Westling G, Cole KJ, Johansson RS. Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol. 1993; 69(6):1789–96.PubMed
154.
go back to reference Murray DJ, Ellis RR, Bandomir CA, Ross HE. Charpentier (1891) on the size—weight illusion. Attention, Perception, & Psychophysics. 1999; 61(8):1681–5.CrossRef Murray DJ, Ellis RR, Bandomir CA, Ross HE. Charpentier (1891) on the size—weight illusion. Attention, Perception, & Psychophysics. 1999; 61(8):1681–5.CrossRef
155.
go back to reference Flanagan JR, Beltzner MA. Independence of perceptual and sensorimotor predictions in the size–weight illusion. Nature Neurosci. 2000; 3(7):737–41.PubMedCrossRef Flanagan JR, Beltzner MA. Independence of perceptual and sensorimotor predictions in the size–weight illusion. Nature Neurosci. 2000; 3(7):737–41.PubMedCrossRef
156.
go back to reference Warren JP, Santello M, Tillery SIH. Effects of fusion between tactile and proprioceptive inputs on tactile perception. PloS ONE. 2011; 6(3):18073.CrossRef Warren JP, Santello M, Tillery SIH. Effects of fusion between tactile and proprioceptive inputs on tactile perception. PloS ONE. 2011; 6(3):18073.CrossRef
157.
go back to reference Crajé C, Santello M, Gordon AM. Effects of visual cues of object density on perception and anticipatory control of dexterous manipulation. PloS ONE. 2013; 8(10):76855.CrossRef Crajé C, Santello M, Gordon AM. Effects of visual cues of object density on perception and anticipatory control of dexterous manipulation. PloS ONE. 2013; 8(10):76855.CrossRef
158.
go back to reference Bryson AE. Applied Optimal Control: Optimization, Estimation and Control. Boca Raton: CRC Press; 1975. Bryson AE. Applied Optimal Control: Optimization, Estimation and Control. Boca Raton: CRC Press; 1975.
159.
go back to reference Kalman R. On the general theory of control systems. IRE Trans Autom Control. 1959; 4(3):110–0.CrossRef Kalman R. On the general theory of control systems. IRE Trans Autom Control. 1959; 4(3):110–0.CrossRef
160.
go back to reference Kalman RE. Mathematical description of linear dynamical systems. J Soc Ind Appl Math Seri A Control. 1963; 1(2):152–92.CrossRef Kalman RE. Mathematical description of linear dynamical systems. J Soc Ind Appl Math Seri A Control. 1963; 1(2):152–92.CrossRef
161.
go back to reference Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.Hoboken: John Wiley & Sons, Inc.; 2006.CrossRef Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.Hoboken: John Wiley & Sons, Inc.; 2006.CrossRef
162.
go back to reference De Rugy A, Loeb GE, Carroll TJ. Muscle coordination is habitual rather than optimal. J Neurosci. 2012; 32(21):7384–391.PubMedCrossRef De Rugy A, Loeb GE, Carroll TJ. Muscle coordination is habitual rather than optimal. J Neurosci. 2012; 32(21):7384–391.PubMedCrossRef
164.
go back to reference Shiller Z, Dubowsky S. Robot path planning with obstacles, actuator, gripper, and payload constraints. Int J Robot Res. 1989; 8(6):3–18.CrossRef Shiller Z, Dubowsky S. Robot path planning with obstacles, actuator, gripper, and payload constraints. Int J Robot Res. 1989; 8(6):3–18.CrossRef
165.
go back to reference Strang G. Introduction to Linear Algebra. Wellesley: Wellesley-Cambridge Press; 2003. Strang G. Introduction to Linear Algebra. Wellesley: Wellesley-Cambridge Press; 2003.
166.
go back to reference Aschepkov LT, Dolgy DV, Kim T, Agarwal RP. Optimal Control. New York: Springer; 2016.CrossRef Aschepkov LT, Dolgy DV, Kim T, Agarwal RP. Optimal Control. New York: Springer; 2016.CrossRef
167.
go back to reference Safonov MG. Origins of robust control: Early history and future speculations. IFAC Proc Vol. 2012; 45(13):1–8.CrossRef Safonov MG. Origins of robust control: Early history and future speculations. IFAC Proc Vol. 2012; 45(13):1–8.CrossRef
168.
go back to reference Morari M, Garcia C, Lee J, Prett D. Model Predictive Control. Englewood Cliffs: Prentice Hall; 1993. Morari M, Garcia C, Lee J, Prett D. Model Predictive Control. Englewood Cliffs: Prentice Hall; 1993.
169.
go back to reference Theodorou E, Buchli J, Schaal S. A generalized path integral control approach to reinforcement learning. J Mach Learn Res. 2010; 11:3137–81. Theodorou E, Buchli J, Schaal S. A generalized path integral control approach to reinforcement learning. J Mach Learn Res. 2010; 11:3137–81.
170.
go back to reference Chao EY, An KN. Graphical interpretation of the solution to the redundant problem in biomechanics. J Biomech Eng. 1978; 100:159–67.CrossRef Chao EY, An KN. Graphical interpretation of the solution to the redundant problem in biomechanics. J Biomech Eng. 1978; 100:159–67.CrossRef
171.
go back to reference Crowninshield RD, Brand RA. A physiologically based criterion of muscle force prediction in locomotion. J Biomech. 1981; 14(11):793–801.PubMedCrossRef Crowninshield RD, Brand RA. A physiologically based criterion of muscle force prediction in locomotion. J Biomech. 1981; 14(11):793–801.PubMedCrossRef
172.
go back to reference Righetti L, Kalakrishnan M, Pastor P, Binney J, Kelly J, Voorhies RC, Sukhatme GS, Schaal S. An autonomous manipulation system based on force control and optimization. Auton Robots. 2014; 36(1-2):11–30.CrossRef Righetti L, Kalakrishnan M, Pastor P, Binney J, Kelly J, Voorhies RC, Sukhatme GS, Schaal S. An autonomous manipulation system based on force control and optimization. Auton Robots. 2014; 36(1-2):11–30.CrossRef
173.
go back to reference Cifuentes CG, Issac J, Wuthrich M, Schaal S, Bohg J. Probabilistic articulated real-time tracking for robot manipulation. IEEE Robot Autom Letters. 2017; 2(2):577–84.CrossRef Cifuentes CG, Issac J, Wuthrich M, Schaal S, Bohg J. Probabilistic articulated real-time tracking for robot manipulation. IEEE Robot Autom Letters. 2017; 2(2):577–84.CrossRef
174.
go back to reference Kumar V, Todorov E. Mujoco haptix: A virtual reality system for hand manipulation. In: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference On. New York: IEEE Corporate Headquarters: 2015. p. 657–63. Kumar V, Todorov E. Mujoco haptix: A virtual reality system for hand manipulation. In: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference On. New York: IEEE Corporate Headquarters: 2015. p. 657–63.
175.
go back to reference Valero-Cuevas FJ, Zajac FE, Burgar CG. Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech. 1998; 31(8):693–704.PubMedCrossRef Valero-Cuevas FJ, Zajac FE, Burgar CG. Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech. 1998; 31(8):693–704.PubMedCrossRef
176.
go back to reference Valero-Cuevas F, Cohn B, Yngvason H, Lawrence E. Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J Biomech. 2015; 48(11):2887–96.PubMedPubMedCentralCrossRef Valero-Cuevas F, Cohn B, Yngvason H, Lawrence E. Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J Biomech. 2015; 48(11):2887–96.PubMedPubMedCentralCrossRef
177.
go back to reference Kutch JJ, Valero-Cuevas FJ. Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput Biol. 2012; 8(5):1002434.CrossRef Kutch JJ, Valero-Cuevas FJ. Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput Biol. 2012; 8(5):1002434.CrossRef
178.
go back to reference Inouye JM, Valero-Cuevas FJ. Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput Biol. 2016; 12(2):1004737.CrossRef Inouye JM, Valero-Cuevas FJ. Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput Biol. 2016; 12(2):1004737.CrossRef
179.
go back to reference Körding KP, Wolpert DM. Bayesian decision theory in sensorimotor control. Trends Cogn Sci. 2006; 10(7):319–26.PubMedCrossRef Körding KP, Wolpert DM. Bayesian decision theory in sensorimotor control. Trends Cogn Sci. 2006; 10(7):319–26.PubMedCrossRef
180.
go back to reference Peters MA, Ma WJ, Shams L. The size-weight illusion is not anti-bayesian after all: a unifying bayesian account. PeerJ. 2016; 4:2124.CrossRef Peters MA, Ma WJ, Shams L. The size-weight illusion is not anti-bayesian after all: a unifying bayesian account. PeerJ. 2016; 4:2124.CrossRef
182.
go back to reference Dunning A, Ghoreyshi A, Bertucco M, Sanger TD. The tuning of human motor response to risk in a dynamic environment task. PloS ONE. 2015; 10(4):0125461.CrossRef Dunning A, Ghoreyshi A, Bertucco M, Sanger TD. The tuning of human motor response to risk in a dynamic environment task. PloS ONE. 2015; 10(4):0125461.CrossRef
183.
go back to reference Theodorou E, Todorov E, Valero-Cuevas FJ. Neuromuscular stochastic optimal control of a tendon driven index finger model. In: American Control Conference (ACC), 2011. New York: IEEE Corporate Headquarters: 2011. p. 348–55. Theodorou E, Todorov E, Valero-Cuevas FJ. Neuromuscular stochastic optimal control of a tendon driven index finger model. In: American Control Conference (ACC), 2011. New York: IEEE Corporate Headquarters: 2011. p. 348–55.
184.
go back to reference Rieffel J, Valero-Cuevas F, Lipson H. Morphological Communication: Exploiting Coupled Dynamics in a Complex Mechanical Structure to Achieve Locomotion. J Royal Soc Interf. 2009. In Press. Rieffel J, Valero-Cuevas F, Lipson H. Morphological Communication: Exploiting Coupled Dynamics in a Complex Mechanical Structure to Achieve Locomotion. J Royal Soc Interf. 2009. In Press.
185.
go back to reference Bernstein NA. The Co-ordination and Regulation of Movement. Oxford: Pergamon Press; 1967. Bernstein NA. The Co-ordination and Regulation of Movement. Oxford: Pergamon Press; 1967.
186.
go back to reference Miller AT, Allen PK. Graspit! a versatile simulator for robotic grasping. IEEE Robot Autom Mag. 2004; 11(4):110–22.CrossRef Miller AT, Allen PK. Graspit! a versatile simulator for robotic grasping. IEEE Robot Autom Mag. 2004; 11(4):110–22.CrossRef
188.
go back to reference Hagen DA, Valero-Cuevas FJ. Similar movements are associated with drastically different muscle contraction velocities. J Biomech. 2017; 59:90–100.PubMedCrossRef Hagen DA, Valero-Cuevas FJ. Similar movements are associated with drastically different muscle contraction velocities. J Biomech. 2017; 59:90–100.PubMedCrossRef
189.
go back to reference Brand P, Hollister A. Clinical Mechanics of the Hand, St. Louis: Mosby-Year Book. Amsterdam: Elsevier B.V. Registered Office; 1993. Brand P, Hollister A. Clinical Mechanics of the Hand, St. Louis: Mosby-Year Book. Amsterdam: Elsevier B.V. Registered Office; 1993.
190.
go back to reference Valero-Cuevas FJ, Smaby N, Venkadesan M, Peterson M, Wright T. The strength-dexterity test as a measure of dynamic pinch performance. J Biomech. 2003; 36:265–70.PubMedCrossRef Valero-Cuevas FJ, Smaby N, Venkadesan M, Peterson M, Wright T. The strength-dexterity test as a measure of dynamic pinch performance. J Biomech. 2003; 36:265–70.PubMedCrossRef
191.
go back to reference Lawrence EL, Fassola I, Werner I, Leclercq C, Valero-Cuevas FJ. Quantification of dexterity as the dynamical regulation of instabilities: comparisons across gender, age, and disease. Front Neurol. 2014;5. Lawrence EL, Fassola I, Werner I, Leclercq C, Valero-Cuevas FJ. Quantification of dexterity as the dynamical regulation of instabilities: comparisons across gender, age, and disease. Front Neurol. 2014;5.
192.
go back to reference Ko N-h, Laine CM, Fisher BE, Valero-Cuevas FJ. Force variability during dexterous manipulation in individuals with mild to moderate parkinson’s disease. Front Aging Neurosci. 2015; 7:151.PubMedPubMedCentralCrossRef Ko N-h, Laine CM, Fisher BE, Valero-Cuevas FJ. Force variability during dexterous manipulation in individuals with mild to moderate parkinson’s disease. Front Aging Neurosci. 2015; 7:151.PubMedPubMedCentralCrossRef
193.
go back to reference Lawrence EL, Dayanidhi S, Fassola I, Requejo P, Leclercq C, Winstein CJ, Valero-Cuevas FJ. Outcome measures for hand function naturally reveal three latent domains in older adults: strength, coordinated upper extremity function, and sensorimotor processing. Front Aging Neurosci. 2015; 7:108.PubMedPubMedCentralCrossRef Lawrence EL, Dayanidhi S, Fassola I, Requejo P, Leclercq C, Winstein CJ, Valero-Cuevas FJ. Outcome measures for hand function naturally reveal three latent domains in older adults: strength, coordinated upper extremity function, and sensorimotor processing. Front Aging Neurosci. 2015; 7:108.PubMedPubMedCentralCrossRef
194.
go back to reference Pavlova E, Hedberg Å, Ponten E, Gantelius S, Valero-Cuevas FJ, Forssberg H. Activity in the brain network for dynamic manipulation of unstable objects is robust to acute tactile nerve block: an fmri study. Brain Res. 2015; 1620:98–106.PubMedCrossRef Pavlova E, Hedberg Å, Ponten E, Gantelius S, Valero-Cuevas FJ, Forssberg H. Activity in the brain network for dynamic manipulation of unstable objects is robust to acute tactile nerve block: an fmri study. Brain Res. 2015; 1620:98–106.PubMedCrossRef
196.
go back to reference McGeer T, et al.Passive dynamic walking. I J Robotic Res. 1990; 9(2):62–82.CrossRef McGeer T, et al.Passive dynamic walking. I J Robotic Res. 1990; 9(2):62–82.CrossRef
197.
go back to reference Collins S, Ruina A, Tedrake R, Wisse M. Efficient bipedal robots based on passive-dynamic walkers. Science. 2005; 307(5712):1082–5.PubMedCrossRef Collins S, Ruina A, Tedrake R, Wisse M. Efficient bipedal robots based on passive-dynamic walkers. Science. 2005; 307(5712):1082–5.PubMedCrossRef
198.
go back to reference Schieber MH, Santello M. Hand function: peripheral and central constraints on performance. J Appl Physiol. 2004; 96:2293–300.PubMedCrossRef Schieber MH, Santello M. Hand function: peripheral and central constraints on performance. J Appl Physiol. 2004; 96:2293–300.PubMedCrossRef
199.
go back to reference Schieber MH. Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol. 2001; 86(5):2125–43.PubMed Schieber MH. Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol. 2001; 86(5):2125–43.PubMed
200.
go back to reference Sanes JN, Schieber MH. Orderly somatotopy in primary motor cortex: does it exist?Neuroimage. 2001; 13:968–74.PubMedCrossRef Sanes JN, Schieber MH. Orderly somatotopy in primary motor cortex: does it exist?Neuroimage. 2001; 13:968–74.PubMedCrossRef
203.
go back to reference de Vries IEJ, Daffertshofer A, Stegeman DF, Boonstra TW. Functional connectivity in the neuromuscular system underlying bimanual coordination. J Neurophysiol. 2016; 116(6):2576–85. doi:10.1152/jn.00460.2016. Accessed 13 Dec 2016PubMedCrossRef de Vries IEJ, Daffertshofer A, Stegeman DF, Boonstra TW. Functional connectivity in the neuromuscular system underlying bimanual coordination. J Neurophysiol. 2016; 116(6):2576–85. doi:10.​1152/​jn.​00460.​2016. Accessed 13 Dec 2016PubMedCrossRef
206.
go back to reference Nozaki D, Yokoi A, Kimura T, Hirashima M, de Xivry J-JO. Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval. Elife. 2016; 5:15378. Accessed 28 Feb 2017.CrossRef Nozaki D, Yokoi A, Kimura T, Hirashima M, de Xivry J-JO. Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval. Elife. 2016; 5:15378. Accessed 28 Feb 2017.CrossRef
207.
go back to reference Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E, Zakin MR, Lipson H, Jaeger HM. Universal robotic gripper based on the jamming of granular material. Proc Natl Acad Sci. 2010; 107(44):18809–14.PubMedCentralCrossRef Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E, Zakin MR, Lipson H, Jaeger HM. Universal robotic gripper based on the jamming of granular material. Proc Natl Acad Sci. 2010; 107(44):18809–14.PubMedCentralCrossRef
208.
go back to reference Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, et al. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science. 2015; 348(6237):906–10.PubMedPubMedCentralCrossRef Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, et al. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science. 2015; 348(6237):906–10.PubMedPubMedCentralCrossRef
209.
go back to reference Flanagan JR, Vetter P, Johansson RS, Wolpert DM. Prediction precedes control in motor learning. Current Biol. 2003; 13(2):146–50.CrossRef Flanagan JR, Vetter P, Johansson RS, Wolpert DM. Prediction precedes control in motor learning. Current Biol. 2003; 13(2):146–50.CrossRef
210.
go back to reference Haruno M, Wolpert DM, Kawato M. MOSAIC Model for Sensorimotor Learning and Control. Neural Comput. 2001; 13:2201–0.PubMedCrossRef Haruno M, Wolpert DM, Kawato M. MOSAIC Model for Sensorimotor Learning and Control. Neural Comput. 2001; 13:2201–0.PubMedCrossRef
214.
go back to reference Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998; 79:1117–23.PubMed Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998; 79:1117–23.PubMed
218.
go back to reference Johansson RS, Cole KJ. Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol. 1992; 2(6):815–23.PubMedCrossRef Johansson RS, Cole KJ. Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol. 1992; 2(6):815–23.PubMedCrossRef
219.
go back to reference Quaney BM, Rotella DL, Peterson C, Cole KJ. Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory. J Neurosci. 2003; 23(5):1981–6.PubMed Quaney BM, Rotella DL, Peterson C, Cole KJ. Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory. J Neurosci. 2003; 23(5):1981–6.PubMed
221.
go back to reference Ingram JN, Howard IS, Flanagan JR, Wolpert DM. Multiple grasp-specific representations of tool dynamics mediate skillful manipulation. Current Biol. 2010; 20(7):618–23.CrossRef Ingram JN, Howard IS, Flanagan JR, Wolpert DM. Multiple grasp-specific representations of tool dynamics mediate skillful manipulation. Current Biol. 2010; 20(7):618–23.CrossRef
223.
go back to reference Fu Q, Santello M (in press). Sensorimotor learning of dexterous manipulation In: Watanabe T, Harada K, Tada M, editors. Human Inspired Dexterity in Robotic Manipulation. Amsterdam: Elsevier B.V. Registered Office. Fu Q, Santello M (in press). Sensorimotor learning of dexterous manipulation In: Watanabe T, Harada K, Tada M, editors. Human Inspired Dexterity in Robotic Manipulation. Amsterdam: Elsevier B.V. Registered Office.
224.
go back to reference Kemp CC, Edsinger A, Torres-Jara E. Challenges for robot manipulation in human environments [grand challenges of robotics]. IEEE Robot Autom Mag. 2007; 14(1):20–9.CrossRef Kemp CC, Edsinger A, Torres-Jara E. Challenges for robot manipulation in human environments [grand challenges of robotics]. IEEE Robot Autom Mag. 2007; 14(1):20–9.CrossRef
225.
go back to reference Saxena A, Driemeyer J, Kearns J, Ng AY. Robotic grasping of novel objects. In: Adv Neural Inf Process Syst. La Jolla: Neural Information Processing Systems Foundation: 2007. p. 1209–16. Saxena A, Driemeyer J, Kearns J, Ng AY. Robotic grasping of novel objects. In: Adv Neural Inf Process Syst. La Jolla: Neural Information Processing Systems Foundation: 2007. p. 1209–16.
227.
go back to reference Adolph KE, Cole WG, Komati M, Garciaguirre JS, Badaly D, Lingeman JM, Chan GL, Sotsky RB. How do you learn to walk? thousands of steps and dozens of falls per day. Psychological Sci. 2012; 23(11):1387–94.CrossRef Adolph KE, Cole WG, Komati M, Garciaguirre JS, Badaly D, Lingeman JM, Chan GL, Sotsky RB. How do you learn to walk? thousands of steps and dozens of falls per day. Psychological Sci. 2012; 23(11):1387–94.CrossRef
228.
go back to reference Gladwell M. Outliers: The Story of Success. UK: Hachette; 2008. Gladwell M. Outliers: The Story of Success. UK: Hachette; 2008.
229.
go back to reference Lohse KR, Lang CE, Boyd LA. Is more better? using metadata to explore dose–response relationships in stroke rehabilitation. Stroke. 2014; 45(7):2053–8.PubMedPubMedCentralCrossRef Lohse KR, Lang CE, Boyd LA. Is more better? using metadata to explore dose–response relationships in stroke rehabilitation. Stroke. 2014; 45(7):2053–8.PubMedPubMedCentralCrossRef
230.
go back to reference Bongard J, Zykov V, Lipson H. Resilient machines through continuous self-modeling. Science. 2006; 314(5802):1118–21.PubMedCrossRef Bongard J, Zykov V, Lipson H. Resilient machines through continuous self-modeling. Science. 2006; 314(5802):1118–21.PubMedCrossRef
231.
go back to reference Kalakrishnan M, Buchli J, Pastor P, Mistry M, Schaal S. Learning, planning, and control for quadruped locomotion over challenging terrain. Int J Robot Res. 2011; 30(2):236–58.CrossRef Kalakrishnan M, Buchli J, Pastor P, Mistry M, Schaal S. Learning, planning, and control for quadruped locomotion over challenging terrain. Int J Robot Res. 2011; 30(2):236–58.CrossRef
232.
go back to reference Bristow DA, Tharayil M, Alleyne AG. A survey of iterative learning control. IEEE Control Syst. 2006; 26(3):96–114.CrossRef Bristow DA, Tharayil M, Alleyne AG. A survey of iterative learning control. IEEE Control Syst. 2006; 26(3):96–114.CrossRef
233.
go back to reference Valero-Cuevas FJ, Venkadesan M, Todorov E. Structured variability of muscle activations supports the minimal intervention principle of motor control. J Neurophysiol. 2009; 102:59–68.PubMedPubMedCentralCrossRef Valero-Cuevas FJ, Venkadesan M, Todorov E. Structured variability of muscle activations supports the minimal intervention principle of motor control. J Neurophysiol. 2009; 102:59–68.PubMedPubMedCentralCrossRef
234.
go back to reference Rácz K, Valero-Cuevas F. Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables. Front Comput Neurosci. 2013; 7:155.PubMedPubMedCentralCrossRef Rácz K, Valero-Cuevas F. Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables. Front Comput Neurosci. 2013; 7:155.PubMedPubMedCentralCrossRef
236.
go back to reference Giszter SF, McIntyre J, Bizzi E. Kinematic strategies and sensorimotor transformations in the wiping movements of frogs. J Neurophysiol. 1989; 62(3):750–67.PubMed Giszter SF, McIntyre J, Bizzi E. Kinematic strategies and sensorimotor transformations in the wiping movements of frogs. J Neurophysiol. 1989; 62(3):750–67.PubMed
237.
go back to reference Scholz JP, Schöner G. The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res. 1999; 126(3):289–306.PubMedCrossRef Scholz JP, Schöner G. The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res. 1999; 126(3):289–306.PubMedCrossRef
238.
go back to reference Giszter S, Patil V, Hart C. Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog Brain Res. 2007; 165:323–46.PubMedCrossRef Giszter S, Patil V, Hart C. Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog Brain Res. 2007; 165:323–46.PubMedCrossRef
243.
go back to reference Santello M, Lang CE. Are movement disorders and sensorimotor injuries pathologic synergies? when normal multi-joint movement synergies become pathologic. Front Hum Neurosci. 2015; 8:1050.PubMedPubMedCentralCrossRef Santello M, Lang CE. Are movement disorders and sensorimotor injuries pathologic synergies? when normal multi-joint movement synergies become pathologic. Front Hum Neurosci. 2015; 8:1050.PubMedPubMedCentralCrossRef
245.
go back to reference Santello M, Flanders M, Soechting JF. Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci. 2002; 22(4):1426–35.PubMed Santello M, Flanders M, Soechting JF. Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci. 2002; 22(4):1426–35.PubMed
248.
go back to reference Schieber MH, Hibbard LS. How somatotopic is the motor cortex hand area?Science. 1993; 261:489–92.PubMedCrossRef Schieber MH, Hibbard LS. How somatotopic is the motor cortex hand area?Science. 1993; 261:489–92.PubMedCrossRef
250.
go back to reference Leo A, Handjaras G, Bianchi M, Marino H, Gabiccini M, Guidi A, Scilingo EP, Pietrini P, Bicchi A, Santello M, Ricciardi E. A synergy-based hand control is encoded in human motor cortical areas. eLife. 2016; 5:13420. doi:10.7554/eLife.13420.CrossRef Leo A, Handjaras G, Bianchi M, Marino H, Gabiccini M, Guidi A, Scilingo EP, Pietrini P, Bicchi A, Santello M, Ricciardi E. A synergy-based hand control is encoded in human motor cortical areas. eLife. 2016; 5:13420. doi:10.​7554/​eLife.​13420.CrossRef
251.
go back to reference Ejaz N, Hamada M, Diedrichsen J. Hand use predicts the structure of representations in sensorimotor cortex. Nature Neurosci. 2015; 103(June). doi:10.1038/nn.4038. Ejaz N, Hamada M, Diedrichsen J. Hand use predicts the structure of representations in sensorimotor cortex. Nature Neurosci. 2015; 103(June). doi:10.​1038/​nn.​4038.
252.
go back to reference Babikian S, Kanso E, Kutch JJ. Cortical activity predicts good variation in human motor output. Exp Brain Res. 2017; 235(4):1–9.CrossRef Babikian S, Kanso E, Kutch JJ. Cortical activity predicts good variation in human motor output. Exp Brain Res. 2017; 235(4):1–9.CrossRef
253.
257.
go back to reference Flanders M, Soechting JF. Kinematics of typing: parallel control of the two hands. J Neurophysiol. 1992; 67(5):1264–74.PubMed Flanders M, Soechting JF. Kinematics of typing: parallel control of the two hands. J Neurophysiol. 1992; 67(5):1264–74.PubMed
260.
go back to reference Zatsiorsky V, Gao F, Latash M. Prehension synergies: effects of object geometry and prescribed torques. Exp Brain Res. 2003; 148(1):77–87.PubMedCrossRef Zatsiorsky V, Gao F, Latash M. Prehension synergies: effects of object geometry and prescribed torques. Exp Brain Res. 2003; 148(1):77–87.PubMedCrossRef
261.
go back to reference Santello M, Bianchi M, Gabiccini M, Ricciardi E, Salvietti G, Prattichizzo D, Ernst M, Moscatelli A, Jörntell H, Kappers AM, Kyriakopoulos K, Albu-Schäffer A, Castellini C, Bicchi A. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys Life Rev. 2016; 17:1–23. doi:10.1016/j.plrev.2016.02.001.PubMedCrossRef Santello M, Bianchi M, Gabiccini M, Ricciardi E, Salvietti G, Prattichizzo D, Ernst M, Moscatelli A, Jörntell H, Kappers AM, Kyriakopoulos K, Albu-Schäffer A, Castellini C, Bicchi A. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys Life Rev. 2016; 17:1–23. doi:10.​1016/​j.​plrev.​2016.​02.​001.PubMedCrossRef
262.
go back to reference Scholz JP, Kang N, Patterson D, Latash ML. Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without down syndrome. Exp Brain Res. 2003; 153(1):45–58.PubMedCrossRef Scholz JP, Kang N, Patterson D, Latash ML. Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without down syndrome. Exp Brain Res. 2003; 153(1):45–58.PubMedCrossRef
264.
go back to reference Xiloyannis M, Cappello L, Khanh DB, Yen SC, Masia L. Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove. In: Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference On. New York: IEEE Corporate Headquarters: 2016. p. 1213–19. Xiloyannis M, Cappello L, Khanh DB, Yen SC, Masia L. Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove. In: Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference On. New York: IEEE Corporate Headquarters: 2016. p. 1213–19.
265.
go back to reference Zhao K, Breighner R, Theuer A, Godfrey SB, Bianchi M, Catalano M, Grioli G, Santello M, Bicchi A, Andrews K. Application of a novel robotic hand as a myoelectric prosthetic prototype: proof of concept in a single patient. Lyon: International Society for Prosthetics and Orthotics World Congress; 2015, p. 571. Zhao K, Breighner R, Theuer A, Godfrey SB, Bianchi M, Catalano M, Grioli G, Santello M, Bicchi A, Andrews K. Application of a novel robotic hand as a myoelectric prosthetic prototype: proof of concept in a single patient. Lyon: International Society for Prosthetics and Orthotics World Congress; 2015, p. 571.
266.
go back to reference Bicchi A, Gabiccini M, Santello M. Modelling natural and artificial hands with synergies. Philos Trans Royal Soc Lond B Biol Sci. 2011; 366(1581):3153–61.CrossRef Bicchi A, Gabiccini M, Santello M. Modelling natural and artificial hands with synergies. Philos Trans Royal Soc Lond B Biol Sci. 2011; 366(1581):3153–61.CrossRef
267.
go back to reference Kumar V, Tassa Y, Erez T, Todorov E. Real-time behaviour synthesis for dynamic hand-manipulation. In: Robotics and Automation (ICRA), 2014 IEEE International Conference On. New York: IEEE Corporate Headquarters: 2014. p. 6808–15. Kumar V, Tassa Y, Erez T, Todorov E. Real-time behaviour synthesis for dynamic hand-manipulation. In: Robotics and Automation (ICRA), 2014 IEEE International Conference On. New York: IEEE Corporate Headquarters: 2014. p. 6808–15.
268.
go back to reference Fu Q, Ushani A, Jentoft L, Howe RD, Santella M. Human reach-to-grasp compensation with object pose uncertainty. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. New York: IEEE Corporate Headquarters: 2013. p. 6893–6. Fu Q, Ushani A, Jentoft L, Howe RD, Santella M. Human reach-to-grasp compensation with object pose uncertainty. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. New York: IEEE Corporate Headquarters: 2013. p. 6893–6.
271.
go back to reference Copi I. Essentials of Logic.Abingdon: Taylor & Francis; 2016. Copi I. Essentials of Logic.Abingdon: Taylor & Francis; 2016.
272.
go back to reference Olshausen BA. 20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked. In: 20 Years of Computational Neuroscience. New York: Springer: 2013. p. 243–70. Olshausen BA. 20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked. In: 20 Years of Computational Neuroscience. New York: Springer: 2013. p. 243–70.
273.
go back to reference Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 2006; 52(5):751–66.PubMedCrossRef Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 2006; 52(5):751–66.PubMedCrossRef
274.
go back to reference Suver M, Dickinson M. Sensory integration by descending interneurons in the flying fruit fly. Integr Comp Biol. 2016; 56(S1):216. Suver M, Dickinson M. Sensory integration by descending interneurons in the flying fruit fly. Integr Comp Biol. 2016; 56(S1):216.
276.
go back to reference Ewart J. Neuroethology–An Introduction to the Neurophysiological Fundamentals of Behaviour. New York: Springer; 1980. Ewart J. Neuroethology–An Introduction to the Neurophysiological Fundamentals of Behaviour. New York: Springer; 1980.
Metadata
Title
On neuromechanical approaches for the study of biological and robotic grasp and manipulation
Authors
Francisco J. Valero-Cuevas
Marco Santello
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0305-3

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue