Skip to main content
Top
Published in: BMC Psychiatry 1/2024

Open Access 01-12-2024 | Nerve Stimulation | Study Protocol

The efficacy of real versus sham external Trigeminal Nerve Stimulation (eTNS) in youth with Attention-Deficit/Hyperactivity Disorder (ADHD) over 4 weeks: a protocol for a multi-centre, double-blind, randomized, parallel-group, phase IIb study (ATTENS)

Authors: Katya Rubia, Lena Johansson, Ben Carter, Dominic Stringer, Paramala Santosh, Mitul A. Mehta, Aldo Alberto Conti, Natali Bozhilova, Irem Ece Eraydin, Samuele Cortese

Published in: BMC Psychiatry | Issue 1/2024

Login to get access

Abstract

Background

Attention Deficit/Hyperactivity Disorder (ADHD), if severe, is usually treated with stimulant or non-stimulant medication. However, users prefer non-drug treatments due to side effects. Alternative non-medication treatments have so far only shown modest effects. External trigeminal nerve stimulation (eTNS) is a minimal risk, non-invasive neuromodulation device, targeting the trigeminal system. It was approved for ADHD in 2019 by the USA Food and Drug administration (FDA) based on a small proof of concept randomised controlled trial (RCT) in 62 children with ADHD showing improvement of ADHD symptoms after 4 weeks of nightly real versus sham eTNS with minimal side effects. We present here the protocol of a larger confirmatory phase IIb study testing efficacy, longer-term persistency of effects and underlying mechanisms of action.

Methods

A confirmatory, sham-controlled, double-blind, parallel-arm, multi-centre phase IIb RCT of 4 weeks of eTNS in 150 youth with ADHD, recruited in London, Portsmouth, and Southampton, UK. Youth with ADHD will be randomized to either real or sham eTNS, applied nightly for 4 weeks. Primary outcome is the change in the investigator-administered parent rated ADHD rating scale. Secondary outcomes are other clinical and cognitive measures, objective hyperactivity and pupillometry measures, side effects, and maintenance of effects over 6 months. The mechanisms of action will be tested in a subgroup of 56 participants using magnetic resonance imaging (MRI) before and after the 4-week treatment.

Discussion

This multi-centre phase IIb RCT will confirm whether eTNS is effective in a larger age range of children and adolescents with ADHD, whether it improves cognition and other clinical measures, whether efficacy persists at 6 months and it will test underlying brain mechanisms. The results will establish whether eTNS is effective and safe as a novel non-pharmacological treatment for ADHD.
Trial registration: ISRCTN82129325 on 02/08/2021, https://​doi.​org/​10.​1186/​ISRCTN82129325.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C.: American Psychiatric Publishing; 2013. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C.: American Psychiatric Publishing; 2013.
2.
3.
go back to reference Rubia K, Westwood S, Aggensteiner PM, Brandeis D. Neurotherapeutics for Attention Deficit/Hyperactivity Disorder (ADHD): A Review. Cells. 2021;10(8):2156.PubMedPubMedCentralCrossRef Rubia K, Westwood S, Aggensteiner PM, Brandeis D. Neurotherapeutics for Attention Deficit/Hyperactivity Disorder (ADHD): A Review. Cells. 2021;10(8):2156.PubMedPubMedCentralCrossRef
4.
go back to reference Faraone SV, Banaschewski T, Coghill D, Zheng Y, Biederman J, Bellgrove MA, et al. The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. Neurosci Biobehav Rev. 2021;128:789–818.PubMedPubMedCentralCrossRef Faraone SV, Banaschewski T, Coghill D, Zheng Y, Biederman J, Bellgrove MA, et al. The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. Neurosci Biobehav Rev. 2021;128:789–818.PubMedPubMedCentralCrossRef
5.
go back to reference Faraone SV, A. BM, Isabell B, S C, Catharina H, Chris H, et al. Update on Attention-Deficit/Hyperactivity Disorder. Nature Reviews. 2024;10(11):1–21. Faraone SV, A. BM, Isabell B, S C, Catharina H, Chris H, et al. Update on Attention-Deficit/Hyperactivity Disorder. Nature Reviews. 2024;10(11):1–21.
6.
go back to reference Cortese S, Adamo N, Del Giovane C, Mohr-Jensen C, Hayes AJ, Carucci S, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2018;5(9):727–38.PubMedPubMedCentralCrossRef Cortese S, Adamo N, Del Giovane C, Mohr-Jensen C, Hayes AJ, Carucci S, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2018;5(9):727–38.PubMedPubMedCentralCrossRef
7.
go back to reference Cunill R, Castells X, Tobias A, Capella D. Efficacy, safety and variability in pharmacotherapy for adults with attention deficit hyperactivity disorder: a meta-analysis and meta-regression in over 9000 patients. Psychopharmacology. 2016;233(2):187–97.PubMedCrossRef Cunill R, Castells X, Tobias A, Capella D. Efficacy, safety and variability in pharmacotherapy for adults with attention deficit hyperactivity disorder: a meta-analysis and meta-regression in over 9000 patients. Psychopharmacology. 2016;233(2):187–97.PubMedCrossRef
8.
go back to reference Aston-Jones G, Cohen JD. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 2005;493(1):99–110.PubMedCrossRef Aston-Jones G, Cohen JD. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 2005;493(1):99–110.PubMedCrossRef
9.
go back to reference McGough JJ, Sturm A, Cowen J, Tung K, Salgari GC, Leuchter AF, et al. Double-Blind, Sham-Controlled, Pilot Study of Trigeminal Nerve Stimulation for Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry. 2019;58(4):403-11.e3.PubMedPubMedCentralCrossRef McGough JJ, Sturm A, Cowen J, Tung K, Salgari GC, Leuchter AF, et al. Double-Blind, Sham-Controlled, Pilot Study of Trigeminal Nerve Stimulation for Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry. 2019;58(4):403-11.e3.PubMedPubMedCentralCrossRef
10.
go back to reference Cook IA, Espinoza R, Leuchter AF. Neuromodulation for depression: invasive and noninvasive (deep brain stimulation, transcranial magnetic stimulation, trigeminal nerve stimulation). Neurosurg Clin N Am. 2014;25(1):103–16.PubMedCrossRef Cook IA, Espinoza R, Leuchter AF. Neuromodulation for depression: invasive and noninvasive (deep brain stimulation, transcranial magnetic stimulation, trigeminal nerve stimulation). Neurosurg Clin N Am. 2014;25(1):103–16.PubMedCrossRef
11.
go back to reference Aucoin R, Lewthwaite H, Ekstrom M, von Leupoldt A, Jensen D. Impact of trigeminal nerve and/or olfactory nerve stimulation on activity of human brain regions involved in the perception of breathlessness. Respir Physiol Neurobiol. 2023;311: 104036.PubMedCrossRef Aucoin R, Lewthwaite H, Ekstrom M, von Leupoldt A, Jensen D. Impact of trigeminal nerve and/or olfactory nerve stimulation on activity of human brain regions involved in the perception of breathlessness. Respir Physiol Neurobiol. 2023;311: 104036.PubMedCrossRef
12.
go back to reference McGough JJ, Loo SK, Sturm A, Cowen J, Leuchter AF, Cook IA. An eight-week, open-trial, pilot feasibility study of trigeminal nerve stimulation in youth with attention-deficit/hyperactivity disorder. Brain Stimul. 2015;8(2):299–304.PubMedCrossRef McGough JJ, Loo SK, Sturm A, Cowen J, Leuchter AF, Cook IA. An eight-week, open-trial, pilot feasibility study of trigeminal nerve stimulation in youth with attention-deficit/hyperactivity disorder. Brain Stimul. 2015;8(2):299–304.PubMedCrossRef
13.
go back to reference Adler LD, Nierenberg AA. Review of medication adherence in children and adults with ADHD. Postgrad Med. 2010;122(1):184–91.PubMedCrossRef Adler LD, Nierenberg AA. Review of medication adherence in children and adults with ADHD. Postgrad Med. 2010;122(1):184–91.PubMedCrossRef
14.
go back to reference Dupaul DG, Power TJ, Anastopoulos AD, Reid R. ADHD Rating Scale-IV: Checklists, Norms, and Clinical Interpretations. New York: Guilford; 1998. Dupaul DG, Power TJ, Anastopoulos AD, Reid R. ADHD Rating Scale-IV: Checklists, Norms, and Clinical Interpretations. New York: Guilford; 1998.
15.
go back to reference Goodman R. The strengths and difficulties questionnaire: A research note. J Child Psychol Psychiatry. 1997;38(5):581–6.PubMedCrossRef Goodman R. The strengths and difficulties questionnaire: A research note. J Child Psychol Psychiatry. 1997;38(5):581–6.PubMedCrossRef
16.
go back to reference Conners K. Conners 3rd Edition. Manual. Toronto, Ontario, Canada: Multi-Health Systems; 2008. Conners K. Conners 3rd Edition. Manual. Toronto, Ontario, Canada: Multi-Health Systems; 2008.
17.
go back to reference Stringaris A, Goodman R, Ferdinando S, Razdan V, Muhrer E, Leibenluft E, Brotman MA. The Affective Reactivity Index: a concise irritability scale for clinical and research settings. J Child Psychol Psychiatry. 2012;53(11):1109–17.PubMedPubMedCentralCrossRef Stringaris A, Goodman R, Ferdinando S, Razdan V, Muhrer E, Leibenluft E, Brotman MA. The Affective Reactivity Index: a concise irritability scale for clinical and research settings. J Child Psychol Psychiatry. 2012;53(11):1109–17.PubMedPubMedCentralCrossRef
18.
go back to reference Mowlem FD, Skirrow C, Reid P, Maltezos S, Nijjar SK, Merwood A, et al. Validation of the Mind Excessively Wandering Scale and the Relationship of Mind Wandering to Impairment in Adult ADHD. J Atten Disord. 2019;23(6):624–34.PubMedCrossRef Mowlem FD, Skirrow C, Reid P, Maltezos S, Nijjar SK, Merwood A, et al. Validation of the Mind Excessively Wandering Scale and the Relationship of Mind Wandering to Impairment in Adult ADHD. J Atten Disord. 2019;23(6):624–34.PubMedCrossRef
19.
go back to reference Chorpita BF, Yim L, Moffitt C, Umemoto LA, Francis SE. Assessment of symptoms of DSM-IV anxiety and depression in children: a revised child anxiety and depression scale. Behav Res Ther. 2000;38(8):835–55.PubMedCrossRef Chorpita BF, Yim L, Moffitt C, Umemoto LA, Francis SE. Assessment of symptoms of DSM-IV anxiety and depression in children: a revised child anxiety and depression scale. Behav Res Ther. 2000;38(8):835–55.PubMedCrossRef
20.
go back to reference Posner K, Brown GK, Stanley B, Brent DA, Yershova KV, Oquendo MA, et al. The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry. 2011;168(12):1266–77.PubMedPubMedCentralCrossRef Posner K, Brown GK, Stanley B, Brent DA, Yershova KV, Oquendo MA, et al. The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry. 2011;168(12):1266–77.PubMedPubMedCentralCrossRef
21.
go back to reference Rubia K, Smith A, Brammer M, Taylor E. Performance of children with Attention Deficit Hyperactivity Disorder (ADHD) on a test battery for impulsiveness. Child Neuropsychol. 2007;30(2):659–95. Rubia K, Smith A, Brammer M, Taylor E. Performance of children with Attention Deficit Hyperactivity Disorder (ADHD) on a test battery for impulsiveness. Child Neuropsychol. 2007;30(2):659–95.
22.
go back to reference Lichstein KL, Riedel BW, Richman SL. The Mackworth Clock Test: a computerized version. J Psychol. 2000;134(2):153–61.PubMedCrossRef Lichstein KL, Riedel BW, Richman SL. The Mackworth Clock Test: a computerized version. J Psychol. 2000;134(2):153–61.PubMedCrossRef
23.
go back to reference Bruni O, Ottaviano S, Guidetti V, Romoli M, Innocenzi M, Cortesi F, Giannotti F. The Sleep Disturbance Scale for Children (SDSC). Construction and validation of an instrument to evaluate sleep disturbances in childhood and adolescence. J Sleep Res. 1996;5(4):251–61. Bruni O, Ottaviano S, Guidetti V, Romoli M, Innocenzi M, Cortesi F, Giannotti F. The Sleep Disturbance Scale for Children (SDSC). Construction and validation of an instrument to evaluate sleep disturbances in childhood and adolescence. J Sleep Res. 1996;5(4):251–61.
24.
go back to reference Christakou A, Murphy C, Chantiluke C, Cubillo A, Smith A, Giampietro V, et al. Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism. Mol Psychiatry. 2013;18(2):236–44.PubMedCrossRef Christakou A, Murphy C, Chantiluke C, Cubillo A, Smith A, Giampietro V, et al. Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism. Mol Psychiatry. 2013;18(2):236–44.PubMedCrossRef
25.
go back to reference Cubillo A, Smith A, Barrat N, Giampietro V, Simmons A, Brammer M, Rubia K. Drug-specific laterality effects on frontal lobe activation of Atomoxetine and Methylphenidate in ADHD boys during working memory Psychol Medicine. 2013;44(3):633–46. Cubillo A, Smith A, Barrat N, Giampietro V, Simmons A, Brammer M, Rubia K. Drug-specific laterality effects on frontal lobe activation of Atomoxetine and Methylphenidate in ADHD boys during working memory Psychol Medicine. 2013;44(3):633–46.
26.
go back to reference Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E. Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry. 2005;162(6):1067–75.PubMedCrossRef Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E. Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry. 2005;162(6):1067–75.PubMedCrossRef
27.
go back to reference Alegria AA, Wulff M, Brinson H, Barker GJ, Norman LJ, Brandeis D, et al. Real-Time fMRI Neurofeedback in Adolescents with Attention Deficit Hyperactivity Disorder. Hum Brain Mapp. 2017;38(6):3190–209.PubMedPubMedCentralCrossRef Alegria AA, Wulff M, Brinson H, Barker GJ, Norman LJ, Brandeis D, et al. Real-Time fMRI Neurofeedback in Adolescents with Attention Deficit Hyperactivity Disorder. Hum Brain Mapp. 2017;38(6):3190–209.PubMedPubMedCentralCrossRef
28.
go back to reference Westwood SJ, Criaud M, Lam SL, Lukito S, Wallace-Hanlon S, Kowalczyk OS, et al. Transcranial direct current stimulation (tDCS) combined with cognitive training in adolescent boys with ADHD: a double-blind, randomised, sham-controlled trial. Psychol Med. 2021:1–16. Westwood SJ, Criaud M, Lam SL, Lukito S, Wallace-Hanlon S, Kowalczyk OS, et al. Transcranial direct current stimulation (tDCS) combined with cognitive training in adolescent boys with ADHD: a double-blind, randomised, sham-controlled trial. Psychol Med. 2021:1–16.
29.
go back to reference Lam SL, Criaud M, Lukito S, Westwood SJ, Agbedjro D, Kowalczyk OS, et al. Double-Blind, Sham-Controlled Randomized Trial Testing the Efficacy of fMRI Neurofeedback on Clinical and Cognitive Measures in Children With ADHD. Am J Psychiatry. 2022;179(12):947–58.PubMedPubMedCentralCrossRef Lam SL, Criaud M, Lukito S, Westwood SJ, Agbedjro D, Kowalczyk OS, et al. Double-Blind, Sham-Controlled Randomized Trial Testing the Efficacy of fMRI Neurofeedback on Clinical and Cognitive Measures in Children With ADHD. Am J Psychiatry. 2022;179(12):947–58.PubMedPubMedCentralCrossRef
30.
go back to reference Kaufman J, Birmaher B, Brent D, Rao U, Ryan ND. Schedule for Affective Disorders and Schizophrenia for School-age Children- present and lifetime version (K-SADS-PL). Pittsburgh: University of Pittsburgh Press; 1996. Kaufman J, Birmaher B, Brent D, Rao U, Ryan ND. Schedule for Affective Disorders and Schizophrenia for School-age Children- present and lifetime version (K-SADS-PL). Pittsburgh: University of Pittsburgh Press; 1996.
31.
go back to reference Wechsler D. Wechsler Abbreviated Scale of Intelligence- Second Edition (WASI-II). San Antonio, Texas: APA PsycTests; 2011. Wechsler D. Wechsler Abbreviated Scale of Intelligence- Second Edition (WASI-II). San Antonio, Texas: APA PsycTests; 2011.
32.
go back to reference Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.PubMedPubMedCentralCrossRef Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.PubMedPubMedCentralCrossRef
33.
go back to reference Shiozawa P, Silva ME, Carvalho TC, Cordeiro Q, Brunoni AR, Fregni F. Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: a systematic review. Arq Neuropsiquiatr. 2014;72(7):542–7.PubMedCrossRef Shiozawa P, Silva ME, Carvalho TC, Cordeiro Q, Brunoni AR, Fregni F. Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: a systematic review. Arq Neuropsiquiatr. 2014;72(7):542–7.PubMedCrossRef
34.
go back to reference Cook IA, Abrams M, Leuchter AF. Trigeminal Nerve Stimulation for Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder. Neuromodulation. 2016;19(3):299–305.PubMedCrossRef Cook IA, Abrams M, Leuchter AF. Trigeminal Nerve Stimulation for Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder. Neuromodulation. 2016;19(3):299–305.PubMedCrossRef
35.
go back to reference Veale JF. Edinburgh Handedness Inventory - Short Form: a revised version based on confirmatory factor analysis. Laterality. 2014;19(2):164–77.PubMedCrossRef Veale JF. Edinburgh Handedness Inventory - Short Form: a revised version based on confirmatory factor analysis. Laterality. 2014;19(2):164–77.PubMedCrossRef
36.
go back to reference Cubillo A, Smith A, Barrett N, Simmons A, Brammer M, V. G, Rubia K. Shared and drug-specific effects of Atomoxetine and Methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. Cerebral Cortex. 2014;24(1):174–85. Cubillo A, Smith A, Barrett N, Simmons A, Brammer M, V. G, Rubia K. Shared and drug-specific effects of Atomoxetine and Methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. Cerebral Cortex. 2014;24(1):174–85.
37.
go back to reference Kowalczyk O, Cubillo A, Smith ABS, Barrett N, Giampietro V, Brammer M, et al. Methylphenidate and atomoxetine normalise fronto-parietal underactivation during sustained attention in ADHD adolescents Eur Neuropsychopharmacol. 2019;29(10):1102–16.PubMed Kowalczyk O, Cubillo A, Smith ABS, Barrett N, Giampietro V, Brammer M, et al. Methylphenidate and atomoxetine normalise fronto-parietal underactivation during sustained attention in ADHD adolescents Eur Neuropsychopharmacol. 2019;29(10):1102–16.PubMed
38.
go back to reference Westwood SJ, Conti AA, Tang W, Xue S, Cortese S, Rubia K. Clinical and cognitive effects of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders: a systematic review and meta-analysis. Mol Psychiatry. 2023;28(10):4025–43.CrossRefPubMedPubMedCentral Westwood SJ, Conti AA, Tang W, Xue S, Cortese S, Rubia K. Clinical and cognitive effects of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders: a systematic review and meta-analysis. Mol Psychiatry. 2023;28(10):4025–43.CrossRefPubMedPubMedCentral
39.
go back to reference Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.PubMedPubMedCentralCrossRef Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.PubMedPubMedCentralCrossRef
40.
go back to reference Waschbusch DA, Cunningham CE, Pelham WE, Rimas HL, Greiner AR, Gnagy EM, et al. A discrete choice conjoint experiment to evaluate parent preferences for treatment of young, medication naive children with ADHD. J Clin Child Adolesc Psychol. 2011;40(4):546–61.PubMedPubMedCentralCrossRef Waschbusch DA, Cunningham CE, Pelham WE, Rimas HL, Greiner AR, Gnagy EM, et al. A discrete choice conjoint experiment to evaluate parent preferences for treatment of young, medication naive children with ADHD. J Clin Child Adolesc Psychol. 2011;40(4):546–61.PubMedPubMedCentralCrossRef
41.
go back to reference Wang G-J, Volkow ND, Wigal T, Kollins SH, Newcorn JH, Telang F, et al. Long-Term Stimulant Treatment Affects Brain Dopamine Transporter Level in Patients with Attention Deficit Hyperactive Disorder. Plos One. 2013;8(5):e63023.PubMedPubMedCentralCrossRef Wang G-J, Volkow ND, Wigal T, Kollins SH, Newcorn JH, Telang F, et al. Long-Term Stimulant Treatment Affects Brain Dopamine Transporter Level in Patients with Attention Deficit Hyperactive Disorder. Plos One. 2013;8(5):e63023.PubMedPubMedCentralCrossRef
42.
go back to reference Swanson JM. Debate: Are Stimulant Medications for Attention-Deficit/Hyperactivity Disorder Effective in the Long Term? (Against). J Am Acad Child Adolesc Psychiatry. 2019;58(10):936–8.PubMedCrossRef Swanson JM. Debate: Are Stimulant Medications for Attention-Deficit/Hyperactivity Disorder Effective in the Long Term? (Against). J Am Acad Child Adolesc Psychiatry. 2019;58(10):936–8.PubMedCrossRef
43.
go back to reference Loo SK, Salgari GC, Ellis A, Cowen J, Dillon A, McGough JJ. Trigeminal Nerve Stimulation for Attention-Deficit/Hyperactivity Disorder: Cognitive and Electroencephalographic Predictors of Treatment Response. J Am Acad Child Adolesc Psychiatry. 2021;60(7):856-64.e1.PubMedCrossRef Loo SK, Salgari GC, Ellis A, Cowen J, Dillon A, McGough JJ. Trigeminal Nerve Stimulation for Attention-Deficit/Hyperactivity Disorder: Cognitive and Electroencephalographic Predictors of Treatment Response. J Am Acad Child Adolesc Psychiatry. 2021;60(7):856-64.e1.PubMedCrossRef
44.
go back to reference Joshi S, Li Y, Kalwani RM, Gold JI. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron. 2016;89(1):221–34.PubMedCrossRef Joshi S, Li Y, Kalwani RM, Gold JI. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron. 2016;89(1):221–34.PubMedCrossRef
45.
46.
go back to reference De Cicco V, Tramonti Fantozzi MP, Cataldo E, Barresi M, Bruschini L, Faraguna U, Manzoni D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front Neuroanat. 2017;11:130.PubMedCrossRef De Cicco V, Tramonti Fantozzi MP, Cataldo E, Barresi M, Bruschini L, Faraguna U, Manzoni D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front Neuroanat. 2017;11:130.PubMedCrossRef
47.
go back to reference Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76(1):130–41.PubMedCrossRef Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76(1):130–41.PubMedCrossRef
48.
go back to reference Bellato A, Arora I, Hollis C, Groom MJ. Is autonomic nervous system function atypical in Attention Deficit Hyperactivity Disorder (ADHD)? A systematic review of the evidence. Neurosci Biobehav Rev. 2020;108:182–206.PubMedCrossRef Bellato A, Arora I, Hollis C, Groom MJ. Is autonomic nervous system function atypical in Attention Deficit Hyperactivity Disorder (ADHD)? A systematic review of the evidence. Neurosci Biobehav Rev. 2020;108:182–206.PubMedCrossRef
49.
go back to reference Di Lenola D, Coppola G, Serrao M, Di Lorenzo C, Pierelli F. O024.Transcutaneous supraorbital nerve stimulation enhances somatosensory thalamic activity in migraine between attacks: a central mechanism of clinical efficacy? J Headache Pain. 2015;16(Suppl 1):160.CrossRef Di Lenola D, Coppola G, Serrao M, Di Lorenzo C, Pierelli F. O024.Transcutaneous supraorbital nerve stimulation enhances somatosensory thalamic activity in migraine between attacks: a central mechanism of clinical efficacy? J Headache Pain. 2015;16(Suppl 1):160.CrossRef
50.
go back to reference Willoch F, Gamringer U, Medele R, Steude U, Tolle TR. Analgesia by electrostimulation of the trigeminal ganglion in patients with trigeminopathic pain: a PET activation study. Pain. 2003;103(1–2):119–30.PubMedCrossRef Willoch F, Gamringer U, Medele R, Steude U, Tolle TR. Analgesia by electrostimulation of the trigeminal ganglion in patients with trigeminopathic pain: a PET activation study. Pain. 2003;103(1–2):119–30.PubMedCrossRef
51.
go back to reference Magis D, D’Ostilio K, Thibaut A, De Pasqua V, Gerard P, Hustinx R, et al. Cerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine. Cephalalgia. 2017;37(9):881–91.PubMedCrossRef Magis D, D’Ostilio K, Thibaut A, De Pasqua V, Gerard P, Hustinx R, et al. Cerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine. Cephalalgia. 2017;37(9):881–91.PubMedCrossRef
52.
go back to reference Russo A, Tessitore A, Esposito F, Marcuccio L, Giordano A, Conforti R, et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol. 2012;259(9):1903–12.PubMedCrossRef Russo A, Tessitore A, Esposito F, Marcuccio L, Giordano A, Conforti R, et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol. 2012;259(9):1903–12.PubMedCrossRef
53.
go back to reference Kovacs S, Peeters R, De Ridder D, Plazier M, Menovsky T, Sunaert S. Central effects of occipital nerve electrical stimulation studied by functional magnetic resonance imaging. Neuromodulation. 2011;14(1):46–55 (discussion 6-7).PubMedCrossRef Kovacs S, Peeters R, De Ridder D, Plazier M, Menovsky T, Sunaert S. Central effects of occipital nerve electrical stimulation studied by functional magnetic resonance imaging. Neuromodulation. 2011;14(1):46–55 (discussion 6-7).PubMedCrossRef
Metadata
Title
The efficacy of real versus sham external Trigeminal Nerve Stimulation (eTNS) in youth with Attention-Deficit/Hyperactivity Disorder (ADHD) over 4 weeks: a protocol for a multi-centre, double-blind, randomized, parallel-group, phase IIb study (ATTENS)
Authors
Katya Rubia
Lena Johansson
Ben Carter
Dominic Stringer
Paramala Santosh
Mitul A. Mehta
Aldo Alberto Conti
Natali Bozhilova
Irem Ece Eraydin
Samuele Cortese
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2024
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-024-05650-1

Other articles of this Issue 1/2024

BMC Psychiatry 1/2024 Go to the issue