Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Nerve Injury | Research

Identification of sensory and motor nerve fascicles by immunofluorescence staining after peripheral nerve injury

Authors: Xijie Zhou, Jian Du, Liming Qing, Thomas Mee, Xiang Xu, Zhuoran Wang, Cynthia Xu, Xiaofeng Jia

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Inappropriate matching of motor and sensory fibers after nerve repair or nerve grafting can lead to failure of nerve recovery. Identification of motor and sensory fibers is important for the development of new approaches that facilitate neural regeneration and the next generation of nerve signal-controlled neuro-prosthetic limbs with sensory feedback technology. Only a few methods have been reported to differentiate sensory and motor nerve fascicles, and the reliability of these techniques is unknown. Immunofluorescence staining is one of the most commonly used methods to distinguish sensory and motor nerve fibers, however, its accuracy remains unknown.

Methods

In this study, we aim to determine the efficacy of popular immunofluorescence markers for motor and sensory nerve fibers. We harvested the facial (primarily motor fascicles) and sural (primarily sensory fascicles) nerves in rats, and examined the immunofluorescent staining expressions of motor markers (choline acetyltransferase (ChAT), tyrosine kinase (TrkA)), and sensory markers [neurofilament protein 200 kDa (NF-200), calcitonin gene-related peptide (CGRP) and Transient receptor potential vanillic acid subtype 1 (TRPV1)]. Three methods, including the average area percentage, the mean gray value, and the axon count, were used to quantify the positive expression of nerve markers in the immunofluorescence images.

Results

Our results suggest the mean gray value method is the most reliable method. The mean gray value of immunofluorescence in ChAT (63.0 ± 0.76%) and TRKA (47.6 ± 0.43%) on the motor fascicles was significantly higher than that on the sensory fascicles (ChAT: 49.2 ± 0.72%, P < 0.001; and TRKA: 29.1 ± 0.85%, P < 0.001). Additionally, the mean gray values of TRPV1 (51.5 ± 0.83%), NF-200 (61.5 ± 0.62%) and CGRP (37.7 ± 1.22%) on the motor fascicles were significantly lower than that on the sensory fascicles respectively (71.9 ± 2.32%, 69.3 ± 0.46%, and 54.3 ± 1.04%) (P < 0.001). The most accurate cutpoint occurred using CHAT/CRCP ratio, where a value of 0.855 had 100% sensitivity and 100% specificity to identify motor and sensory nerve with an area under the ROC curve of 1.000 (P < 0.001).

Conclusions

A combination of ChAT and CGRP is suggested to distinguish motor and sensory nerve fibers.
Literature
1.
go back to reference Navarro X, Geuna S, Grothe C, Haastert-Talini K. Introduction: thematic papers issue on peripheral nerve regeneration and repair. Anat Rec (Hoboken). 2018;301:1614–7.CrossRef Navarro X, Geuna S, Grothe C, Haastert-Talini K. Introduction: thematic papers issue on peripheral nerve regeneration and repair. Anat Rec (Hoboken). 2018;301:1614–7.CrossRef
2.
go back to reference Wang ML, Rivlin M, Graham JG, Beredjiklian PK. Peripheral nerve injury, scarring, and recovery. Connect Tissue Res. 2019;60:3–9.PubMedCrossRef Wang ML, Rivlin M, Graham JG, Beredjiklian PK. Peripheral nerve injury, scarring, and recovery. Connect Tissue Res. 2019;60:3–9.PubMedCrossRef
3.
go back to reference Zhao W, Sun SX, Xu JJ, Chen HY, Cao XJ, Guan XH. Electrochemical identification of the property of peripheral nerve fiber based on a biocompatible polymer film via in situ incorporating gold nanoparticles. Anal Chem. 2008;80:3769–76.PubMedCrossRef Zhao W, Sun SX, Xu JJ, Chen HY, Cao XJ, Guan XH. Electrochemical identification of the property of peripheral nerve fiber based on a biocompatible polymer film via in situ incorporating gold nanoparticles. Anal Chem. 2008;80:3769–76.PubMedCrossRef
4.
go back to reference Johnson BN, Lancaster KZ, Zhen G, He J, Gupta MK, Kong YL, Engel EA, Krick KD, Ju A, Meng F, et al. 3D printed anatomical nerve regeneration pathways. Adv Funct Mater. 2015;25:6205–17.PubMedPubMedCentralCrossRef Johnson BN, Lancaster KZ, Zhen G, He J, Gupta MK, Kong YL, Engel EA, Krick KD, Ju A, Meng F, et al. 3D printed anatomical nerve regeneration pathways. Adv Funct Mater. 2015;25:6205–17.PubMedPubMedCentralCrossRef
5.
go back to reference Lewitus D, Vogelstein RJ, Zhen G, Choi YS, Kohn J, Harshbarger S, Jia X. Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording. IEEE Trans Neural Syst Rehabil Eng. 2011;19:204–12.PubMedCrossRef Lewitus D, Vogelstein RJ, Zhen G, Choi YS, Kohn J, Harshbarger S, Jia X. Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording. IEEE Trans Neural Syst Rehabil Eng. 2011;19:204–12.PubMedCrossRef
6.
go back to reference Jia X, Zhen G, Puttgen A, Zhang J, Chen T. Improved long-term recording of nerve signal by modified intrafascicular electrodes in rabbits. Microsurgery. 2008;28:173–8.PubMedCrossRef Jia X, Zhen G, Puttgen A, Zhang J, Chen T. Improved long-term recording of nerve signal by modified intrafascicular electrodes in rabbits. Microsurgery. 2008;28:173–8.PubMedCrossRef
7.
go back to reference Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg Am. 2007;32:657–66.PubMedCrossRef Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg Am. 2007;32:657–66.PubMedCrossRef
8.
go back to reference Gaul JS. Electrical fascicle identification as an adjunct to nerve repair. J Hand Surg. 1983;8:289–96.CrossRef Gaul JS. Electrical fascicle identification as an adjunct to nerve repair. J Hand Surg. 1983;8:289–96.CrossRef
9.
go back to reference Merolli A, Louro P, Kohn J. Reciprocal nerve staining (RNS) for the concurrent detection of choline acetyltransferase and myelin basic protein on paraffin-embedded sections. J Neurosci Methods. 2019;311:235–8.PubMedCrossRef Merolli A, Louro P, Kohn J. Reciprocal nerve staining (RNS) for the concurrent detection of choline acetyltransferase and myelin basic protein on paraffin-embedded sections. J Neurosci Methods. 2019;311:235–8.PubMedCrossRef
10.
go back to reference Xianyu M, Zhenggang B, Laijin L. Identification of the sensory and motor fascicles in the peripheral nerve: a historical review and recent progress. Neurol India. 2016;64:880–5.PubMedCrossRef Xianyu M, Zhenggang B, Laijin L. Identification of the sensory and motor fascicles in the peripheral nerve: a historical review and recent progress. Neurol India. 2016;64:880–5.PubMedCrossRef
11.
12.
go back to reference Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF. The present and future for peripheral nerve regeneration. Orthopedics. 2017;40:e141–56.PubMedCrossRef Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF. The present and future for peripheral nerve regeneration. Orthopedics. 2017;40:e141–56.PubMedCrossRef
13.
go back to reference Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg [Am]. 2007;32:657–66.CrossRef Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg [Am]. 2007;32:657–66.CrossRef
14.
go back to reference Zhen G, Chen H, Tsai SY, Zhang J, Chen T, Jia X. Long-term feasibility and biocompatibility of directly microsurgically implanted intrafascicular electrodes in free roaming rabbits. J Biomed Mater Res B Appl Biomater. 2019;107:435–44.PubMedCrossRef Zhen G, Chen H, Tsai SY, Zhang J, Chen T, Jia X. Long-term feasibility and biocompatibility of directly microsurgically implanted intrafascicular electrodes in free roaming rabbits. J Biomed Mater Res B Appl Biomater. 2019;107:435–44.PubMedCrossRef
15.
go back to reference Biswas S, Kalil K. The microtubule-associated protein tau mediates the organization of microtubules and their dynamic exploration of actin-rich lamellipodia and filopodia of cortical growth cones. J Neurosci. 2018;38:291–307.PubMedPubMedCentralCrossRef Biswas S, Kalil K. The microtubule-associated protein tau mediates the organization of microtubules and their dynamic exploration of actin-rich lamellipodia and filopodia of cortical growth cones. J Neurosci. 2018;38:291–307.PubMedPubMedCentralCrossRef
16.
go back to reference Robertson D, Savage K, Reis-Filho JS, Isacke CM. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biol. 2008;9:13.PubMedPubMedCentralCrossRef Robertson D, Savage K, Reis-Filho JS, Isacke CM. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biol. 2008;9:13.PubMedPubMedCentralCrossRef
17.
go back to reference Ali SA, Rosko AJ, Hanks JE, Stebbins AW, Alkhalili O, Hogikyan ND, Feldman EL, Brenner MJ. Effect of motor versus sensory nerve autografts on regeneration and functional outcomes of rat facial nerve reconstruction. Sci Rep. 2019;9:8353.PubMedPubMedCentralCrossRef Ali SA, Rosko AJ, Hanks JE, Stebbins AW, Alkhalili O, Hogikyan ND, Feldman EL, Brenner MJ. Effect of motor versus sensory nerve autografts on regeneration and functional outcomes of rat facial nerve reconstruction. Sci Rep. 2019;9:8353.PubMedPubMedCentralCrossRef
18.
go back to reference Catapano J, Shafarenko M, Ho ES, Zuker RM, Borschel GH. Sensory and functional morbidity following sural nerve harvest in paediatric patients. J Plast Reconstr Aesth Surg JPRAS. 2018;71:1711–6.CrossRef Catapano J, Shafarenko M, Ho ES, Zuker RM, Borschel GH. Sensory and functional morbidity following sural nerve harvest in paediatric patients. J Plast Reconstr Aesth Surg JPRAS. 2018;71:1711–6.CrossRef
19.
go back to reference Dubovy P, Klusakova I, Hradilova-Svizenska I, Joukal M. Expression of regeneration-associated proteins in primary sensory neurons and regenerating axons after nerve injury-an overview. Anat Rec (Hoboken). 2018;301:1618–27.CrossRef Dubovy P, Klusakova I, Hradilova-Svizenska I, Joukal M. Expression of regeneration-associated proteins in primary sensory neurons and regenerating axons after nerve injury-an overview. Anat Rec (Hoboken). 2018;301:1618–27.CrossRef
20.
go back to reference Vetreno RP, Crews FT. Adolescent binge ethanol-induced loss of basal forebrain cholinergic neurons and neuroimmune activation are prevented by exercise and indomethacin. PLoS ONE. 2018;13:e0204500.PubMedPubMedCentralCrossRef Vetreno RP, Crews FT. Adolescent binge ethanol-induced loss of basal forebrain cholinergic neurons and neuroimmune activation are prevented by exercise and indomethacin. PLoS ONE. 2018;13:e0204500.PubMedPubMedCentralCrossRef
21.
go back to reference Ren Z, Wang Y, Peng J, Zhang L, Xu W, Liang X, Zhao Q, Lu S. Protein expression of sensory and motor nerves: two-dimensional gel electrophoresis and mass spectrometry. Neural Regen Res. 2012;7:369–75.PubMedPubMedCentral Ren Z, Wang Y, Peng J, Zhang L, Xu W, Liang X, Zhao Q, Lu S. Protein expression of sensory and motor nerves: two-dimensional gel electrophoresis and mass spectrometry. Neural Regen Res. 2012;7:369–75.PubMedPubMedCentral
22.
go back to reference Cui D, Shang H, Zhang X, Jiang W, Jia X. Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways. Sci Rep. 2016;6:27642.PubMedPubMedCentralCrossRef Cui D, Shang H, Zhang X, Jiang W, Jia X. Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways. Sci Rep. 2016;6:27642.PubMedPubMedCentralCrossRef
23.
go back to reference Du J, Zhen G, Chen H, Zhang S, Qing L, Yang X, Lee G, Mao HQ, Jia X. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials. 2018;181:347–59.PubMedPubMedCentralCrossRef Du J, Zhen G, Chen H, Zhang S, Qing L, Yang X, Lee G, Mao HQ, Jia X. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials. 2018;181:347–59.PubMedPubMedCentralCrossRef
24.
go back to reference Du J, Chen H, Zhou K, Jia X. Quantitative multimodal evaluation of passaging human neural crest stem cells for peripheral nerve regeneration. Stem Cell Rev. 2018;14:92–100.PubMedCentralCrossRef Du J, Chen H, Zhou K, Jia X. Quantitative multimodal evaluation of passaging human neural crest stem cells for peripheral nerve regeneration. Stem Cell Rev. 2018;14:92–100.PubMedCentralCrossRef
25.
go back to reference Engel J, Ganel A, Melamed R, Rimon S, Farine I. Choline acetyltransferase for differentiation between human motor and sensory nerve fibers. Ann Plast Surg. 1980;4:376–80.PubMedCrossRef Engel J, Ganel A, Melamed R, Rimon S, Farine I. Choline acetyltransferase for differentiation between human motor and sensory nerve fibers. Ann Plast Surg. 1980;4:376–80.PubMedCrossRef
26.
go back to reference Davis-Lopez de Carrizosa MA, Morado-Diaz CJ, Morcuende S, de la Cruz RR, Pastor AM. Nerve growth factor regulates the firing patterns and synaptic composition of motoneurons. J Neurosci. 2010;30:8308–19.PubMedPubMedCentralCrossRef Davis-Lopez de Carrizosa MA, Morado-Diaz CJ, Morcuende S, de la Cruz RR, Pastor AM. Nerve growth factor regulates the firing patterns and synaptic composition of motoneurons. J Neurosci. 2010;30:8308–19.PubMedPubMedCentralCrossRef
27.
go back to reference Li XQ, Verge VM, Johnston JM, Zochodne DW. CGRP peptide and regenerating sensory axons. J Neuropathol Exp Neurol. 2004;63:1092–103.PubMedCrossRef Li XQ, Verge VM, Johnston JM, Zochodne DW. CGRP peptide and regenerating sensory axons. J Neuropathol Exp Neurol. 2004;63:1092–103.PubMedCrossRef
28.
go back to reference Marrone MC, Morabito A, Giustizieri M, Chiurchiù V, Leuti A, Mattioli M, Marinelli S, Riganti L, Lombardi M, Murana E, et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat Commun. 2017;8:15292.PubMedPubMedCentralCrossRef Marrone MC, Morabito A, Giustizieri M, Chiurchiù V, Leuti A, Mattioli M, Marinelli S, Riganti L, Lombardi M, Murana E, et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat Commun. 2017;8:15292.PubMedPubMedCentralCrossRef
29.
go back to reference Gouin O, L’Herondelle K, Lebonvallet N, Le Gall-Ianotto C, Sakka M, Buhé V, Plée-Gautier E, Carré J-L, Lefeuvre L, Misery L, Le Garrec R. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017;8:644–61.PubMedPubMedCentralCrossRef Gouin O, L’Herondelle K, Lebonvallet N, Le Gall-Ianotto C, Sakka M, Buhé V, Plée-Gautier E, Carré J-L, Lefeuvre L, Misery L, Le Garrec R. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017;8:644–61.PubMedPubMedCentralCrossRef
30.
go back to reference Quan Q, Meng HY, Chang B, Liu GB, Cheng XQ, Tang H, Wang Y, Peng J, Zhao Q, Lu SB. Aligned fibers enhance nerve guide conduits when bridging peripheral nerve defects focused on early repair stage. Neural Regen Res. 2019;14:903–12.PubMedPubMedCentralCrossRef Quan Q, Meng HY, Chang B, Liu GB, Cheng XQ, Tang H, Wang Y, Peng J, Zhao Q, Lu SB. Aligned fibers enhance nerve guide conduits when bridging peripheral nerve defects focused on early repair stage. Neural Regen Res. 2019;14:903–12.PubMedPubMedCentralCrossRef
31.
go back to reference Takeda M, Tanimoto T, Nasu M, Matsumoto S. Temporomandibular joint inflammation decreases the voltage-gated K+ channel subtype 14-immunoreactivity of trigeminal ganglion neurons in rats. Eur J Pain. 2008;12:189–95.PubMedCrossRef Takeda M, Tanimoto T, Nasu M, Matsumoto S. Temporomandibular joint inflammation decreases the voltage-gated K+ channel subtype 14-immunoreactivity of trigeminal ganglion neurons in rats. Eur J Pain. 2008;12:189–95.PubMedCrossRef
32.
go back to reference Borton D, Micera S, del Millan JR, Courtine G. Personalized neuroprosthetics. Sci Transl Med. 2013;5:210rv212.CrossRef Borton D, Micera S, del Millan JR, Courtine G. Personalized neuroprosthetics. Sci Transl Med. 2013;5:210rv212.CrossRef
34.
go back to reference Yildiz KA, Shin AY, Kaufman KR. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J Neuroeng Rehabil. 2020;17:43.PubMedPubMedCentralCrossRef Yildiz KA, Shin AY, Kaufman KR. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J Neuroeng Rehabil. 2020;17:43.PubMedPubMedCentralCrossRef
35.
go back to reference Delgado-Martinez I, Badia J, Pascual-Font A, Rodriguez-Baeza A, Navarro X. Fascicular topography of the human median nerve for neuroprosthetic surgery. Front Neurosci. 2016;10:286.PubMedPubMedCentralCrossRef Delgado-Martinez I, Badia J, Pascual-Font A, Rodriguez-Baeza A, Navarro X. Fascicular topography of the human median nerve for neuroprosthetic surgery. Front Neurosci. 2016;10:286.PubMedPubMedCentralCrossRef
36.
go back to reference Chauhan BC, Levatte TL, Garnier KL, Tremblay F, Pang I-H, Clark AF, Archibald ML. Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy. Invest Ophthalmol Vis Sci. 2006;47:634–40.PubMedCrossRef Chauhan BC, Levatte TL, Garnier KL, Tremblay F, Pang I-H, Clark AF, Archibald ML. Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy. Invest Ophthalmol Vis Sci. 2006;47:634–40.PubMedCrossRef
37.
go back to reference Zarei K, Scheetz TE, Christopher M, Miller K, Hedberg-Buenz A, Tandon A, Anderson MG, Fingert JH, Abramoff MD. Automated axon counting in rodent optic nerve sections with AxonJ. Sci Rep. 2016;6:26559.PubMedPubMedCentralCrossRef Zarei K, Scheetz TE, Christopher M, Miller K, Hedberg-Buenz A, Tandon A, Anderson MG, Fingert JH, Abramoff MD. Automated axon counting in rodent optic nerve sections with AxonJ. Sci Rep. 2016;6:26559.PubMedPubMedCentralCrossRef
38.
go back to reference Yew DT, Webb SE, Lam ET. Neurotransmitters and peptides in the developing human facial nucleus. Neurosci Lett. 1996;206:65.PubMedCrossRef Yew DT, Webb SE, Lam ET. Neurotransmitters and peptides in the developing human facial nucleus. Neurosci Lett. 1996;206:65.PubMedCrossRef
39.
go back to reference Ichikawa T, Ajiki K, Matsuura J, Misawa H. Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. J Chem Neuroanat. 1997;13:23.PubMedCrossRef Ichikawa T, Ajiki K, Matsuura J, Misawa H. Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. J Chem Neuroanat. 1997;13:23.PubMedCrossRef
40.
go back to reference Zhang X, Liu X-D, Xian Y-F, Zhang F, Huang P-Y, Tang Y, Yuan Q-J, Lin Z-X. Berberine enhances survival and axonal regeneration of motoneurons following spinal root avulsion and re-implantation in rats. Free Radical Biol Med. 2019;143:454–70.CrossRef Zhang X, Liu X-D, Xian Y-F, Zhang F, Huang P-Y, Tang Y, Yuan Q-J, Lin Z-X. Berberine enhances survival and axonal regeneration of motoneurons following spinal root avulsion and re-implantation in rats. Free Radical Biol Med. 2019;143:454–70.CrossRef
41.
go back to reference Gannon SM, Hawk K, Walsh BF, Coulibaly A, Isaacson LG. Retrograde influences of SCG axotomy on uninjured preganglionic neurons. Brain Res. 2018;1691:44–54.PubMedPubMedCentralCrossRef Gannon SM, Hawk K, Walsh BF, Coulibaly A, Isaacson LG. Retrograde influences of SCG axotomy on uninjured preganglionic neurons. Brain Res. 2018;1691:44–54.PubMedPubMedCentralCrossRef
42.
go back to reference Kou SY, Chiu AY, Patterson PH. Differential regulation of motor neuron survival and choline acetyltransferase expression following axotomy. J Neurobiol. 1995;27:561–72.PubMedCrossRef Kou SY, Chiu AY, Patterson PH. Differential regulation of motor neuron survival and choline acetyltransferase expression following axotomy. J Neurobiol. 1995;27:561–72.PubMedCrossRef
43.
go back to reference Ganko M, Rychlik A, Calka J. Immunohistochemical characterization of neurons and neuronal processes in the dorsal vagal nucleus of the pig. Pol J Vet Sci. 2013;16:9–16.PubMedCrossRef Ganko M, Rychlik A, Calka J. Immunohistochemical characterization of neurons and neuronal processes in the dorsal vagal nucleus of the pig. Pol J Vet Sci. 2013;16:9–16.PubMedCrossRef
44.
go back to reference Yuan Q, Su H, Chiu K, Lin ZX, Wu W. Assessment of the rate of spinal motor axon regeneration by choline acetyltransferase immunohistochemistry following sciatic nerve crush injury in mice. J Neurosurg. 2014;120:502–8.PubMedCrossRef Yuan Q, Su H, Chiu K, Lin ZX, Wu W. Assessment of the rate of spinal motor axon regeneration by choline acetyltransferase immunohistochemistry following sciatic nerve crush injury in mice. J Neurosurg. 2014;120:502–8.PubMedCrossRef
45.
go back to reference Wang H, Ma F, Wang F, Liu D, Li X, Du S. Identification of motor and sensory fascicles in peripheral nerve trunk using immunohistochemistry and micro-Raman spectroscopy. J Trauma. 2011;71:1246–51.PubMed Wang H, Ma F, Wang F, Liu D, Li X, Du S. Identification of motor and sensory fascicles in peripheral nerve trunk using immunohistochemistry and micro-Raman spectroscopy. J Trauma. 2011;71:1246–51.PubMed
46.
go back to reference Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207.PubMedCrossRef Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207.PubMedCrossRef
47.
go back to reference Sobreviela T, Clary DO, Reichardt LF, Brandabur MM, Kordower JH, Mufson EJ. TrkA-immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J Comp Neurol. 1994;350:587–611.PubMedPubMedCentralCrossRef Sobreviela T, Clary DO, Reichardt LF, Brandabur MM, Kordower JH, Mufson EJ. TrkA-immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J Comp Neurol. 1994;350:587–611.PubMedPubMedCentralCrossRef
48.
go back to reference Han HM, Kim TH, Bae JY, Bae YC. Primary sensory neurons expressing tropomyosin receptor kinase A in the rat trigeminal ganglion. Neurosci Lett. 2019;690:56–60.PubMedCrossRef Han HM, Kim TH, Bae JY, Bae YC. Primary sensory neurons expressing tropomyosin receptor kinase A in the rat trigeminal ganglion. Neurosci Lett. 2019;690:56–60.PubMedCrossRef
49.
go back to reference Lee MK, Xu Z, Wong PC, Cleveland DW. Neurofilaments are obligate heteropolymers in vivo. J Cell Biol. 1993;122:1337–50.PubMedCrossRef Lee MK, Xu Z, Wong PC, Cleveland DW. Neurofilaments are obligate heteropolymers in vivo. J Cell Biol. 1993;122:1337–50.PubMedCrossRef
50.
go back to reference Papalampropoulou-Tsiridou M, Labrecque S, Godin AG, De Koninck Y, Wang F. Differential expression of acid—sensing ion channels in mouse primary afferents in naïve and injured conditions. Front Cell Neurosci. 2020;14:103.PubMedPubMedCentralCrossRef Papalampropoulou-Tsiridou M, Labrecque S, Godin AG, De Koninck Y, Wang F. Differential expression of acid—sensing ion channels in mouse primary afferents in naïve and injured conditions. Front Cell Neurosci. 2020;14:103.PubMedPubMedCentralCrossRef
51.
go back to reference Sleigh JN, Dawes JM, West SJ, Wei N, Spaulding EL, Gómez-Martín A, Zhang Q, Burgess RW, Cader MZ, Talbot K, et al. Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by Gars mutations. Proc Natl Acad Sci USA. 2017;114:E3324–33.PubMedCrossRefPubMedCentral Sleigh JN, Dawes JM, West SJ, Wei N, Spaulding EL, Gómez-Martín A, Zhang Q, Burgess RW, Cader MZ, Talbot K, et al. Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by Gars mutations. Proc Natl Acad Sci USA. 2017;114:E3324–33.PubMedCrossRefPubMedCentral
52.
go back to reference Qiao H, Gao Y, Zhang C, Zhou H. Increased expression of TRPV1 in the trigeminal ganglion is involved in orofacial pain during experimental tooth movement in rats. Eur J Oral Sci. 2015;123:17–23.PubMedCrossRef Qiao H, Gao Y, Zhang C, Zhou H. Increased expression of TRPV1 in the trigeminal ganglion is involved in orofacial pain during experimental tooth movement in rats. Eur J Oral Sci. 2015;123:17–23.PubMedCrossRef
53.
54.
go back to reference Cheng C-F, Cheng J-K, Chen C-Y, Rau R-H, Chang Y-C, Tsaur M-L. Nerve growth factor-induced synapse-like structures in contralateral sensory ganglia contribute to chronic mirror-image pain. Pain. 2015;156:2295–309.PubMedCrossRef Cheng C-F, Cheng J-K, Chen C-Y, Rau R-H, Chang Y-C, Tsaur M-L. Nerve growth factor-induced synapse-like structures in contralateral sensory ganglia contribute to chronic mirror-image pain. Pain. 2015;156:2295–309.PubMedCrossRef
55.
go back to reference Chung AM. Calcitonin gene-related peptide (CGRP): role in peripheral nerve regeneration. Rev Neurosci. 2018;29:369–76.PubMedCrossRef Chung AM. Calcitonin gene-related peptide (CGRP): role in peripheral nerve regeneration. Rev Neurosci. 2018;29:369–76.PubMedCrossRef
57.
go back to reference Kälin S, Miller KR, Kälin RE, Jendrach M, Witzel C, Heppner FL. CNS myeloid cells critically regulate heat hyperalgesia. J Clin Investig. 2018;128:2774–86.PubMedCrossRefPubMedCentral Kälin S, Miller KR, Kälin RE, Jendrach M, Witzel C, Heppner FL. CNS myeloid cells critically regulate heat hyperalgesia. J Clin Investig. 2018;128:2774–86.PubMedCrossRefPubMedCentral
58.
go back to reference McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ. Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold. Neuron. 2013;78:138–51.PubMedPubMedCentralCrossRef McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ. Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold. Neuron. 2013;78:138–51.PubMedPubMedCentralCrossRef
59.
go back to reference Vathana T, Nijhuis TH, Friedrich PF, Bishop AT, Shin AY. An experimental study to determine and correlate choline acetyltransferase assay with functional muscle testing after nerve injury. J Neurosurg. 2014;120:1125–30.PubMedCrossRef Vathana T, Nijhuis TH, Friedrich PF, Bishop AT, Shin AY. An experimental study to determine and correlate choline acetyltransferase assay with functional muscle testing after nerve injury. J Neurosurg. 2014;120:1125–30.PubMedCrossRef
60.
go back to reference Guan W, Puthenveedu MA, Condic ML. Sensory neuron subtypes have unique substratum preference and receptor expression before target innervation. J Neurosci. 2003;23:1781–91.PubMedPubMedCentralCrossRef Guan W, Puthenveedu MA, Condic ML. Sensory neuron subtypes have unique substratum preference and receptor expression before target innervation. J Neurosci. 2003;23:1781–91.PubMedPubMedCentralCrossRef
61.
go back to reference Honig MG, Frase PA, Camilli SJ. The spatial relationships among cutaneous, muscle sensory and motoneuron axons during development of the chick hindlimb. Development. 1998;125:995–1004.PubMedCrossRef Honig MG, Frase PA, Camilli SJ. The spatial relationships among cutaneous, muscle sensory and motoneuron axons during development of the chick hindlimb. Development. 1998;125:995–1004.PubMedCrossRef
Metadata
Title
Identification of sensory and motor nerve fascicles by immunofluorescence staining after peripheral nerve injury
Authors
Xijie Zhou
Jian Du
Liming Qing
Thomas Mee
Xiang Xu
Zhuoran Wang
Cynthia Xu
Xiaofeng Jia
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Nerve Injury
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02871-w

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.