Skip to main content
Top
Published in: BMC Pediatrics 1/2020

01-12-2020 | Neonatal Screening | Research article

Correlating maternal iodine status with neonatal thyroid function in two hospital populations in Ghana: a multicenter cross-sectional pilot study

Authors: Selorm A. Dei-Tutu, Adoma Manful, Douglas C. Heimburger, Hawa Malechi, Daniel J. Moore, Samuel A. Oppong, William E. Russell, Muktar H. Aliyu

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

Congenital hypothyroidism is a common, yet easily treatable cause of poor growth and intellectual disability. Newborn screening programs play an important role in the early detection and treatment of congenital hypothyroidism. However, an estimated 71% of children are born in countries such as Ghana, which does not have a screening program. Iodine deficiency, a common cause of congenital hypothyroidism, is present in the Ghanaian population. Mild to moderate maternal iodine deficiency may negatively impact cognitive function in children. A structured approach to examine the association between maternal iodine levels and infant thyroid function may have important ramifications on our understanding of congenital hypothyroidism in Ghana. We investigated the hypothesis that maternal iodine deficiency impacts infant thyroid function, using Thyroid Stimulating Hormone (TSH) as a marker of thyroid function. We also explored potential opportunities and barriers to newborn screening for congenital hypothyroidism in Ghana.

Methods

This was a cross-sectional, multicenter pilot study of 250 women and their neonates recruited from post-natal clinics in Accra and Tamale, Ghana. We compared maternal urine iodine concentration and infant TSH, as well as maternal sociodemographic and nutrition information. Regression models were used to model the relationship between variables.

Results

Median infant TSH was 4.7 μIU/ml (95% CI: 3.9–5.5) in Accra. In Tamale, the median infant TSH was 3.5 μIU/ml (95%CI: 3.3 to 3.6) (Δ: 1.3 μIU/ml, 95% CI: 0.5–2.1, p = 0.002). Median maternal urine iodine concentrations were 141.0 μg/L (95% CI: 115.7 to 166.3) and 142.5 μg/L (95% CI: 125.1 to 160.0) in Accra and Tamale, respectively (Δ: − 1.5 μIU/ml, 95% CI: − 32.2 – 29.2, p = 0.925). There was a weakly positive correlation between maternal urine iodine and infant TSH (rho 0.1, p = 0.02). Almost one-third (30%) of women in both locations had biochemical evidence of iodine deficiency. Mothers with any formal education were more likely to have higher iodine levels than their counterparts who had no formal education (coefficient 0.31, p = 0.006).

Conclusions

Maternal iodine deficiency is prevalent in Ghana and is correlated to infant thyroid function. We recommend studies with larger sample sizes to assess the true scope of this relationship.
Literature
1.
go back to reference Ford G, LaFranchi SH. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract Res Clin Endocrinol Metab. 2014;28(2):175–87.CrossRef Ford G, LaFranchi SH. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract Res Clin Endocrinol Metab. 2014;28(2):175–87.CrossRef
3.
go back to reference American Academy of Pediatrics, Rose SR, Section on Endocrinology and Committee on Genetics, American Thyroid Association, Brown RS, Public Health Committee, Lawson Wilkins Pediatric Endocrine Society, Foley T, et al. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 2006 Jun;117(6):2290–2303. American Academy of Pediatrics, Rose SR, Section on Endocrinology and Committee on Genetics, American Thyroid Association, Brown RS, Public Health Committee, Lawson Wilkins Pediatric Endocrine Society, Foley T, et al. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 2006 Jun;117(6):2290–2303.
4.
go back to reference Stephen H. LaFrancini. Worldwide coverage of newborn screening for congenital hypothyroidism - a public health challenge. US Endocrinol. 2014;10(2):115–6.CrossRef Stephen H. LaFrancini. Worldwide coverage of newborn screening for congenital hypothyroidism - a public health challenge. US Endocrinol. 2014;10(2):115–6.CrossRef
9.
go back to reference Giacobbe AM, Grasso R, Triolo O, Tonni G, Granese R. Thyroid diseases in pregnancy: a current and controversial topic on diagnosis and treatment over the past 20 years. Arch Gynecol Obstet. 2015;292(5):995–1002.PubMedCrossRef Giacobbe AM, Grasso R, Triolo O, Tonni G, Granese R. Thyroid diseases in pregnancy: a current and controversial topic on diagnosis and treatment over the past 20 years. Arch Gynecol Obstet. 2015;292(5):995–1002.PubMedCrossRef
10.
go back to reference Dillon JC, Milliez J. Reproductive failure in women living in iodine deficient areas of West Africa. BJOG Int J Obstet Gynaecol. 2000;107(5):631–6.CrossRef Dillon JC, Milliez J. Reproductive failure in women living in iodine deficient areas of West Africa. BJOG Int J Obstet Gynaecol. 2000;107(5):631–6.CrossRef
11.
go back to reference Dunn JT, Delange F. Damaged reproduction: the Most important consequence of iodine deficiency. J Clin Endocrinol Metab. 2001;86(6):2360–3.PubMedCrossRef Dunn JT, Delange F. Damaged reproduction: the Most important consequence of iodine deficiency. J Clin Endocrinol Metab. 2001;86(6):2360–3.PubMedCrossRef
12.
go back to reference Zimmermann MB. The effects of iodine deficiency in pregnancy and infancy. Paediatr Perinat Epidemiol. 2012;26(Suppl 1):108–17.PubMedCrossRef Zimmermann MB. The effects of iodine deficiency in pregnancy and infancy. Paediatr Perinat Epidemiol. 2012;26(Suppl 1):108–17.PubMedCrossRef
13.
go back to reference Nyumuah RO, Hoang T-CC, Amoaful EF, Agble R, Meyer M, Wirth JP, et al. Implementing large-scale food fortification in Ghana: lessons learned. Food Nutr Bull. 2012;33(4 Suppl):S293–300.PubMedCrossRef Nyumuah RO, Hoang T-CC, Amoaful EF, Agble R, Meyer M, Wirth JP, et al. Implementing large-scale food fortification in Ghana: lessons learned. Food Nutr Bull. 2012;33(4 Suppl):S293–300.PubMedCrossRef
14.
go back to reference Buxton C, Baguune B. Knowledge and practices of people in Bia District, Ghana, with regard to iodine deficiency disorders and intake of iodized salt. Arch Public Health. 2012;70(1):5.PubMedPubMedCentralCrossRef Buxton C, Baguune B. Knowledge and practices of people in Bia District, Ghana, with regard to iodine deficiency disorders and intake of iodized salt. Arch Public Health. 2012;70(1):5.PubMedPubMedCentralCrossRef
15.
go back to reference Chirawurah D, Apanga S, Addah J. Assessing iodized salt use in rural northern Ghana: a mixed method approach. Food Public Health. 2015;5(3):70–6. Chirawurah D, Apanga S, Addah J. Assessing iodized salt use in rural northern Ghana: a mixed method approach. Food Public Health. 2015;5(3):70–6.
18.
go back to reference Moleti M, Trimarchi F, Tortorella G, Candia Longo A, Giorgianni G, Sturniolo G, et al. Effects of maternal iodine nutrition and thyroid status on cognitive development in offspring: a pilot study. Thyroid Off J Am Thyroid Assoc. 2016;26(2):296–305.CrossRef Moleti M, Trimarchi F, Tortorella G, Candia Longo A, Giorgianni G, Sturniolo G, et al. Effects of maternal iodine nutrition and thyroid status on cognitive development in offspring: a pilot study. Thyroid Off J Am Thyroid Assoc. 2016;26(2):296–305.CrossRef
19.
go back to reference Bath SC, Steer CD, Golding J, Emmett P, Rayman MP. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon longitudinal study of parents and children (ALSPAC). Lancet Lond Engl. 2013;382(9889):331–7.CrossRef Bath SC, Steer CD, Golding J, Emmett P, Rayman MP. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon longitudinal study of parents and children (ALSPAC). Lancet Lond Engl. 2013;382(9889):331–7.CrossRef
20.
go back to reference Lain S, Trumpff C, Grosse SD, Olivieri A, Van Vliet G. Are lower TSH cutoffs in neonatal screening for congenital hypothyroidism warranted? Eur J Endocrinol. 2017 Nov;177(5):D1–12.PubMedPubMedCentralCrossRef Lain S, Trumpff C, Grosse SD, Olivieri A, Van Vliet G. Are lower TSH cutoffs in neonatal screening for congenital hypothyroidism warranted? Eur J Endocrinol. 2017 Nov;177(5):D1–12.PubMedPubMedCentralCrossRef
21.
go back to reference Saleh DS, Lawrence S, Geraghty MT, Gallego PH, McAssey K, Wherrett DK, et al. Prediction of congenital hypothyroidism based on initial screening thyroid-stimulating-hormone. BMC Pediatr. 2016;16:24.PubMedPubMedCentralCrossRef Saleh DS, Lawrence S, Geraghty MT, Gallego PH, McAssey K, Wherrett DK, et al. Prediction of congenital hypothyroidism based on initial screening thyroid-stimulating-hormone. BMC Pediatr. 2016;16:24.PubMedPubMedCentralCrossRef
22.
go back to reference Ehrenkranz J, Fualal J, Ndizihiwe A, Clarke I, Alder S. Neonatal age and point of care TSH testing in the monitoring of iodine deficiency disorders: findings from western Uganda. Thyroid. 2011 Feb;21(2):183–8.PubMedCrossRef Ehrenkranz J, Fualal J, Ndizihiwe A, Clarke I, Alder S. Neonatal age and point of care TSH testing in the monitoring of iodine deficiency disorders: findings from western Uganda. Thyroid. 2011 Feb;21(2):183–8.PubMedCrossRef
23.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009 Apr;42(2):377–81.PubMedCrossRef Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009 Apr;42(2):377–81.PubMedCrossRef
24.
go back to reference Ojule AC, Osotimehin BO. Maternal and neonatal thyroid status in Saki. Nigeria Afr J Med Med Sci. 1998 Jun;27(1–2):57–61.PubMed Ojule AC, Osotimehin BO. Maternal and neonatal thyroid status in Saki. Nigeria Afr J Med Med Sci. 1998 Jun;27(1–2):57–61.PubMed
27.
go back to reference Simpong DL, Adu P, Bashiru R, Morna MT, Yeboah FA, Akakpo K, et al. Assessment of iodine status among pregnant women in a rural community in Ghana - a cross sectional study. Arch Public Health. 2016;74(1):8.PubMedPubMedCentralCrossRef Simpong DL, Adu P, Bashiru R, Morna MT, Yeboah FA, Akakpo K, et al. Assessment of iodine status among pregnant women in a rural community in Ghana - a cross sectional study. Arch Public Health. 2016;74(1):8.PubMedPubMedCentralCrossRef
29.
go back to reference Abizari A-R, Dold S, Kupka R, Zimmermann MB. More than two-thirds of dietary iodine in children in northern Ghana is obtained from bouillon cubes containing iodized salt. Public Health Nutr. 2017;20(6):1107–13.PubMedCrossRef Abizari A-R, Dold S, Kupka R, Zimmermann MB. More than two-thirds of dietary iodine in children in northern Ghana is obtained from bouillon cubes containing iodized salt. Public Health Nutr. 2017;20(6):1107–13.PubMedCrossRef
30.
go back to reference Chan SS, Hams G, Wiley V, Wilcken B, McElduff A. Postpartum maternal iodine status and the relationship to neonatal thyroid function. Thyroid. 2003;13(9):873–6.PubMedCrossRef Chan SS, Hams G, Wiley V, Wilcken B, McElduff A. Postpartum maternal iodine status and the relationship to neonatal thyroid function. Thyroid. 2003;13(9):873–6.PubMedCrossRef
31.
go back to reference Nøhr SB, Laurberg P. Opposite variations in maternal and neonatal thyroid function induced by iodine supplementation during pregnancy. J Clin Endocrinol Metab. 2000;85(2):623–7.PubMed Nøhr SB, Laurberg P. Opposite variations in maternal and neonatal thyroid function induced by iodine supplementation during pregnancy. J Clin Endocrinol Metab. 2000;85(2):623–7.PubMed
Metadata
Title
Correlating maternal iodine status with neonatal thyroid function in two hospital populations in Ghana: a multicenter cross-sectional pilot study
Authors
Selorm A. Dei-Tutu
Adoma Manful
Douglas C. Heimburger
Hawa Malechi
Daniel J. Moore
Samuel A. Oppong
William E. Russell
Muktar H. Aliyu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-1932-6

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue