Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2015

01-07-2015 | Editors' Invited Manuscript

Nanotechnology to augment immunotherapy for the treatment of glioblastoma multiforme

Authors: Nolan Ung, Isaac Yang

Published in: Journal of Neuro-Oncology | Issue 3/2015

Login to get access

Abstract

Glioblastoma multiforme (GBM) is characterized as one of the most common and most deadly malignant primary brain tumors. Current treatment modalities include the use of surgical resection and adjuvant chemotherapy and radiation therapy, though survival is still limited. Because of this, new treatment strategies are needed to improve overall survival. Immunotherapy has emerged as a potential treatment, but still possesses certain limitations to have a substantial clinical effect. In addition, nanotechnology has emerged as potent treatment effectors that have been shown to augment the effects of therapies including chemotherapy, gene therapy, and more. Nanoparticles possess a novel approach due to the myriad of functional groups that can create targeted treatments, though further optimization is still required. In this review, the authors will present the current uses and abilities of nanotechnology and its implication for use with immunotherapy in the treatment of GBM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ohgaki H et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899PubMedCrossRef Ohgaki H et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899PubMedCrossRef
2.
3.
go back to reference Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef
4.
go back to reference Vredenburgh JJ et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729PubMedCrossRef Vredenburgh JJ et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729PubMedCrossRef
5.
go back to reference Patel MA, Kim JE, Ruzevick J, Li G, Lim M (2014) The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers (Basel) 6:1953–1985CrossRef Patel MA, Kim JE, Ruzevick J, Li G, Lim M (2014) The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers (Basel) 6:1953–1985CrossRef
7.
8.
go back to reference Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161:264–273PubMedCrossRef Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161:264–273PubMedCrossRef
10.
go back to reference Wang X et al (2014) Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Invest 32(9):451–457PubMedCrossRef Wang X et al (2014) Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Invest 32(9):451–457PubMedCrossRef
11.
go back to reference Everson RG et al (2014) Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2:10PubMedCentralPubMedCrossRef Everson RG et al (2014) Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2:10PubMedCentralPubMedCrossRef
13.
go back to reference Thaci B et al (2014) Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol 16:1304–1312PubMedCrossRef Thaci B et al (2014) Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol 16:1304–1312PubMedCrossRef
14.
go back to reference Choy W et al (2012) CD133 as a marker for regulation and potential for targeted therapies in glioblastoma multiforme. Neurosurg Clin N Am 23:391–405PubMedCrossRef Choy W et al (2012) CD133 as a marker for regulation and potential for targeted therapies in glioblastoma multiforme. Neurosurg Clin N Am 23:391–405PubMedCrossRef
15.
go back to reference Ooi YC et al (2014) The role of regulatory T-cells in glioma immunology. Clin Neurol Neurosurg 119:125–132PubMedCrossRef Ooi YC et al (2014) The role of regulatory T-cells in glioma immunology. Clin Neurol Neurosurg 119:125–132PubMedCrossRef
16.
go back to reference Choi JY et al (2009) In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng 33:21–30PubMedCrossRef Choi JY et al (2009) In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng 33:21–30PubMedCrossRef
19.
go back to reference Ding H et al (2011) Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers. Nanotechnology 22:165101PubMedCrossRef Ding H et al (2011) Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers. Nanotechnology 22:165101PubMedCrossRef
21.
go back to reference Schottelius M, Laufer B, Kessler H, Wester HJ (2009) Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42:969–980PubMedCrossRef Schottelius M, Laufer B, Kessler H, Wester HJ (2009) Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42:969–980PubMedCrossRef
22.
go back to reference Gelperina S et al (2010) Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 74:157–163PubMedCrossRef Gelperina S et al (2010) Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 74:157–163PubMedCrossRef
23.
go back to reference Tahara K, Kato Y, Yamamoto H, Kreuter J, Kawashima Y (2011) Intracellular drug delivery using polysorbate 80-modified poly(d, l-lactide-co-glycolide) nanospheres to glioblastoma cells. J Microencapsul 28:29–36PubMedCrossRef Tahara K, Kato Y, Yamamoto H, Kreuter J, Kawashima Y (2011) Intracellular drug delivery using polysorbate 80-modified poly(d, l-lactide-co-glycolide) nanospheres to glioblastoma cells. J Microencapsul 28:29–36PubMedCrossRef
24.
go back to reference Sawyer AJ et al (2011) Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv Transl Res 1:34–42PubMedCentralPubMedCrossRef Sawyer AJ et al (2011) Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv Transl Res 1:34–42PubMedCentralPubMedCrossRef
25.
go back to reference Petri B et al (2007) Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Controll Release 117:51–58CrossRef Petri B et al (2007) Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Controll Release 117:51–58CrossRef
26.
go back to reference Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45PubMedCrossRef Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45PubMedCrossRef
27.
go back to reference Kreuter J et al (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416PubMedCrossRef Kreuter J et al (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416PubMedCrossRef
28.
go back to reference Ambruosi A et al (2006) Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 14:97–105PubMedCrossRef Ambruosi A et al (2006) Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 14:97–105PubMedCrossRef
29.
go back to reference Ambruosi A et al (2006) Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul 23:582–592PubMedCrossRef Ambruosi A et al (2006) Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul 23:582–592PubMedCrossRef
30.
go back to reference Steiniger SCJ et al (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767PubMedCrossRef Steiniger SCJ et al (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767PubMedCrossRef
31.
go back to reference Jachimczak P et al (1993) The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78:944–951PubMedCrossRef Jachimczak P et al (1993) The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78:944–951PubMedCrossRef
32.
go back to reference Jachimczak P et al (1996) Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65:332–337PubMedCrossRef Jachimczak P et al (1996) Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65:332–337PubMedCrossRef
33.
go back to reference Schneider T et al (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195:21–27PubMedCrossRef Schneider T et al (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195:21–27PubMedCrossRef
34.
go back to reference Li J et al (2011) The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology 22:435101PubMedCrossRef Li J et al (2011) The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology 22:435101PubMedCrossRef
35.
go back to reference Sheng X et al (2012) Immunohistochemical localization of inhibin/activin subunits in the wild ground squirrel (citellus dauricus brandt) ovary. J Reprod Develop 58:531–536CrossRef Sheng X et al (2012) Immunohistochemical localization of inhibin/activin subunits in the wild ground squirrel (citellus dauricus brandt) ovary. J Reprod Develop 58:531–536CrossRef
36.
go back to reference Zhan C et al (2012) Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. J Controll Release 160:630–636CrossRef Zhan C et al (2012) Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. J Controll Release 160:630–636CrossRef
37.
go back to reference Ofek P, Fischer W, Calderon M, Haag R, Satchi-Fainaro R (2010) In vivo delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB J 24:3122–3134PubMedCrossRef Ofek P, Fischer W, Calderon M, Haag R, Satchi-Fainaro R (2010) In vivo delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB J 24:3122–3134PubMedCrossRef
38.
go back to reference Koppu S et al (2010) Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. J Controlled Release 143:215–221CrossRef Koppu S et al (2010) Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. J Controlled Release 143:215–221CrossRef
39.
go back to reference Gajbhiye V, Jain NK (2011) The treatment of glioblastoma xenografts by surfactant conjugated dendritic nanoconjugates. Biomaterials 32(26):6213–6225PubMed Gajbhiye V, Jain NK (2011) The treatment of glioblastoma xenografts by surfactant conjugated dendritic nanoconjugates. Biomaterials 32(26):6213–6225PubMed
41.
go back to reference McNerny DQ et al (2009) RGD dendron bodies; synthetic avidity agents with defined and potentially interchangeable effector sites that can substitute for antibodies. Bioconjug Chem 20:1853–1859PubMedCentralPubMedCrossRef McNerny DQ et al (2009) RGD dendron bodies; synthetic avidity agents with defined and potentially interchangeable effector sites that can substitute for antibodies. Bioconjug Chem 20:1853–1859PubMedCentralPubMedCrossRef
42.
go back to reference Ren Y et al (2010) Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed 21:303–314PubMedCrossRef Ren Y et al (2010) Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed 21:303–314PubMedCrossRef
43.
go back to reference Han L et al (2010) Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther 21:417–426PubMedCrossRef Han L et al (2010) Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther 21:417–426PubMedCrossRef
44.
go back to reference Lu Y-J, Wei K-C, Ma C-CM, Yang S-Y, Chen J-P (2012) Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B 89:1–9CrossRef Lu Y-J, Wei K-C, Ma C-CM, Yang S-Y, Chen J-P (2012) Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B 89:1–9CrossRef
46.
go back to reference Hadjipanayis CG et al (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70:6303–6312PubMedCentralPubMedCrossRef Hadjipanayis CG et al (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70:6303–6312PubMedCentralPubMedCrossRef
47.
go back to reference Shultz MD et al (2011) Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology 261:136–143PubMedCentralPubMedCrossRef Shultz MD et al (2011) Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology 261:136–143PubMedCentralPubMedCrossRef
48.
go back to reference Bulte JW (2011) Science to practice: can theranostic fullerenes be used to treat brain tumors? Radiology 261:1–2PubMedCrossRef Bulte JW (2011) Science to practice: can theranostic fullerenes be used to treat brain tumors? Radiology 261:1–2PubMedCrossRef
49.
go back to reference Shultz MD et al (2010) Encapsulation of a radiolabeled cluster inside a fullerene cage, (177)Lu(x)Lu((3-x))N@C(80): an interleukin-13-conjugated radiolabeled metallofullerene platform. J Am Chem Soc 132:4980–4981PubMedCentralPubMedCrossRef Shultz MD et al (2010) Encapsulation of a radiolabeled cluster inside a fullerene cage, (177)Lu(x)Lu((3-x))N@C(80): an interleukin-13-conjugated radiolabeled metallofullerene platform. J Am Chem Soc 132:4980–4981PubMedCentralPubMedCrossRef
50.
go back to reference Kuo Y-C, Liang C-T (2011) Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 32:3340–3350PubMedCrossRef Kuo Y-C, Liang C-T (2011) Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 32:3340–3350PubMedCrossRef
51.
go back to reference Kundu P, Mohanty C, Sahoo SK (2012) Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater 8:2670–2687PubMedCrossRef Kundu P, Mohanty C, Sahoo SK (2012) Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater 8:2670–2687PubMedCrossRef
52.
go back to reference Verreault M et al (2011) Vascular normalization in orthotopic glioblastoma following intravenous treatment with lipid-based nanoparticulate formulations of irinotecan (Irinophore C™), doxorubicin (Caelyx®) or vincristine. BMC Cancer 11:124PubMedCentralPubMedCrossRef Verreault M et al (2011) Vascular normalization in orthotopic glioblastoma following intravenous treatment with lipid-based nanoparticulate formulations of irinotecan (Irinophore C™), doxorubicin (Caelyx®) or vincristine. BMC Cancer 11:124PubMedCentralPubMedCrossRef
53.
go back to reference Roger M et al (2012) Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Int J Pharm 423:63–68PubMedCrossRef Roger M et al (2012) Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Int J Pharm 423:63–68PubMedCrossRef
54.
go back to reference Jin J et al (2011) In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconj Chem 22:2568–2572CrossRef Jin J et al (2011) In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconj Chem 22:2568–2572CrossRef
55.
go back to reference Nikanjam M et al (2007) Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int J Pharm 328:86–94PubMedCrossRef Nikanjam M et al (2007) Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int J Pharm 328:86–94PubMedCrossRef
56.
go back to reference Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM (2007) Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Controll Release 124:163–171CrossRef Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM (2007) Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Controll Release 124:163–171CrossRef
57.
go back to reference Garcion E et al (2006) A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 5:1710–1722PubMedCrossRef Garcion E et al (2006) A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 5:1710–1722PubMedCrossRef
58.
go back to reference Pinzón-Daza ML et al (2012) The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases the in vitro drug delivery across blood-brain barrier cells. Br J Pharm 167(7):1431–1447CrossRef Pinzón-Daza ML et al (2012) The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases the in vitro drug delivery across blood-brain barrier cells. Br J Pharm 167(7):1431–1447CrossRef
59.
go back to reference Kuo Y-C, Liang C-T (2011) Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells. Colloids Surf B 85:131–137CrossRef Kuo Y-C, Liang C-T (2011) Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells. Colloids Surf B 85:131–137CrossRef
60.
go back to reference Agarwal A, Mackey MA, El-Sayed MA, Bellamkonda RV (2011) Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano 5:4919–4926PubMedCrossRef Agarwal A, Mackey MA, El-Sayed MA, Bellamkonda RV (2011) Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano 5:4919–4926PubMedCrossRef
61.
go back to reference Wang X et al (2012) Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles. Biomaterials 33:3719–3732PubMedCrossRef Wang X et al (2012) Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles. Biomaterials 33:3719–3732PubMedCrossRef
62.
go back to reference Dilnawaz F et al (2012) The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 33:2936–2951PubMedCrossRef Dilnawaz F et al (2012) The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 33:2936–2951PubMedCrossRef
63.
go back to reference Lee HY et al (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49:1371–1379PubMedCrossRef Lee HY et al (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49:1371–1379PubMedCrossRef
64.
go back to reference Zhang F et al (2012) Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials 33:5414–5422PubMedCentralPubMedCrossRef Zhang F et al (2012) Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials 33:5414–5422PubMedCentralPubMedCrossRef
66.
go back to reference Plotkin M et al (2006) 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma. Int J Hyperth 22:319–325CrossRef Plotkin M et al (2006) 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma. Int J Hyperth 22:319–325CrossRef
67.
go back to reference van Landeghem FKH et al (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57PubMedCrossRef van Landeghem FKH et al (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57PubMedCrossRef
68.
go back to reference Jordan A et al (2005) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14PubMedCrossRef Jordan A et al (2005) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14PubMedCrossRef
69.
go back to reference Veiseh O et al (2010) Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31:8032–8042PubMedCentralPubMedCrossRef Veiseh O et al (2010) Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31:8032–8042PubMedCentralPubMedCrossRef
70.
go back to reference Buehler DC et al (2014) Bioengineered vaults: self-assembling protein shell-lipophilic core nanoparticles for drug delivery. ACS Nano 8:7723–7732PubMedCrossRef Buehler DC et al (2014) Bioengineered vaults: self-assembling protein shell-lipophilic core nanoparticles for drug delivery. ACS Nano 8:7723–7732PubMedCrossRef
71.
go back to reference Rome LH, Kickhoefer VA (2013) Development of the vault particle as a platform technology. ACS Nano 7:889–902PubMedCrossRef Rome LH, Kickhoefer VA (2013) Development of the vault particle as a platform technology. ACS Nano 7:889–902PubMedCrossRef
75.
go back to reference Yang J et al (2012) Endogenous vaults and bioengineered vault nanoparticles for treatment of glioblastomas: implications for future targeted therapies. Neurosurg Clin N Am 23:451–458PubMedCrossRef Yang J et al (2012) Endogenous vaults and bioengineered vault nanoparticles for treatment of glioblastomas: implications for future targeted therapies. Neurosurg Clin N Am 23:451–458PubMedCrossRef
Metadata
Title
Nanotechnology to augment immunotherapy for the treatment of glioblastoma multiforme
Authors
Nolan Ung
Isaac Yang
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2015
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-015-1814-1

Other articles of this Issue 3/2015

Journal of Neuro-Oncology 3/2015 Go to the issue

Editors' Invited Manuscript

Concepts of immunotherapy for glioma