Skip to main content
Top
Published in: Breast Cancer Research 1/2005

01-05-2005 | Poster presentation

Nanoparticulate paclitaxel loaded into sterically stabilized mixed phospholipid micelles to improve chemotherapy of breast cancer

Authors: I Rubinstein, A Krishnadas, LR Peddakota, H Önyüksel

Published in: Breast Cancer Research | Special Issue 1/2005

Login to get access

Excerpt

Active targeting of water-insoluble chemotherapeutic drugs, such as paclitaxel, to breast cancer is a highly desirable because of its associated increase in anticancer efficacy coupled with reduced systemic drug toxicity. However, rational design of these drug delivery platforms should take into account both pathobiological attributes of breast cancer, such as enhanced permeability and retention phenomenon and overexpression of vasoactive intestinal peptide (VIP) receptors, as well as biophysical properties of its ingredients, including ease of preparation, water insoluble drug loading capacity, steric hindrance, nanosize, and scale-up production and storage. To this end, we developed and tested a novel biocompatible and biodegradable nanoparticulate formulation of VIP-conjugated sterically stabilized phospholipid mixed micelles (SSMM-VIP; size ~ 14 nm) composed of disteraroyl phosphatidylethanolamnine-poly(ethylenglycol-2000) and egg yolk phosphatidylcholine. This construct solubilized 1 mg/ml paclitaxel (P-SSMM-VIP) and retained its biophysical properties upon lyophylization and reconstitution in saline. Moreover, it exhibited a twofold increase in cytotoxicity to MCF-7 breast cancer cells in comparison with P-SSMM and paclitaxel in DMSO (P < 0.05). In addition, the construct targeted VIP receptors overexpressed in methyl nitrosurea (MNU)-induced in situ rat breast cancer tissues. There was a twofold increase in accumulation of intravenously administered P-SSMM-VIP (1 mg/kg) in MNU-induced rat breast cancer, coupled with a significantly greater regression of breast cancer in comparison with P-SSMM and Taxol (P < 0.05). At the same time there was a significant reduction in P-SSMM-VIP accumulation in bone marrow, spleen and other organs in comparison with P-SSMM and Taxol (P < 0.05). There was no significant change in systemic arterial pressure during administration of P-SSMM-VIP. Collectively, these data indicate that actively targeting paclitaxel passively loaded into biocompatible, biodegradable, long-circulating SSMM to breast cancer through VIP receptors improves drug efficacy and reduces its uptake in injury-prone normal tissues. We suggest that P-SSMM-VIP is an efficacious and safe, actively targeted drug delivery platform to treat breast cancer. …
Metadata
Title
Nanoparticulate paclitaxel loaded into sterically stabilized mixed phospholipid micelles to improve chemotherapy of breast cancer
Authors
I Rubinstein
A Krishnadas
LR Peddakota
H Önyüksel
Publication date
01-05-2005
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue Special Issue 1/2005
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1238

Other articles of this Special Issue 1/2005

Breast Cancer Research 1/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine