Skip to main content
Top
Published in: Heart Failure Reviews 6/2013

01-11-2013

Myocardial regeneration of the failing heart

Authors: Alexander T. Akhmedov, José Marín-García

Published in: Heart Failure Reviews | Issue 6/2013

Login to get access

Abstract

Human heart failure (HF) is one of the leading causes of morbidity and mortality worldwide. Currently, heart transplantation and implantation of mechanical devices represent the only available treatments for advanced HF. Two alternative strategies have emerged to treat patients with HF. One approach relies on transplantation of exogenous stem cells (SCs) of non-cardiac or cardiac origin to induce cardiac regeneration and improve ventricular function. Another complementary strategy relies on stimulation of the endogenous regenerative capacity of uninjured cardiac progenitor cells to rebuild cardiac muscle and restore ventricular function. Various SC types and delivery strategies have been examined in the experimental and clinical settings; however, neither the ideal cell type nor the cell delivery method for cardiac cell therapy has yet emerged. Although the use of bone marrow (BM)-derived cells, most frequently exploited in clinical trials, appears to be safe, the results are controversial. Two recent randomized trials have failed to document any beneficial effects of intracardiac delivery of autologous BM mononuclear cells on cardiac function of patients with HF. The remarkable discovery that various populations of cardiac progenitor cells (CPCs) are present in the adult human heart and that it possesses limited regeneration capacity has opened a new era in cardiac repair. Importantly, unlike BM-derived SCs, autologous CPCs from myocardial biopsies cultured and subsequently delivered by coronary injection to patients have given positive results. Although these data are promising, a better understanding of how to control proliferation and differentiation of CPCs, to enhance their recruitment and survival, is required before CPCs become clinically applicable therapeutics.
Literature
1.
go back to reference Rosamond W et al (2007) Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69–e171PubMed Rosamond W et al (2007) Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69–e171PubMed
2.
go back to reference Taylor DA, Zenovich AG (2008) Cardiovascular cell therapy and endogenous repair. Diabetes Obes Metab 10(Suppl 4):5–15PubMed Taylor DA, Zenovich AG (2008) Cardiovascular cell therapy and endogenous repair. Diabetes Obes Metab 10(Suppl 4):5–15PubMed
3.
go back to reference Roger VL et al (2011) Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209PubMed Roger VL et al (2011) Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209PubMed
4.
go back to reference Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900PubMed Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900PubMed
5.
go back to reference Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329PubMed Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329PubMed
6.
go back to reference Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335PubMed Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335PubMed
7.
go back to reference Choi WY, Poss KD (2012) Cardiac regeneration. Curr Top Dev Biol 100:319–344PubMed Choi WY, Poss KD (2012) Cardiac regeneration. Curr Top Dev Biol 100:319–344PubMed
8.
go back to reference Ptaszek LM et al (2012) Towards regenerative therapy for cardiac disease. Lancet 379(9819):933–942PubMed Ptaszek LM et al (2012) Towards regenerative therapy for cardiac disease. Lancet 379(9819):933–942PubMed
9.
go back to reference Hwang H, Kloner RA (2010) Improving regenerating potential of the heart after myocardial infarction: factor-based approach. Life Sci 86(13–14):461–472PubMed Hwang H, Kloner RA (2010) Improving regenerating potential of the heart after myocardial infarction: factor-based approach. Life Sci 86(13–14):461–472PubMed
10.
go back to reference Ghadge SK et al (2011) SDF-1alpha as a therapeutic stem cell homing factor in myocardial infarction. Pharmacol Ther 129(1):97–108PubMed Ghadge SK et al (2011) SDF-1alpha as a therapeutic stem cell homing factor in myocardial infarction. Pharmacol Ther 129(1):97–108PubMed
11.
go back to reference Limana F, Capogrossi MC, Germani A (2011) The epicardium in cardiac repair: from the stem cell view. Pharmacol Ther 129(1):82–96PubMed Limana F, Capogrossi MC, Germani A (2011) The epicardium in cardiac repair: from the stem cell view. Pharmacol Ther 129(1):82–96PubMed
12.
go back to reference Martinez EC, Kofidis T (2011) Adult stem cells for cardiac tissue engineering. J Mol Cell Cardiol 50(2):312–319PubMed Martinez EC, Kofidis T (2011) Adult stem cells for cardiac tissue engineering. J Mol Cell Cardiol 50(2):312–319PubMed
13.
go back to reference Zimmermann WH (2011) Embryonic and embryonic-like stem cells in heart muscle engineering. J Mol Cell Cardiol 50(2):320–326PubMed Zimmermann WH (2011) Embryonic and embryonic-like stem cells in heart muscle engineering. J Mol Cell Cardiol 50(2):320–326PubMed
14.
go back to reference Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51:29–36PubMed Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51:29–36PubMed
15.
go back to reference Hagege AA et al (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361(9356):491–492PubMed Hagege AA et al (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361(9356):491–492PubMed
16.
go back to reference Menasche P (2007) Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 50(1):7–17PubMed Menasche P (2007) Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 50(1):7–17PubMed
17.
go back to reference Olivares EL et al (2004) Bone marrow stromal cells improve cardiac performance in healed infarcted rat hearts. Am J Physiol Heart Circ Physiol 287(2):H464–H470PubMed Olivares EL et al (2004) Bone marrow stromal cells improve cardiac performance in healed infarcted rat hearts. Am J Physiol Heart Circ Physiol 287(2):H464–H470PubMed
18.
go back to reference Xu M et al (2004) Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation 110(17):2658–2665PubMed Xu M et al (2004) Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation 110(17):2658–2665PubMed
19.
go back to reference Murry CE et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668PubMed Murry CE et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668PubMed
20.
go back to reference Kao RL, Rizzo C, Magovern GJ (1989) Satellite cells for myocardial regeneration [abstract]. Physiologist 32:220 Kao RL, Rizzo C, Magovern GJ (1989) Satellite cells for myocardial regeneration [abstract]. Physiologist 32:220
21.
go back to reference Taylor DA et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4(8):929–933PubMed Taylor DA et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4(8):929–933PubMed
22.
go back to reference Menasche P et al (2001) Myoblast transplantation for heart failure. Lancet 357(9252):279–280PubMed Menasche P et al (2001) Myoblast transplantation for heart failure. Lancet 357(9252):279–280PubMed
23.
go back to reference Menasche P et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200PubMed Menasche P et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200PubMed
24.
go back to reference Siminiak T et al (2005) Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 26(12):1188–1195PubMed Siminiak T et al (2005) Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 26(12):1188–1195PubMed
25.
go back to reference Smits PC et al (2003) Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 42(12):2063–2069PubMed Smits PC et al (2003) Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 42(12):2063–2069PubMed
26.
go back to reference Fernandes S et al (2006) Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res 69(2):348–358PubMed Fernandes S et al (2006) Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res 69(2):348–358PubMed
27.
go back to reference Yin AH et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90(12):5002–5012PubMed Yin AH et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90(12):5002–5012PubMed
28.
go back to reference Goodell MA et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3(12):1337–1345PubMed Goodell MA et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3(12):1337–1345PubMed
29.
go back to reference Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94(8):2548–2554PubMed Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94(8):2548–2554PubMed
30.
go back to reference Tomita S et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19 Suppl):II247–II256PubMed Tomita S et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19 Suppl):II247–II256PubMed
31.
go back to reference Haider H, Ashraf M (2005) Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 288(6):H2557–H2567PubMed Haider H, Ashraf M (2005) Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 288(6):H2557–H2567PubMed
32.
go back to reference Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMed Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMed
33.
go back to reference Ryan JM et al (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2:8 Ryan JM et al (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2:8
34.
go back to reference Eisenberg LM, Burns L, Eisenberg CA (2003) Hematopoietic cells from bone marrow have the potential to differentiate into cardiomyocytes in vitro. Anat Rec A Discov Mol Cell Evol Biol 274(1):870–882PubMed Eisenberg LM, Burns L, Eisenberg CA (2003) Hematopoietic cells from bone marrow have the potential to differentiate into cardiomyocytes in vitro. Anat Rec A Discov Mol Cell Evol Biol 274(1):870–882PubMed
35.
go back to reference Alvarez-Dolado M et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961):968–973PubMed Alvarez-Dolado M et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961):968–973PubMed
36.
go back to reference Nygren JM et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10(5):494–501PubMed Nygren JM et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10(5):494–501PubMed
37.
go back to reference Zhang N et al (2006) Blood-borne stem cells differentiate into vascular and cardiac lineages during normal development. Stem Cells Dev 15(1):17–28PubMed Zhang N et al (2006) Blood-borne stem cells differentiate into vascular and cardiac lineages during normal development. Stem Cells Dev 15(1):17–28PubMed
38.
go back to reference Kawada H et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104(12):3581–3587PubMed Kawada H et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104(12):3581–3587PubMed
39.
go back to reference Rota M et al (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA 104(45):17783–17788PubMed Rota M et al (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA 104(45):17783–17788PubMed
40.
go back to reference Wollert KC et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148PubMed Wollert KC et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148PubMed
41.
go back to reference Janssens S et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121PubMed Janssens S et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121PubMed
42.
go back to reference Lunde K et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355(12):1199–1209PubMed Lunde K et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355(12):1199–1209PubMed
43.
go back to reference Assmus B et al (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3(1):89–96PubMed Assmus B et al (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3(1):89–96PubMed
44.
go back to reference Strauer BE, Yousef M, Schannwell CM (2010) The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail 12(7):721–729PubMed Strauer BE, Yousef M, Schannwell CM (2010) The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail 12(7):721–729PubMed
45.
go back to reference Zimmet H et al (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14(1):91–105PubMed Zimmet H et al (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14(1):91–105PubMed
46.
go back to reference Perin EC et al (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307(16):1717–1726 Perin EC et al (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307(16):1717–1726
47.
go back to reference Korf-Klingebiel M et al (2008) Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 29(23):2851–2858PubMed Korf-Klingebiel M et al (2008) Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 29(23):2851–2858PubMed
48.
go back to reference Mirotsou M et al (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289PubMed Mirotsou M et al (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289PubMed
49.
go back to reference Gluckman E et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321(17):1174–1178PubMed Gluckman E et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321(17):1174–1178PubMed
50.
go back to reference Kogler G et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135PubMed Kogler G et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135PubMed
51.
go back to reference Gluckman E (2009) Ten years of cord blood transplantation: from bench to bedside. Br J Haematol 147(2):192–199PubMed Gluckman E (2009) Ten years of cord blood transplantation: from bench to bedside. Br J Haematol 147(2):192–199PubMed
52.
go back to reference Henning RJ et al (2007) Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transpl 16(9):907–917 Henning RJ et al (2007) Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transpl 16(9):907–917
53.
go back to reference Henning RJ et al (2010) Human umbilical cord blood mononuclear cells decrease fibrosis and increase cardiac function in cardiomyopathy. Regen Med 5(1):45–54PubMed Henning RJ et al (2010) Human umbilical cord blood mononuclear cells decrease fibrosis and increase cardiac function in cardiomyopathy. Regen Med 5(1):45–54PubMed
54.
go back to reference Kehat I et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108(3):407–414PubMed Kehat I et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108(3):407–414PubMed
55.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMed Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMed
56.
go back to reference Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49PubMed Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49PubMed
57.
go back to reference Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMed Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMed
58.
go back to reference Passier R, Denning C, Mummery C (2006) Cardiomyocytes from human embryonic stem cells. Handb Exp Pharmacol 174:101–122PubMed Passier R, Denning C, Mummery C (2006) Cardiomyocytes from human embryonic stem cells. Handb Exp Pharmacol 174:101–122PubMed
59.
go back to reference Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128PubMed Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128PubMed
60.
go back to reference Chen L, Daley GQ (2008) Molecular basis of pluripotency. Hum Mol Genet 17(R1):R23–R27PubMed Chen L, Daley GQ (2008) Molecular basis of pluripotency. Hum Mol Genet 17(R1):R23–R27PubMed
61.
go back to reference Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4):661–680PubMed Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4):661–680PubMed
62.
go back to reference Mummery C et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107(21):2733–2740PubMed Mummery C et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107(21):2733–2740PubMed
63.
go back to reference Laflamme MA et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024PubMed Laflamme MA et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024PubMed
64.
go back to reference van Laake LW et al (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1(1):9–24PubMed van Laake LW et al (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1(1):9–24PubMed
65.
go back to reference Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856PubMed Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856PubMed
66.
go back to reference Liu YP et al (2004) Maintenance of pluripotency in human embryonic stem cells stably over-expressing enhanced green fluorescent protein. Stem Cells Dev 13(6):636–645PubMed Liu YP et al (2004) Maintenance of pluripotency in human embryonic stem cells stably over-expressing enhanced green fluorescent protein. Stem Cells Dev 13(6):636–645PubMed
67.
go back to reference Nussbaum J et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357PubMed Nussbaum J et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357PubMed
68.
go back to reference Saric T, Frenzel LP, Hescheler J (2008) Immunological barriers to embryonic stem cell-derived therapies. Cells Tissues Organs 188(1–2):78–90PubMed Saric T, Frenzel LP, Hescheler J (2008) Immunological barriers to embryonic stem cell-derived therapies. Cells Tissues Organs 188(1–2):78–90PubMed
69.
go back to reference Trounson A et al (2011) Clinical trials for stem cell therapies. BMC Med 9:52PubMed Trounson A et al (2011) Clinical trials for stem cell therapies. BMC Med 9:52PubMed
70.
go back to reference Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582PubMed Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582PubMed
71.
go back to reference Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMed Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMed
72.
go back to reference Shiba Y, Hauch KD, Laflamme MA (2009) Cardiac applications for human pluripotent stem cells. Curr Pharm Des 15(24):2791–2806PubMed Shiba Y, Hauch KD, Laflamme MA (2009) Cardiac applications for human pluripotent stem cells. Curr Pharm Des 15(24):2791–2806PubMed
73.
go back to reference Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMed Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMed
74.
go back to reference Dimos JT et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221PubMed Dimos JT et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221PubMed
75.
go back to reference Ebert AD et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280PubMed Ebert AD et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280PubMed
76.
go back to reference Hotta A et al (2009) Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods 6(5):370–376PubMed Hotta A et al (2009) Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods 6(5):370–376PubMed
77.
go back to reference Maehr R et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106(37):15768–15773PubMed Maehr R et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106(37):15768–15773PubMed
78.
go back to reference Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23(43):7150–7160PubMed Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23(43):7150–7160PubMed
79.
go back to reference Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106PubMed Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106PubMed
80.
go back to reference Wernig M et al (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2(1):10–12PubMed Wernig M et al (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2(1):10–12PubMed
81.
go back to reference Hanna J et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923PubMed Hanna J et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923PubMed
82.
go back to reference Narazaki G et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506PubMed Narazaki G et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506PubMed
83.
go back to reference Schenke-Layland K et al (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26(6):1537–1546PubMed Schenke-Layland K et al (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26(6):1537–1546PubMed
84.
go back to reference Kuzmenkin A et al (2009) Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J 23(12):4168–4180PubMed Kuzmenkin A et al (2009) Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J 23(12):4168–4180PubMed
85.
go back to reference Yang L et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528PubMed Yang L et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528PubMed
86.
go back to reference Xu XQ et al (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76(9):958–970PubMed Xu XQ et al (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76(9):958–970PubMed
87.
go back to reference Zhu WZ et al (2010) Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 107(6):776–786PubMed Zhu WZ et al (2010) Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 107(6):776–786PubMed
88.
go back to reference Paige SL et al (2010) Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS ONE 5(6):e11134PubMed Paige SL et al (2010) Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS ONE 5(6):e11134PubMed
89.
go back to reference Noseda M et al (2011) Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ Res 108(1):129–152PubMed Noseda M et al (2011) Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ Res 108(1):129–152PubMed
90.
go back to reference Shi Y et al (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574PubMed Shi Y et al (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574PubMed
91.
go back to reference Ieda M et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386PubMed Ieda M et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386PubMed
92.
go back to reference Efe JA et al (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13(3):215–222PubMed Efe JA et al (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13(3):215–222PubMed
93.
go back to reference Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476PubMed Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476PubMed
94.
go back to reference Kaji K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775PubMed Kaji K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775PubMed
95.
go back to reference Woltjen K et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770PubMed Woltjen K et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770PubMed
96.
go back to reference Yu J et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801PubMed Yu J et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801PubMed
97.
go back to reference Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630PubMed Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630PubMed
98.
go back to reference Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1(3):435–440PubMed Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1(3):435–440PubMed
99.
go back to reference Mjaatvedt CH et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238(1):97–109PubMed Mjaatvedt CH et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238(1):97–109PubMed
100.
go back to reference Waldo KL et al (2001) Conotruncal myocardium arises from a secondary heart field. Development 128(16):3179–3188PubMed Waldo KL et al (2001) Conotruncal myocardium arises from a secondary heart field. Development 128(16):3179–3188PubMed
101.
go back to reference Kelly RG (2012) The second heart field. Curr Top Dev Biol 100:33–65PubMed Kelly RG (2012) The second heart field. Curr Top Dev Biol 100:33–65PubMed
102.
go back to reference Beltrami AP et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776PubMed Beltrami AP et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776PubMed
103.
go back to reference Linke A et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102(25):8966–8971PubMed Linke A et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102(25):8966–8971PubMed
104.
go back to reference Urbanek K et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103(24):9226–9231PubMed Urbanek K et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103(24):9226–9231PubMed
105.
go back to reference Bearzi C et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104(35):14068–14073PubMed Bearzi C et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104(35):14068–14073PubMed
106.
go back to reference Bollini S, Smart N, Riley PR (2011) Resident cardiac progenitor cells: at the heart of regeneration. J Mol Cell Cardiol 50(2):296–303PubMed Bollini S, Smart N, Riley PR (2011) Resident cardiac progenitor cells: at the heart of regeneration. J Mol Cell Cardiol 50(2):296–303PubMed
107.
go back to reference Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109(8):941–961PubMed Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109(8):941–961PubMed
108.
go back to reference Bernstein HS, Srivastava D (2012) Stem cell therapy for cardiac disease. Pediatr Res 71(4 Pt 2):491–499PubMed Bernstein HS, Srivastava D (2012) Stem cell therapy for cardiac disease. Pediatr Res 71(4 Pt 2):491–499PubMed
109.
go back to reference Hosoda T et al (2009) Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci USA 106(40):17169–17174PubMed Hosoda T et al (2009) Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci USA 106(40):17169–17174PubMed
110.
go back to reference Goodell MA et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806PubMed Goodell MA et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806PubMed
111.
go back to reference Martin CM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275PubMed Martin CM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275PubMed
112.
go back to reference Pfister O et al (2008) Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res 103(8):825–835PubMed Pfister O et al (2008) Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res 103(8):825–835PubMed
113.
go back to reference Pfister O et al (2010) Isolation of resident cardiac progenitor cells by Hoechst 33342 staining. Methods Mol Biol 660:53–63PubMed Pfister O et al (2010) Isolation of resident cardiac progenitor cells by Hoechst 33342 staining. Methods Mol Biol 660:53–63PubMed
114.
go back to reference Rasmussen TL et al (2011) Getting to the heart of myocardial stem cells and cell therapy. Circulation 123(16):1771–1779PubMed Rasmussen TL et al (2011) Getting to the heart of myocardial stem cells and cell therapy. Circulation 123(16):1771–1779PubMed
115.
go back to reference Pfister O et al (2005) CD31− but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61PubMed Pfister O et al (2005) CD31− but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61PubMed
116.
go back to reference Wang X et al (2006) The role of the sca-1+/CD31− cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24(7):1779–1788PubMed Wang X et al (2006) The role of the sca-1+/CD31− cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24(7):1779–1788PubMed
117.
go back to reference Steinhauser ML, Lee RT (2011) Regeneration of the heart. EMBO Mol Med 3(12):701–712PubMed Steinhauser ML, Lee RT (2011) Regeneration of the heart. EMBO Mol Med 3(12):701–712PubMed
118.
go back to reference Lyman SD, Jacobsen SE (1998) c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91(4):1101–1134PubMed Lyman SD, Jacobsen SE (1998) c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91(4):1101–1134PubMed
119.
go back to reference Dawn B et al (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 102(10):3766–3771PubMed Dawn B et al (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 102(10):3766–3771PubMed
120.
go back to reference Miyamoto S et al (2010) Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts. Stem Cells Dev 19(1):105–116PubMed Miyamoto S et al (2010) Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts. Stem Cells Dev 19(1):105–116PubMed
121.
go back to reference Tillmanns J et al (2008) Formation of large coronary arteries by cardiac progenitor cells. Proc Natl Acad Sci USA 105(5):1668–1673PubMed Tillmanns J et al (2008) Formation of large coronary arteries by cardiac progenitor cells. Proc Natl Acad Sci USA 105(5):1668–1673PubMed
122.
go back to reference Tang XL et al (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121(2):293–305PubMed Tang XL et al (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121(2):293–305PubMed
123.
go back to reference Tallini YN et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci USA 106(6):1808–1813PubMed Tallini YN et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci USA 106(6):1808–1813PubMed
124.
go back to reference Zaruba MM et al (2010) Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation 121(18):1992–2000PubMed Zaruba MM et al (2010) Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation 121(18):1992–2000PubMed
125.
go back to reference Bolli R et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857PubMed Bolli R et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857PubMed
126.
go back to reference Holmes C, Stanford WL (2007) Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25(6):1339–1347PubMed Holmes C, Stanford WL (2007) Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25(6):1339–1347PubMed
127.
go back to reference Matsuura K et al (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279(12):11384–11391PubMed Matsuura K et al (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279(12):11384–11391PubMed
128.
go back to reference Matsuura K et al (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119(8):2204–2217PubMed Matsuura K et al (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119(8):2204–2217PubMed
129.
go back to reference Oh H et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100(21):12313–12318PubMed Oh H et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100(21):12313–12318PubMed
130.
go back to reference Cai CL et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889PubMed Cai CL et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889PubMed
131.
go back to reference Laugwitz KL et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653PubMed Laugwitz KL et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653PubMed
132.
go back to reference Moretti A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6):1151–1165PubMed Moretti A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6):1151–1165PubMed
133.
go back to reference Moretti A et al (2010) Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J 24(3):700–711PubMed Moretti A et al (2010) Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J 24(3):700–711PubMed
134.
go back to reference Messina E et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921PubMed Messina E et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921PubMed
135.
go back to reference Smith RR et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908PubMed Smith RR et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908PubMed
136.
go back to reference Chimenti I et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–980PubMed Chimenti I et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–980PubMed
137.
go back to reference Bartosh TJ et al (2008) 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem 105(2):612–623PubMed Bartosh TJ et al (2008) 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem 105(2):612–623PubMed
138.
go back to reference Nelson TJ et al (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120(5):408–416PubMed Nelson TJ et al (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120(5):408–416PubMed
139.
go back to reference Johnston PV, et al (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120(12):1075–1083, 7 p following 1083 Johnston PV, et al (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120(12):1075–1083, 7 p following 1083
140.
go back to reference Lee ST et al (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57(4):455–465PubMed Lee ST et al (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57(4):455–465PubMed
141.
go back to reference Andersen DC et al (2009) Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27(7):1571–1581PubMed Andersen DC et al (2009) Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27(7):1571–1581PubMed
142.
go back to reference Davis DR et al (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS ONE 4(9):e7195PubMed Davis DR et al (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS ONE 4(9):e7195PubMed
143.
go back to reference Makkar RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904PubMed Makkar RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904PubMed
144.
go back to reference Siu CW, Tse HF (2012) Cardiac regeneration: messages from CADUCEUS. Lancet 379(9819):870–871PubMed Siu CW, Tse HF (2012) Cardiac regeneration: messages from CADUCEUS. Lancet 379(9819):870–871PubMed
145.
go back to reference Ishii Y et al (2010) BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell 19(2):307–316PubMed Ishii Y et al (2010) BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell 19(2):307–316PubMed
146.
go back to reference Merki E et al (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA 102(51):18455–18460PubMed Merki E et al (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA 102(51):18455–18460PubMed
147.
go back to reference Limana F et al (2007) Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 101(12):1255–1265PubMed Limana F et al (2007) Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 101(12):1255–1265PubMed
148.
go back to reference van Tuyn J et al (2007) Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25(2):271–278PubMed van Tuyn J et al (2007) Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25(2):271–278PubMed
149.
go back to reference Cai CL et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454(7200):104–108PubMed Cai CL et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454(7200):104–108PubMed
150.
go back to reference Zhou B et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454(7200):109–113PubMed Zhou B et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454(7200):109–113PubMed
151.
go back to reference Red-Horse K et al (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464(7288):549–553PubMed Red-Horse K et al (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464(7288):549–553PubMed
152.
go back to reference Smart N et al (2007) Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium. Ann N Y Acad Sci 1112:171–188PubMed Smart N et al (2007) Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium. Ann N Y Acad Sci 1112:171–188PubMed
153.
go back to reference Bock-Marquette I et al (2009) Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol 46(5):728–738PubMed Bock-Marquette I et al (2009) Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol 46(5):728–738PubMed
154.
go back to reference Limana F et al (2010) Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol 48(4):609–618PubMed Limana F et al (2010) Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol 48(4):609–618PubMed
155.
go back to reference Smart N et al (2010) Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Ann N Y Acad Sci 1194:97–104PubMed Smart N et al (2010) Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Ann N Y Acad Sci 1194:97–104PubMed
156.
go back to reference Smart N et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474(7353):640–644PubMed Smart N et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474(7353):640–644PubMed
157.
go back to reference Zhou B et al (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 121(5):1894–1904PubMed Zhou B et al (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 121(5):1894–1904PubMed
158.
go back to reference Smart N et al (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445(7124):177–182PubMed Smart N et al (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445(7124):177–182PubMed
159.
go back to reference Ott HC et al (2007) The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S27–S39PubMed Ott HC et al (2007) The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S27–S39PubMed
160.
go back to reference Li RK, et al (1996) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62(3):654–660; discussion 660–1 Li RK, et al (1996) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62(3):654–660; discussion 660–1
161.
go back to reference Scorsin M, et al (1997) Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 96(9 Suppl):II-188–II-193 Scorsin M, et al (1997) Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 96(9 Suppl):II-188–II-193
162.
go back to reference Tsonis PA (1996) Limb Regeneration. Cambridge University Press, Cambridge Tsonis PA (1996) Limb Regeneration. Cambridge University Press, Cambridge
163.
go back to reference Rumyantsev PP (1973) Post-injury DNA synthesis, mitosis and ultrastructural reorganization of adult frog cardiac myocytes. An electron microscopic-autoradiographic study. Z Zellforsch Mikrosk Anat 139(3):431–450PubMed Rumyantsev PP (1973) Post-injury DNA synthesis, mitosis and ultrastructural reorganization of adult frog cardiac myocytes. An electron microscopic-autoradiographic study. Z Zellforsch Mikrosk Anat 139(3):431–450PubMed
164.
go back to reference Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 51:186–273PubMed Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 51:186–273PubMed
165.
go back to reference Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187(2):249–253PubMed Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187(2):249–253PubMed
166.
go back to reference Bader D, Oberpriller JO (1978) Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J Morphol 155(3):349–357PubMed Bader D, Oberpriller JO (1978) Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J Morphol 155(3):349–357PubMed
167.
go back to reference Bader D, Oberpriller J (1979) Autoradiographic and electron microscopic studies of minced cardiac muscle regeneration in the adult newt, Notophthalmus viridescens. J Exp Zool 208(2):177–193PubMed Bader D, Oberpriller J (1979) Autoradiographic and electron microscopic studies of minced cardiac muscle regeneration in the adult newt, Notophthalmus viridescens. J Exp Zool 208(2):177–193PubMed
168.
go back to reference Oberpriller JO et al (1995) Stimulation of proliferative events in the adult amphibian cardiac myocyte. Ann N Y Acad Sci 752:30–46PubMed Oberpriller JO et al (1995) Stimulation of proliferative events in the adult amphibian cardiac myocyte. Ann N Y Acad Sci 752:30–46PubMed
169.
go back to reference Poss KD (2007) Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol 18(1):36–45PubMed Poss KD (2007) Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol 18(1):36–45PubMed
170.
go back to reference Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11(10):710–722PubMed Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11(10):710–722PubMed
171.
go back to reference Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190PubMed Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190PubMed
172.
go back to reference Lepilina A et al (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127(3):607–619PubMed Lepilina A et al (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127(3):607–619PubMed
173.
go back to reference Kikuchi K et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605PubMed Kikuchi K et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605PubMed
174.
go back to reference Jopling C et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609PubMed Jopling C et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609PubMed
175.
go back to reference Chablais F et al (2011) The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11:21PubMed Chablais F et al (2011) The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11:21PubMed
176.
go back to reference Gonzalez-Rosa JM et al (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9):1663–1674PubMed Gonzalez-Rosa JM et al (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9):1663–1674PubMed
177.
go back to reference Schnabel K et al (2011) Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 6(4):e18503PubMed Schnabel K et al (2011) Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 6(4):e18503PubMed
178.
go back to reference Wang J et al (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138(16):3421–3430PubMed Wang J et al (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138(16):3421–3430PubMed
179.
go back to reference Li F et al (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28(8):1737–1746PubMed Li F et al (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28(8):1737–1746PubMed
180.
go back to reference Adler CP (1975) Relationship between deoxyribonucleic acid content and nucleoli in human heart muscle cells and estimation of cell number during cardiac growth and hyperfunction. Recent Adv Stud Cardiac Struct Metab 8:373–386PubMed Adler CP (1975) Relationship between deoxyribonucleic acid content and nucleoli in human heart muscle cells and estimation of cell number during cardiac growth and hyperfunction. Recent Adv Stud Cardiac Struct Metab 8:373–386PubMed
181.
go back to reference Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102PubMed Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102PubMed
182.
go back to reference Drenckhahn JD et al (2008) Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell 15(4):521–533PubMed Drenckhahn JD et al (2008) Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell 15(4):521–533PubMed
183.
go back to reference Porrello ER et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080PubMed Porrello ER et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080PubMed
184.
go back to reference Bergmann O et al (2011) Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res 317(2):188–194PubMed Bergmann O et al (2011) Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res 317(2):188–194PubMed
185.
go back to reference Kajstura J et al (2010) Cardiomyogenesis in the adult human heart. Circ Res 107(2):305–315PubMed Kajstura J et al (2010) Cardiomyogenesis in the adult human heart. Circ Res 107(2):305–315PubMed
186.
go back to reference Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336(2):137–144PubMed Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336(2):137–144PubMed
187.
go back to reference Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104(8):933–942PubMed Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104(8):933–942PubMed
188.
go back to reference Vincent SD, Buckingham ME (2010) How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 90:1–41PubMed Vincent SD, Buckingham ME (2010) How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 90:1–41PubMed
189.
go back to reference Bruneau BG (2002) Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res 90(5):509–519PubMed Bruneau BG (2002) Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res 90(5):509–519PubMed
190.
go back to reference Evans SM et al (2010) Myocardial lineage development. Circ Res 107(12):1428–1444PubMed Evans SM et al (2010) Myocardial lineage development. Circ Res 107(12):1428–1444PubMed
191.
go back to reference van Weerd JH et al (2011) Epigenetic factors and cardiac development. Cardiovasc Res 91(2):203–211PubMed van Weerd JH et al (2011) Epigenetic factors and cardiac development. Cardiovasc Res 91(2):203–211PubMed
192.
go back to reference Behfar A et al (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16(12):1558–1566PubMed Behfar A et al (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16(12):1558–1566PubMed
193.
go back to reference Yuasa S et al (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 23(5):607–611PubMed Yuasa S et al (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 23(5):607–611PubMed
194.
go back to reference Naito AT et al (2006) Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci USA 103(52):19812–19817PubMed Naito AT et al (2006) Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci USA 103(52):19812–19817PubMed
195.
go back to reference Kwon C et al (2007) Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA 104(26):10894–10899PubMed Kwon C et al (2007) Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA 104(26):10894–10899PubMed
196.
go back to reference Hao J et al (2008) Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS ONE 3(8):e2904PubMed Hao J et al (2008) Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS ONE 3(8):e2904PubMed
197.
go back to reference Brennan J et al (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411(6840):965–969PubMed Brennan J et al (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411(6840):965–969PubMed
198.
go back to reference Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11(4):451–462PubMed Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11(4):451–462PubMed
199.
go back to reference Foley AC, Mercola M (2005) Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 19(3):387–396PubMed Foley AC, Mercola M (2005) Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 19(3):387–396PubMed
200.
go back to reference Ilagan R et al (2006) Fgf8 is required for anterior heart field development. Development 133(12):2435–2445PubMed Ilagan R et al (2006) Fgf8 is required for anterior heart field development. Development 133(12):2435–2445PubMed
201.
go back to reference Park EJ et al (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133(12):2419–2433PubMed Park EJ et al (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133(12):2419–2433PubMed
202.
go back to reference Park EJ et al (2008) An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 135(21):3599–3610PubMed Park EJ et al (2008) An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 135(21):3599–3610PubMed
203.
go back to reference Urness LD et al (2011) Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Dev Biol 356(2):383–397PubMed Urness LD et al (2011) Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Dev Biol 356(2):383–397PubMed
204.
go back to reference High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9(1):49–61PubMed High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9(1):49–61PubMed
205.
go back to reference High FA et al (2009) Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 119(7):1986–1996PubMed High FA et al (2009) Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 119(7):1986–1996PubMed
206.
go back to reference Kwon C et al (2009) A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11(8):951–957PubMed Kwon C et al (2009) A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11(8):951–957PubMed
207.
go back to reference Hutson MR et al (2010) Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate. Development 137(18):3001–3011PubMed Hutson MR et al (2010) Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate. Development 137(18):3001–3011PubMed
208.
go back to reference Tirosh-Finkel L et al (2010) BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 137(18):2989–3000PubMed Tirosh-Finkel L et al (2010) BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 137(18):2989–3000PubMed
209.
go back to reference Thomas NA et al (2008) Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development 135(22):3789–3799PubMed Thomas NA et al (2008) Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development 135(22):3789–3799PubMed
210.
go back to reference Dyer LA, Kirby ML (2009) Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol 330(2):305–317PubMed Dyer LA, Kirby ML (2009) Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol 330(2):305–317PubMed
211.
go back to reference Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 105(6):781–792PubMed Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 105(6):781–792PubMed
212.
go back to reference Lavine KJ, Kovacs A, Ornitz DM (2008) Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest 118(7):2404–2414PubMed Lavine KJ, Kovacs A, Ornitz DM (2008) Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest 118(7):2404–2414PubMed
213.
go back to reference Hoffmann AD et al (2009) sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 136(10):1761–1770PubMed Hoffmann AD et al (2009) sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 136(10):1761–1770PubMed
214.
go back to reference Ryckebusch L et al (2008) Retinoic acid deficiency alters second heart field formation. Proc Natl Acad Sci USA 105(8):2913–2918PubMed Ryckebusch L et al (2008) Retinoic acid deficiency alters second heart field formation. Proc Natl Acad Sci USA 105(8):2913–2918PubMed
215.
go back to reference Sirbu IO, Zhao X, Duester G (2008) Retinoic acid controls heart anteroposterior patterning by down-regulating Isl1 through the Fgf8 pathway. Dev Dyn 237(6):1627–1635PubMed Sirbu IO, Zhao X, Duester G (2008) Retinoic acid controls heart anteroposterior patterning by down-regulating Isl1 through the Fgf8 pathway. Dev Dyn 237(6):1627–1635PubMed
216.
go back to reference Li P, Pashmforoush M, Sucov HM (2010) Retinoic acid regulates differentiation of the secondary heart field and TGFbeta-mediated outflow tract septation. Dev Cell 18(3):480–485PubMed Li P, Pashmforoush M, Sucov HM (2010) Retinoic acid regulates differentiation of the secondary heart field and TGFbeta-mediated outflow tract septation. Dev Cell 18(3):480–485PubMed
217.
go back to reference Schleiffarth JR et al (2007) Wnt5a is required for cardiac outflow tract septation in mice. Pediatr Res 61(4):386–391PubMed Schleiffarth JR et al (2007) Wnt5a is required for cardiac outflow tract septation in mice. Pediatr Res 61(4):386–391PubMed
218.
go back to reference Zhou W et al (2007) Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFbeta2. Nat Genet 39(10):1225–1234PubMed Zhou W et al (2007) Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFbeta2. Nat Genet 39(10):1225–1234PubMed
219.
go back to reference Zhou Y et al (2011) Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature 474(7353):645–648PubMed Zhou Y et al (2011) Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature 474(7353):645–648PubMed
220.
go back to reference Olivetti G et al (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68(6):1560–1568PubMed Olivetti G et al (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68(6):1560–1568PubMed
221.
go back to reference Olivetti G et al (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141PubMed Olivetti G et al (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141PubMed
222.
go back to reference Guerra S et al (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85(9):856–866PubMed Guerra S et al (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85(9):856–866PubMed
223.
go back to reference Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47(9):1777–1785PubMed Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47(9):1777–1785PubMed
224.
go back to reference Itzhaki-Alfia A et al (2009) Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation 120(25):2559–2566PubMed Itzhaki-Alfia A et al (2009) Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation 120(25):2559–2566PubMed
225.
go back to reference Lien CL et al (2006) Gene expression analysis of zebrafish heart regeneration. PLoS Biol 4(8):e260PubMed Lien CL et al (2006) Gene expression analysis of zebrafish heart regeneration. PLoS Biol 4(8):e260PubMed
226.
go back to reference Engel FB et al (2005) p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19(10):1175–1187PubMed Engel FB et al (2005) p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19(10):1175–1187PubMed
227.
go back to reference Engel FB et al (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103(42):15546–15551PubMed Engel FB et al (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103(42):15546–15551PubMed
228.
go back to reference Boni A et al (2008) Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA 105(40):15529–15534PubMed Boni A et al (2008) Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA 105(40):15529–15534PubMed
229.
go back to reference Croquelois A et al (2008) Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med 205(13):3173–3185PubMed Croquelois A et al (2008) Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med 205(13):3173–3185PubMed
230.
go back to reference Collesi C et al (2008) Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol 183(1):117–128PubMed Collesi C et al (2008) Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol 183(1):117–128PubMed
231.
go back to reference Koyanagi M et al (2007) Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res 101(11):1139–1145PubMed Koyanagi M et al (2007) Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res 101(11):1139–1145PubMed
232.
go back to reference Rosenblatt-Velin N et al (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115(7):1724–1733PubMed Rosenblatt-Velin N et al (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115(7):1724–1733PubMed
233.
go back to reference Urbanek K et al (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97(7):663–673PubMed Urbanek K et al (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97(7):663–673PubMed
234.
go back to reference Rota M et al (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 103(1):107–116PubMed Rota M et al (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 103(1):107–116PubMed
235.
go back to reference Aghila Rani KG, Kartha CC (2010) Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart. Growth Factors 28(3):157–165PubMed Aghila Rani KG, Kartha CC (2010) Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart. Growth Factors 28(3):157–165PubMed
236.
go back to reference Gonzalez A et al (2008) Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res 102(5):597–606PubMed Gonzalez A et al (2008) Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res 102(5):597–606PubMed
237.
go back to reference Gude NA et al (2008) Activation of Notch-mediated protective signaling in the myocardium. Circ Res 102(9):1025–1035PubMed Gude NA et al (2008) Activation of Notch-mediated protective signaling in the myocardium. Circ Res 102(9):1025–1035PubMed
238.
go back to reference Sun Y (2010) Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J Mol Cell Cardiol 48(3):483–489PubMed Sun Y (2010) Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J Mol Cell Cardiol 48(3):483–489PubMed
239.
go back to reference Segers VF, Lee RT (2010) Protein therapeutics for cardiac regeneration after myocardial infarction. J Cardiovasc Transl Res 3(5):469–477PubMed Segers VF, Lee RT (2010) Protein therapeutics for cardiac regeneration after myocardial infarction. J Cardiovasc Transl Res 3(5):469–477PubMed
240.
go back to reference Bocchi L et al (2011) Growth factor-induced mobilization of cardiac progenitor cells reduces the risk of arrhythmias, in a rat model of chronic myocardial infarction. PLoS ONE 6(3):e17750PubMed Bocchi L et al (2011) Growth factor-induced mobilization of cardiac progenitor cells reduces the risk of arrhythmias, in a rat model of chronic myocardial infarction. PLoS ONE 6(3):e17750PubMed
241.
go back to reference Pesce M et al (2011) Endothelial and cardiac progenitors: boosting, conditioning and (re)programming for cardiovascular repair. Pharmacol Ther 129(1):50–61PubMed Pesce M et al (2011) Endothelial and cardiac progenitors: boosting, conditioning and (re)programming for cardiovascular repair. Pharmacol Ther 129(1):50–61PubMed
242.
go back to reference Hoover-Plow J, Gong Y (2012) Challenges for heart disease stem cell therapy. Vasc Health Risk Manag 8:99–113PubMed Hoover-Plow J, Gong Y (2012) Challenges for heart disease stem cell therapy. Vasc Health Risk Manag 8:99–113PubMed
243.
go back to reference Bock-Marquette I et al (2004) Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432(7016):466–472PubMed Bock-Marquette I et al (2004) Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432(7016):466–472PubMed
244.
go back to reference Srivastava D et al (2007) Thymosin beta4 is cardioprotective after myocardial infarction. Ann N Y Acad Sci 1112:161–170PubMed Srivastava D et al (2007) Thymosin beta4 is cardioprotective after myocardial infarction. Ann N Y Acad Sci 1112:161–170PubMed
245.
go back to reference Takahashi K et al (2008) Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart. Circulation 118(14 Suppl):S106–S114PubMed Takahashi K et al (2008) Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart. Circulation 118(14 Suppl):S106–S114PubMed
246.
go back to reference Kohno T et al (2009) Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc Res 81(3):565–573PubMed Kohno T et al (2009) Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc Res 81(3):565–573PubMed
247.
go back to reference Palumbo R, Bianchi ME (2004) High mobility group box 1 protein, a cue for stem cell recruitment. Biochem Pharmacol 68(6):1165–1170PubMed Palumbo R, Bianchi ME (2004) High mobility group box 1 protein, a cue for stem cell recruitment. Biochem Pharmacol 68(6):1165–1170PubMed
248.
go back to reference Palumbo R et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164(3):441–449PubMed Palumbo R et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164(3):441–449PubMed
249.
go back to reference Limana F et al (2005) Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 97(8):e73–e83PubMed Limana F et al (2005) Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 97(8):e73–e83PubMed
250.
go back to reference Hofmann M et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202PubMed Hofmann M et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202PubMed
251.
go back to reference Hou D et al (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112(9 Suppl):I150–I156PubMed Hou D et al (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112(9 Suppl):I150–I156PubMed
252.
go back to reference Perin EC, Lopez J (2006) Methods of stem cell delivery in cardiac diseases. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S110–S113PubMed Perin EC, Lopez J (2006) Methods of stem cell delivery in cardiac diseases. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S110–S113PubMed
253.
go back to reference Beeres SL et al (2008) Cell therapy for ischaemic heart disease. Heart 94(9):1214–1226PubMed Beeres SL et al (2008) Cell therapy for ischaemic heart disease. Heart 94(9):1214–1226PubMed
254.
go back to reference Martin-Rendon E et al (2008) Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 29(15):1807–1818PubMed Martin-Rendon E et al (2008) Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 29(15):1807–1818PubMed
255.
go back to reference Freyman T et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122PubMed Freyman T et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122PubMed
256.
go back to reference Kurpisz M et al (2007) Bone marrow stem cell imaging after intracoronary administration. Int J Cardiol 121(2):194–195PubMed Kurpisz M et al (2007) Bone marrow stem cell imaging after intracoronary administration. Int J Cardiol 121(2):194–195PubMed
257.
go back to reference Hare JM et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286PubMed Hare JM et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286PubMed
258.
go back to reference Aicher A et al (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107(16):2134–2139PubMed Aicher A et al (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107(16):2134–2139PubMed
259.
go back to reference Blocklet D et al (2006) Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells 24(2):333–336PubMed Blocklet D et al (2006) Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells 24(2):333–336PubMed
260.
go back to reference Robey TE et al (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45(4):567–581PubMed Robey TE et al (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45(4):567–581PubMed
261.
go back to reference Muller-Ehmsen J et al (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34(2):107–116PubMed Muller-Ehmsen J et al (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34(2):107–116PubMed
262.
go back to reference Zeng L et al (2007) Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 115(14):1866–1875PubMed Zeng L et al (2007) Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 115(14):1866–1875PubMed
263.
go back to reference Hansson EM, Lindsay ME, Chien KR (2009) Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 5(4):364–377PubMed Hansson EM, Lindsay ME, Chien KR (2009) Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 5(4):364–377PubMed
264.
go back to reference Rangappa S, Makkar R, Forrester J (2010) Review article: current status of myocardial regeneration: new cell sources and new strategies. J Cardiovasc Pharmacol Ther 15(4):338–343PubMed Rangappa S, Makkar R, Forrester J (2010) Review article: current status of myocardial regeneration: new cell sources and new strategies. J Cardiovasc Pharmacol Ther 15(4):338–343PubMed
265.
go back to reference Malliaras K, Marban E (2011) Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 98:161–185PubMed Malliaras K, Marban E (2011) Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 98:161–185PubMed
266.
go back to reference Martens TP et al (2009) Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transpl 18(3):297–304 Martens TP et al (2009) Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transpl 18(3):297–304
267.
go back to reference Hamdi H et al (2009) Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg 87(4):1196–1203PubMed Hamdi H et al (2009) Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg 87(4):1196–1203PubMed
268.
go back to reference Miyagawa S et al (2009) Combined autologous cellular cardiomyoplasty using skeletal myoblasts and bone marrow cells for human ischemic cardiomyopathy with left ventricular assist system implantation: report of a case. Surg Today 39(2):133–136PubMed Miyagawa S et al (2009) Combined autologous cellular cardiomyoplasty using skeletal myoblasts and bone marrow cells for human ischemic cardiomyopathy with left ventricular assist system implantation: report of a case. Surg Today 39(2):133–136PubMed
269.
go back to reference Miyagawa S et al (2011) Tissue-engineered cardiac constructs for cardiac repair. Ann Thorac Surg 91(1):320–329PubMed Miyagawa S et al (2011) Tissue-engineered cardiac constructs for cardiac repair. Ann Thorac Surg 91(1):320–329PubMed
270.
go back to reference Furuta A et al (2006) Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res 98(5):705–712PubMed Furuta A et al (2006) Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res 98(5):705–712PubMed
271.
go back to reference Domian IJ et al (2009) Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326(5951):426–429PubMed Domian IJ et al (2009) Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326(5951):426–429PubMed
272.
go back to reference Pasha Z et al (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77(1):134–142PubMed Pasha Z et al (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77(1):134–142PubMed
273.
go back to reference Hu X et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135(4):799–808PubMed Hu X et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135(4):799–808PubMed
274.
go back to reference Haider H et al (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308PubMed Haider H et al (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308PubMed
275.
go back to reference Traverse JH et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306(19):2110–2119PubMed Traverse JH et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306(19):2110–2119PubMed
276.
go back to reference Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42PubMed Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42PubMed
277.
go back to reference Cordes KR, Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ Res 104(6):724–732PubMed Cordes KR, Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ Res 104(6):724–732PubMed
278.
go back to reference Jakob P, Landmesser U (2012) Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovasc Res 93(4):614–622PubMed Jakob P, Landmesser U (2012) Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovasc Res 93(4):614–622PubMed
Metadata
Title
Myocardial regeneration of the failing heart
Authors
Alexander T. Akhmedov
José Marín-García
Publication date
01-11-2013
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 6/2013
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-012-9348-5

Other articles of this Issue 6/2013

Heart Failure Reviews 6/2013 Go to the issue