Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Myocardial Infarction | Research

Protective role of arachidonic acid against diabetic myocardial ischemic injury: a translational study of pigs, rats, and humans

Authors: Yunhui Lv, Kai Li, Shuo Wang, Xiaokang Wang, Guangxin Yue, Yangyang Zhang, Xin Lv, Ping Zhao, Shiping Wang, Qi Zhang, Qiuju Li, Jinyan Zhu, Jubo Li, Peng Peng, Yue Li, Jiafei Luo, Xue Zhang, Jianzhong Yang, Baojie Zhang, Xuemin Wang, Min Zhang, Chen Shen, Xin Wang, Miao Wang, Zhen Ye, Yongchun Cui

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Aim

Patients with diabetes mellitus have poor prognosis after myocardial ischemic injury. However, the mechanism is unclear and there are no related therapies. We aimed to identify regulators of diabetic myocardial ischemic injury.

Methods and results

Mass spectrometry-based, non-targeted metabolomic approach was used to profile coronary sinus blood from diabetic and non-diabetic Bama-mini pigs at 0.5-h post coronary artery ligation. Six metabolites had a |log2 (Fold Change)|> 1.3. Among them, the most changed is arachidonic acid (AA), levels of which were 32 times lower in diabetic pigs than in non-diabetic pigs. The AA-derived products, PGI2 and 6-keto-PGF, were also significantly reduced. AA treatment of cultured cardiomyocytes protected against cell death by 30% at 48 h of high glucose and oxygen deprivation, which coincided with increased mitophagic activity (as indicated by increased LC3II/LC3I, decreased p62 and increased parkin & PINK1), improved mitochondrial renewal (upregulation of Drp1 and FIS1), reduced ROS generation and increased ATP production. These cardioprotective effects were abolished by PINK1(a crucial mitophagy protein) knockdown or the autophagy inhibitor 3-Methyladenine. The protective effect of AA was also inhibited by indomethacin and Cay10441, a prostacyclin receptor antagonist. Furthermore, diabetic Sprague Dawley rats were subjected to coronary ligation for 40 min and AA treatment (10 mg/day per animal gavaged) decreased myocardial infarct size, cell apoptosis index, inflammatory cytokines and improved heart function. Scanning electron microscopy showed more intact mitochondria in the border zone of infarcted myocardium in AA treated rats. Lastly, diabetic patients after myocardial infarction had lower plasma levels of AA and 6-keto-PGF and reduced cardiac ejection fraction, compared with non-diabetic patients after myocardial infarction. Plasma AA level was inversely correlated with fasting blood glucose.

Conclusions

AA protects against diabetic ischemic myocardial damage by promoting mitochondrial autophagy and renewal, which is related to AA derived PGI2 signaling. AA may represent a new strategy to treat diabetic myocardial ischemic injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chalakova T, Yotov Y, Tzotchev K, Galcheva S, Balev B, Bocheva Y, et al. Type 1 diabetes mellitus-risk factor for cardiovascular disease morbidity and mortality. Curr Diabetes Rev. 2021;17(1):37–54.PubMedCrossRef Chalakova T, Yotov Y, Tzotchev K, Galcheva S, Balev B, Bocheva Y, et al. Type 1 diabetes mellitus-risk factor for cardiovascular disease morbidity and mortality. Curr Diabetes Rev. 2021;17(1):37–54.PubMedCrossRef
2.
go back to reference Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376(15):1407–18.PubMedCrossRef Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376(15):1407–18.PubMedCrossRef
3.
go back to reference Vaduganathan M, Fonarow GC, Greene SJ, DeVore AD, Kavati A, Sikirica S, et al. Contemporary treatment patterns and clinical outcomes of comorbid diabetes mellitus and HFrEF: the CHAMP-HF registry. JACC Heart Fail. 2020;8(6):469–80.PubMedCrossRef Vaduganathan M, Fonarow GC, Greene SJ, DeVore AD, Kavati A, Sikirica S, et al. Contemporary treatment patterns and clinical outcomes of comorbid diabetes mellitus and HFrEF: the CHAMP-HF registry. JACC Heart Fail. 2020;8(6):469–80.PubMedCrossRef
4.
go back to reference Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation. 2023;147(8):e93–621.PubMedCrossRef Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation. 2023;147(8):e93–621.PubMedCrossRef
5.
go back to reference Lee MG, Jeong MH, Ahn Y, Chae SC, Hur SH, Hong TJ, et al. Comparison of clinical outcomes following acute myocardial infarctions in hypertensive patients with or without diabetes. Korean Circ J. 2009;39(6):243–50.PubMedPubMedCentralCrossRef Lee MG, Jeong MH, Ahn Y, Chae SC, Hur SH, Hong TJ, et al. Comparison of clinical outcomes following acute myocardial infarctions in hypertensive patients with or without diabetes. Korean Circ J. 2009;39(6):243–50.PubMedPubMedCentralCrossRef
6.
go back to reference Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res. 2012;2012: 696215.PubMedPubMedCentralCrossRef Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res. 2012;2012: 696215.PubMedPubMedCentralCrossRef
7.
go back to reference Arora S, Stouffer GA, Kucharska-Newton AM, Qamar A, Vaduganathan M, Pandey A, et al. Twenty year trends and sex differences in young adults hospitalized with acute myocardial infarction. Circulation. 2019;139(8):1047–56.PubMedPubMedCentralCrossRef Arora S, Stouffer GA, Kucharska-Newton AM, Qamar A, Vaduganathan M, Pandey A, et al. Twenty year trends and sex differences in young adults hospitalized with acute myocardial infarction. Circulation. 2019;139(8):1047–56.PubMedPubMedCentralCrossRef
8.
go back to reference Liu Y, Zhu Y, Wang J, Yin D, Lv H, Qu S, et al. Gender-based long-term outcomes after revascularization for three-vessel coronary disease: a propensity score-matched analysis of a large cohort. Clin Interv Aging. 2022;17:545–54.PubMedPubMedCentralCrossRef Liu Y, Zhu Y, Wang J, Yin D, Lv H, Qu S, et al. Gender-based long-term outcomes after revascularization for three-vessel coronary disease: a propensity score-matched analysis of a large cohort. Clin Interv Aging. 2022;17:545–54.PubMedPubMedCentralCrossRef
9.
go back to reference Farhan S, Höchtl T, Wojta J, Huber K. Diabetic specific aspects in antithrombotic therapy in patients with coronary artery disease. Minerva Med. 2010;101(4):239–53.PubMed Farhan S, Höchtl T, Wojta J, Huber K. Diabetic specific aspects in antithrombotic therapy in patients with coronary artery disease. Minerva Med. 2010;101(4):239–53.PubMed
10.
go back to reference Liu HL, Liu Y, Hao ZX, Geng GY, Zhang ZF, Jing SB, et al. Comparison of primary coronary percutaneous coronary intervention between diabetic men and women with acute myocardial infarction. Pak J Med Sci. 2015;31(2):420–5.PubMedPubMedCentralCrossRef Liu HL, Liu Y, Hao ZX, Geng GY, Zhang ZF, Jing SB, et al. Comparison of primary coronary percutaneous coronary intervention between diabetic men and women with acute myocardial infarction. Pak J Med Sci. 2015;31(2):420–5.PubMedPubMedCentralCrossRef
11.
go back to reference Pedrazzini G, Santoro E, Latini R, Fromm L, Franzosi MG, Mocetti T, et al. Causes of death in patients with acute myocardial infarction treated with angiotensin-converting enzyme inhibitors: findings from the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto (GISSI)-3 trial. Am Heart J. 2008;155(2):388–94.PubMedCrossRef Pedrazzini G, Santoro E, Latini R, Fromm L, Franzosi MG, Mocetti T, et al. Causes of death in patients with acute myocardial infarction treated with angiotensin-converting enzyme inhibitors: findings from the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto (GISSI)-3 trial. Am Heart J. 2008;155(2):388–94.PubMedCrossRef
12.
go back to reference Zhang Q, Kang Y, Tang S, Yu CM. Intersection between diabetes and heart failure: is SGLT2i the “one stone for two birds” approach? Curr Cardiol Rep. 2021;23(11):171.PubMedPubMedCentralCrossRef Zhang Q, Kang Y, Tang S, Yu CM. Intersection between diabetes and heart failure: is SGLT2i the “one stone for two birds” approach? Curr Cardiol Rep. 2021;23(11):171.PubMedPubMedCentralCrossRef
13.
go back to reference Jensen-Waern M, Andersson M, Kruse R, Nilsson B, Larsson R, Korsgren O, et al. Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism. Lab Anim. 2009;43(3):249–54.PubMedCrossRef Jensen-Waern M, Andersson M, Kruse R, Nilsson B, Larsson R, Korsgren O, et al. Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism. Lab Anim. 2009;43(3):249–54.PubMedCrossRef
14.
go back to reference Gundala NKV, Naidu VGM, Das UN. Arachidonic acid and lipoxinA4 attenuate streptozotocin-induced cytotoxicity to RIN5 F cells in vitro and type 1 and type 2 diabetes mellitus in vivo. Nutrition. 2017;35:61–80.PubMedCrossRef Gundala NKV, Naidu VGM, Das UN. Arachidonic acid and lipoxinA4 attenuate streptozotocin-induced cytotoxicity to RIN5 F cells in vitro and type 1 and type 2 diabetes mellitus in vivo. Nutrition. 2017;35:61–80.PubMedCrossRef
15.
go back to reference Čater M, Križančić BL. Protective role of mitochondrial uncoupling proteins against age-related oxidative stress in type 2 diabetes mellitus. Antioxidants (Basel). 2022;11(8):1473.PubMedPubMedCentralCrossRef Čater M, Križančić BL. Protective role of mitochondrial uncoupling proteins against age-related oxidative stress in type 2 diabetes mellitus. Antioxidants (Basel). 2022;11(8):1473.PubMedPubMedCentralCrossRef
16.
go back to reference Boyman L, Karbowski M, Lederer WJ. Regulation of mitochondrial ATP production: Ca(2+) signaling and quality control. Trends Mol Med. 2020;26(1):21–39.PubMedCrossRef Boyman L, Karbowski M, Lederer WJ. Regulation of mitochondrial ATP production: Ca(2+) signaling and quality control. Trends Mol Med. 2020;26(1):21–39.PubMedCrossRef
17.
go back to reference Mao S, Chen P, Pan W, Gao L, Zhang M. Exacerbated post-infarct pathological myocardial remodelling in diabetes is associated with impaired autophagy and aggravated NLRP3 inflammasome activation. ESC Heart Fail. 2022;9(1):303–17.PubMedCrossRef Mao S, Chen P, Pan W, Gao L, Zhang M. Exacerbated post-infarct pathological myocardial remodelling in diabetes is associated with impaired autophagy and aggravated NLRP3 inflammasome activation. ESC Heart Fail. 2022;9(1):303–17.PubMedCrossRef
18.
go back to reference Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, et al. Caspase-3: structure, function, and biotechnological aspects. Biotechnol Appl Biochem. 2022;69(4):1633–45.PubMedCrossRef Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, et al. Caspase-3: structure, function, and biotechnological aspects. Biotechnol Appl Biochem. 2022;69(4):1633–45.PubMedCrossRef
19.
go back to reference Zhu L, Zhang Y, Guo Z, Wang M. Cardiovascular biology of prostanoids and drug discovery. Arterioscler Thromb Vasc Biol. 2020;40(6):1454–63.PubMedCrossRef Zhu L, Zhang Y, Guo Z, Wang M. Cardiovascular biology of prostanoids and drug discovery. Arterioscler Thromb Vasc Biol. 2020;40(6):1454–63.PubMedCrossRef
20.
go back to reference Gyurko R, Siqueira CC, Caldon N, et al. Chronic hyperglycemia predisposes to exaggerated inflammatory response and leukocyte dysfunction in Akita mice. J Immunol. 2006;177(10):7250–6.PubMedCrossRef Gyurko R, Siqueira CC, Caldon N, et al. Chronic hyperglycemia predisposes to exaggerated inflammatory response and leukocyte dysfunction in Akita mice. J Immunol. 2006;177(10):7250–6.PubMedCrossRef
21.
22.
go back to reference Wang B, Wu L, Chen J, Dong L, et al. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther. 2021;6(1):94.PubMedPubMedCentralCrossRef Wang B, Wu L, Chen J, Dong L, et al. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther. 2021;6(1):94.PubMedPubMedCentralCrossRef
24.
go back to reference Das UN. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: a review. J Adv Res. 2018;4(11):43–55.CrossRef Das UN. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: a review. J Adv Res. 2018;4(11):43–55.CrossRef
25.
go back to reference Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, et al. Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol. 2017;15(2):115–22.PubMedCrossRef Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, et al. Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol. 2017;15(2):115–22.PubMedCrossRef
26.
go back to reference Zhu M, Han Y, Zhang Y, Zhang S, Wei C, Cong Z, et al. Metabolomics study of the biochemical changes in the plasma of myocardial infarction patients. Front Physiol. 2018;9:1017.PubMedPubMedCentralCrossRef Zhu M, Han Y, Zhang Y, Zhang S, Wei C, Cong Z, et al. Metabolomics study of the biochemical changes in the plasma of myocardial infarction patients. Front Physiol. 2018;9:1017.PubMedPubMedCentralCrossRef
27.
go back to reference Gundala NKV, Das UN. Arachidonic acid-rich ARASCO oil has anti-inflammatory and antidiabetic actions against streptozotocin + high fat diet induced diabetes mellitus in Wistar rats. Nutrition. 2019;66:203–18.PubMedCrossRef Gundala NKV, Das UN. Arachidonic acid-rich ARASCO oil has anti-inflammatory and antidiabetic actions against streptozotocin + high fat diet induced diabetes mellitus in Wistar rats. Nutrition. 2019;66:203–18.PubMedCrossRef
28.
go back to reference Holman RT, Johnson SB, Gerrard JM, Mauer SM, Kupcho-Sandberg S, Brown DM. Arachidonic acid deficiency in streptozotocin-induced diabetes. Proc Natl Acad Sci USA. 1983;80(8):2375–9.PubMedPubMedCentralCrossRefADS Holman RT, Johnson SB, Gerrard JM, Mauer SM, Kupcho-Sandberg S, Brown DM. Arachidonic acid deficiency in streptozotocin-induced diabetes. Proc Natl Acad Sci USA. 1983;80(8):2375–9.PubMedPubMedCentralCrossRefADS
29.
go back to reference Alaeddine LM, Harb F, Hamza M, Dia B, Mogharbil N, Azar NS, et al. Pharmacological regulation of cytochrome P450 metabolites of arachidonic acid attenuates cardiac injury in diabetic rats. Transl Res. 2021;235:85–101.PubMedCrossRef Alaeddine LM, Harb F, Hamza M, Dia B, Mogharbil N, Azar NS, et al. Pharmacological regulation of cytochrome P450 metabolites of arachidonic acid attenuates cardiac injury in diabetic rats. Transl Res. 2021;235:85–101.PubMedCrossRef
30.
go back to reference Hooper L, Al-Khudairy L, Abdelhamid AS, Rees K, Brainard JS, Brown TJ, et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11(11):Cd011094.PubMed Hooper L, Al-Khudairy L, Abdelhamid AS, Rees K, Brainard JS, Brown TJ, et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11(11):Cd011094.PubMed
31.
go back to reference Nelson JR, Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad Med. 2019;131(4):268–77.PubMedCrossRef Nelson JR, Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad Med. 2019;131(4):268–77.PubMedCrossRef
32.
go back to reference Chen KC, Chang LS. Arachidonic acid-induced apoptosis of human neuroblastoma SK-N-SH cells is mediated through mitochondrial alteration elicited by ROS and Ca(2+)-evoked activation of p38alpha MAPK and JNK1. Toxicology. 2009;262(3):199–206.PubMedCrossRef Chen KC, Chang LS. Arachidonic acid-induced apoptosis of human neuroblastoma SK-N-SH cells is mediated through mitochondrial alteration elicited by ROS and Ca(2+)-evoked activation of p38alpha MAPK and JNK1. Toxicology. 2009;262(3):199–206.PubMedCrossRef
33.
go back to reference Zhu L, Xu C, Huo X, Hao H, Wan Q, Chen H, et al. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat Commun. 2019;10(1):1888.PubMedPubMedCentralCrossRefADS Zhu L, Xu C, Huo X, Hao H, Wan Q, Chen H, et al. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat Commun. 2019;10(1):1888.PubMedPubMedCentralCrossRefADS
34.
go back to reference Di Paola M, Lorusso M. Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta. 2006;1757(9–10):1330–7.PubMedCrossRef Di Paola M, Lorusso M. Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta. 2006;1757(9–10):1330–7.PubMedCrossRef
35.
go back to reference Tallima H, El Ridi R. Arachidonic acid: physiological roles and potential health benefits: a review. J Adv Res. 2018;11:33–41.PubMedCrossRef Tallima H, El Ridi R. Arachidonic acid: physiological roles and potential health benefits: a review. J Adv Res. 2018;11:33–41.PubMedCrossRef
36.
go back to reference Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid Med Cell Longev. 2019;2019:8267234.PubMedPubMedCentralCrossRef Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid Med Cell Longev. 2019;2019:8267234.PubMedPubMedCentralCrossRef
37.
39.
go back to reference Cheng J, Wei L, Li M. Progress in regulation of mitochondrial dynamics and mitochondrial autophagy. Sheng Li Xue Bao. 2020;72(4):475–87.PubMedADS Cheng J, Wei L, Li M. Progress in regulation of mitochondrial dynamics and mitochondrial autophagy. Sheng Li Xue Bao. 2020;72(4):475–87.PubMedADS
41.
42.
go back to reference Fukui K, Ushiki K, Takatsu H, Koike T, Urano S. Tocotrienols prevent hydrogen peroxide-induced axon and dendrite degeneration in cerebellar granule cells. Free Radic Res. 2012;46(2):184–93.PubMedCrossRef Fukui K, Ushiki K, Takatsu H, Koike T, Urano S. Tocotrienols prevent hydrogen peroxide-induced axon and dendrite degeneration in cerebellar granule cells. Free Radic Res. 2012;46(2):184–93.PubMedCrossRef
45.
go back to reference Xiao CY, Hara A, Yuhki K, Fujino T, Ma H, Okada Y, et al. Roles of prostaglandin I(2) and thromboxane A(2) in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors. Circulation. 2001;104(18):2210–5.PubMedCrossRef Xiao CY, Hara A, Yuhki K, Fujino T, Ma H, Okada Y, et al. Roles of prostaglandin I(2) and thromboxane A(2) in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors. Circulation. 2001;104(18):2210–5.PubMedCrossRef
46.
go back to reference Shinmura K, Tamaki K, Sato T, Ishida H, Bolli R. Prostacyclin attenuates oxidative damage of myocytes by opening mitochondrial ATP-sensitive K+ channels via the EP3 receptor. Am J Physiol Heart Circ Physiol. 2005;288(5):H2093–101.PubMedCrossRef Shinmura K, Tamaki K, Sato T, Ishida H, Bolli R. Prostacyclin attenuates oxidative damage of myocytes by opening mitochondrial ATP-sensitive K+ channels via the EP3 receptor. Am J Physiol Heart Circ Physiol. 2005;288(5):H2093–101.PubMedCrossRef
47.
go back to reference Hu ZL, Sun T, Lu M, Ding JH, Du RH, Hu G. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease via promoting mitophagy. Brain Behav Immun. 2019;81:509–22.PubMedCrossRef Hu ZL, Sun T, Lu M, Ding JH, Du RH, Hu G. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease via promoting mitophagy. Brain Behav Immun. 2019;81:509–22.PubMedCrossRef
48.
go back to reference He Y, Zuo C, Jia D, Bai P, Kong D, Chen D, et al. Loss of DP1 aggravates vascular remodeling in pulmonary arterial hypertension via mTORC1 signaling. Am J Respir Crit Care Med. 2020;201(10):1263–76.PubMedPubMedCentralCrossRef He Y, Zuo C, Jia D, Bai P, Kong D, Chen D, et al. Loss of DP1 aggravates vascular remodeling in pulmonary arterial hypertension via mTORC1 signaling. Am J Respir Crit Care Med. 2020;201(10):1263–76.PubMedPubMedCentralCrossRef
Metadata
Title
Protective role of arachidonic acid against diabetic myocardial ischemic injury: a translational study of pigs, rats, and humans
Authors
Yunhui Lv
Kai Li
Shuo Wang
Xiaokang Wang
Guangxin Yue
Yangyang Zhang
Xin Lv
Ping Zhao
Shiping Wang
Qi Zhang
Qiuju Li
Jinyan Zhu
Jubo Li
Peng Peng
Yue Li
Jiafei Luo
Xue Zhang
Jianzhong Yang
Baojie Zhang
Xuemin Wang
Min Zhang
Chen Shen
Xin Wang
Miao Wang
Zhen Ye
Yongchun Cui
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-024-02123-3

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine