Skip to main content
Top
Published in: Cardiovascular Toxicology 12/2021

01-12-2021 | Myocardial Infarction

Anti-hyperlipidemic, Anti-inflammatory, and Ameliorative Effects of DRP1 Inhibition in Rats with Experimentally Induced Myocardial Infarction

Authors: Xiehui Chen, Jinjie Liang, Wugang Bin, Hongmin Luo, Xu Yang

Published in: Cardiovascular Toxicology | Issue 12/2021

Login to get access

Abstract

This study aims to investigate the biological role of DRP1 in myocardial infarction (MI) in concert with hyperlipidemia (HL). Based on the available literatures, 10 genes related to MI with HL (HL-MI) were screened and detected in clinical samples. High-fat diet (HFD) was used to establish HL rat models, after which the rats were subcutaneously injected with PBS or isoproterenol hydrochloride to induce acute MI. Then, rats with HL-MI were injected with pcDNA3.1, pcDNA3.1-DRP1, sh-NC, or sh-DRP1. Serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) were measured. Cardiac function was evaluated by detecting left ventricular fractional shortening (LVFS) and left ventricular ejection fraction (LVEF). Infarct size and histopathological changes were assessed as well as myocardial apoptosis and collagen deposition. The concentration of IL-6, IL-1β, and TNF-α in rat serum and cardiac tissues was also measured by ELISA. Mitochondrial function was shown by measuring the morphology, mitochondrial membrane potential (MMP), and intracellular reactive oxygen species (ROS) level. Pro-apoptotic proteins (Bax, caspase-1, and cleaved caspase-1) and NLRP3 inflammasome activation were also assessed. The expressions of the 10 genes were measured in clinical samples and DRP1 was selected for further experiments with significantly upregulated expression in MI patients. HFD-induced rats showed increased body weight, concurrent with higher levels of TG, TC, and LDL-C and lower HDL-C level. Compared with the BD-PBS group, the HFD-PBS group presented higher mRNA and protein expression levels of DRP1, exacerbated cardiac functions, enlarged infarct size, loss of cardiomyocytes, and disordered island cardiomyocytes. In the HL-MI rat model, injection of pcDNA3.1-DRP1 enhanced the levels of serum lipids and inflammation cytokines, induced loss of a number of cardiomyocytes and collagen deposition, and decreased LVFS and LVEF, while injection of sh-DRP1 ameliorated myocardial injuries, inflammation, and cardiomyocyte apoptosis and fibrosis. In coronary artery endothelial cells from the rats, loss of MMP was observed in the HFD-MI, LV-NC, LV-DRP1, and sh-NC groups and concomitantly, the sh-DRP1group showed increased MMP and decreased levels of mitochondrial ROS, cytochrome C, pro-apoptotic proteins, and NLRP3. Inhibition of DRP1 markedly suppressed HL, systematic inflammation, and myocardial injuries induced by HL-MI through partly restoring mitochondrial function and reducing NLRP3 expression.
Literature
1.
go back to reference Chorawala, M. R., Prakash, P., Doddapattar, P., Jain, M., Dhanesha, N., & Chauhan, A. K. (2018). Deletion of extra domain A of fibronectin reduces acute myocardial ischaemia/reperfusion injury in hyperlipidaemic mice by limiting thrombo-inflammation. Thrombosis and Haemostasis, 118, 1450–1460.CrossRef Chorawala, M. R., Prakash, P., Doddapattar, P., Jain, M., Dhanesha, N., & Chauhan, A. K. (2018). Deletion of extra domain A of fibronectin reduces acute myocardial ischaemia/reperfusion injury in hyperlipidaemic mice by limiting thrombo-inflammation. Thrombosis and Haemostasis, 118, 1450–1460.CrossRef
2.
go back to reference Hemalatha, K. L., & StanelyMainzen Prince, P. (2015). Antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on experimentally induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology, 29, 182–188.CrossRef Hemalatha, K. L., & StanelyMainzen Prince, P. (2015). Antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on experimentally induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology, 29, 182–188.CrossRef
3.
go back to reference Wang, X., & Song, Q. (2018). Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cellular & Molecular Biology Letters, 23, 21.CrossRef Wang, X., & Song, Q. (2018). Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cellular & Molecular Biology Letters, 23, 21.CrossRef
4.
go back to reference Kim, C. Y., Lee, J. H., Jang, S. Y., Bae, M. H., Yang, D. H., Park, H. S., Cho, Y., Jeong, M. H., Park, J. S., Kim, H. S., Hur, S. H., Seong, I. W., Cho, M. C., Kim, C. J., Chae, S. C., & Korea Acute Mycocardial Infraction Regsitry—National Institute of Health Investigators. (2019). Usefulness of calculation of cardiovascular risk factors to predict outcomes in patients with acute myocardial infarction. American Journal of Cardiology, 124, 857–863.CrossRef Kim, C. Y., Lee, J. H., Jang, S. Y., Bae, M. H., Yang, D. H., Park, H. S., Cho, Y., Jeong, M. H., Park, J. S., Kim, H. S., Hur, S. H., Seong, I. W., Cho, M. C., Kim, C. J., Chae, S. C., & Korea Acute Mycocardial Infraction Regsitry—National Institute of Health Investigators. (2019). Usefulness of calculation of cardiovascular risk factors to predict outcomes in patients with acute myocardial infarction. American Journal of Cardiology, 124, 857–863.CrossRef
5.
go back to reference Shao, Y., Huo, D., Peng, Q., Pan, Y., Jiang, S., Liu, B., & Zhang, J. (2017). Lactobacillus plantarum HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia. Food & Function, 8, 4508–4516.CrossRef Shao, Y., Huo, D., Peng, Q., Pan, Y., Jiang, S., Liu, B., & Zhang, J. (2017). Lactobacillus plantarum HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia. Food & Function, 8, 4508–4516.CrossRef
6.
go back to reference Wake, M., Oh, A., Onishi, Y., Guelfucci, F., Shimasaki, Y., & Teramoto, T. (2019). Adherence and persistence to hyperlipidemia medications in patients with atherosclerotic cardiovascular disease and those with diabetes mellitus based on administrative claims data in Japan. Atherosclerosis, 282, 19–28.CrossRef Wake, M., Oh, A., Onishi, Y., Guelfucci, F., Shimasaki, Y., & Teramoto, T. (2019). Adherence and persistence to hyperlipidemia medications in patients with atherosclerotic cardiovascular disease and those with diabetes mellitus based on administrative claims data in Japan. Atherosclerosis, 282, 19–28.CrossRef
7.
go back to reference Kupai, K., Csonka, C., Fekete, V., Odendaal, L., van Rooyen, J., de Marais, W., Csont, T., & Ferdinandy, P. (2009). Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: Role of peroxynitrite. American Journal of Physiology. Heart and Circulatory Physiology, 297, H1729-1735.CrossRef Kupai, K., Csonka, C., Fekete, V., Odendaal, L., van Rooyen, J., de Marais, W., Csont, T., & Ferdinandy, P. (2009). Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: Role of peroxynitrite. American Journal of Physiology. Heart and Circulatory Physiology, 297, H1729-1735.CrossRef
8.
go back to reference Ma, Y., Ma, L., Ma, J., Wu, R., Zou, Y., & Ge, J. (2020). Hyperlipidemia inhibits the protective effect of lisinopril after myocardial infarction via activation of dendritic cells. Journal of Cellular and Molecular Medicine, 24, 4082–4091.CrossRef Ma, Y., Ma, L., Ma, J., Wu, R., Zou, Y., & Ge, J. (2020). Hyperlipidemia inhibits the protective effect of lisinopril after myocardial infarction via activation of dendritic cells. Journal of Cellular and Molecular Medicine, 24, 4082–4091.CrossRef
9.
go back to reference Andreadou, I., Daiber, A., Baxter, G. F., Brizzi, M. F., Di Lisa, F., Kaludercic, N., Lazou, A., Varga, Z. V., Zuurbier, C. J., Schulz, R., & Ferdinandy, P. (2021). Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radical Biology & Medicine, 166, 33–52.CrossRef Andreadou, I., Daiber, A., Baxter, G. F., Brizzi, M. F., Di Lisa, F., Kaludercic, N., Lazou, A., Varga, Z. V., Zuurbier, C. J., Schulz, R., & Ferdinandy, P. (2021). Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radical Biology & Medicine, 166, 33–52.CrossRef
10.
go back to reference Yu, W., Sun, S., Xu, H., Li, C., Ren, J., & Zhang, Y. (2020). TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury. Theranostics, 10, 11244–11263.CrossRef Yu, W., Sun, S., Xu, H., Li, C., Ren, J., & Zhang, Y. (2020). TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury. Theranostics, 10, 11244–11263.CrossRef
12.
go back to reference Disatnik, M. H., Ferreira, J. C., Campos, J. C., Gomes, K. S., Dourado, P. M., Qi, X., & Mochly-Rosen, D. (2013). Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. Journal of American Heart Association, 2, e000461.CrossRef Disatnik, M. H., Ferreira, J. C., Campos, J. C., Gomes, K. S., Dourado, P. M., Qi, X., & Mochly-Rosen, D. (2013). Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. Journal of American Heart Association, 2, e000461.CrossRef
13.
go back to reference Ding, M., Dong, Q., Liu, Z., Liu, Z., Qu, Y., Li, X., Huo, C., Jia, X., Fu, F., & Wang, X. (2017). Inhibition of dynamin-related protein 1 protects against myocardial ischemia-reperfusion injury in diabetic mice. Cardiovascular Diabetology, 16, 19.CrossRef Ding, M., Dong, Q., Liu, Z., Liu, Z., Qu, Y., Li, X., Huo, C., Jia, X., Fu, F., & Wang, X. (2017). Inhibition of dynamin-related protein 1 protects against myocardial ischemia-reperfusion injury in diabetic mice. Cardiovascular Diabetology, 16, 19.CrossRef
14.
go back to reference Hu, Q., Zhang, H., Gutierrez Cortes, N., Wu, D., Wang, P., Zhang, J., Mattison, J. A., Smith, E., Bettcher, L. F., Wang, M., Lakatta, E. G., Sheu, S. S., & Wang, W. (2020). Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circulation Research, 126, 456–470.CrossRef Hu, Q., Zhang, H., Gutierrez Cortes, N., Wu, D., Wang, P., Zhang, J., Mattison, J. A., Smith, E., Bettcher, L. F., Wang, M., Lakatta, E. G., Sheu, S. S., & Wang, W. (2020). Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circulation Research, 126, 456–470.CrossRef
15.
go back to reference Sahu, B. D., Anubolu, H., Koneru, M., Kumar, J. M., Kuncha, M., Rachamalla, S. S., & Sistla, R. (2014). Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: Possible involvement of mitochondrial dysfunction and apoptosis. Life Sciences, 107, 59–67.CrossRef Sahu, B. D., Anubolu, H., Koneru, M., Kumar, J. M., Kuncha, M., Rachamalla, S. S., & Sistla, R. (2014). Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: Possible involvement of mitochondrial dysfunction and apoptosis. Life Sciences, 107, 59–67.CrossRef
16.
go back to reference Burja, B., Kuret, T., Janko, T., Topalovic, D., Zivkovic, L., Mrak-Poljsak, K., Spremo-Potparevic, B., Zigon, P., Distler, O., Cucnik, S., Sodin-Semrl, S., Lakota, K., & Frank-Bertoncelj, M. (2019). Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Frontiers in Cardiovascular Medicine, 6, 56.CrossRef Burja, B., Kuret, T., Janko, T., Topalovic, D., Zivkovic, L., Mrak-Poljsak, K., Spremo-Potparevic, B., Zigon, P., Distler, O., Cucnik, S., Sodin-Semrl, S., Lakota, K., & Frank-Bertoncelj, M. (2019). Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Frontiers in Cardiovascular Medicine, 6, 56.CrossRef
17.
go back to reference Javaheri, A., Bajpai, G., Picataggi, A., Mani, S., Foroughi, L., Evie, H., Kovacs, A., Weinheimer, C. J., Hyrc, K., Xiao, Q., Ballabio, A., Lee, J. M., Matkovich, S. J., Razani, B., Schilling, J. D., Lavine, K. J., & Diwan, A. (2019). TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy. JCI Insight. https://doi.org/10.1172/jci.insight.127312CrossRefPubMedPubMedCentral Javaheri, A., Bajpai, G., Picataggi, A., Mani, S., Foroughi, L., Evie, H., Kovacs, A., Weinheimer, C. J., Hyrc, K., Xiao, Q., Ballabio, A., Lee, J. M., Matkovich, S. J., Razani, B., Schilling, J. D., Lavine, K. J., & Diwan, A. (2019). TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy. JCI Insight. https://​doi.​org/​10.​1172/​jci.​insight.​127312CrossRefPubMedPubMedCentral
18.
go back to reference Ni, S. H., Sun, S. N., Zhou, Z., Li, Y., Huang, Y. S., Li, H., Wang, J. J., Xiao, W., Xian, S. X., Yang, Z. Q., Wang, L. J., & Lu, L. (2020). Arctigenin alleviates myocardial infarction injury through inhibition of the NFAT5-related inflammatory phenotype of cardiac macrophages/monocytes in mice. Laboratory Investigation, 100, 527–541.CrossRef Ni, S. H., Sun, S. N., Zhou, Z., Li, Y., Huang, Y. S., Li, H., Wang, J. J., Xiao, W., Xian, S. X., Yang, Z. Q., Wang, L. J., & Lu, L. (2020). Arctigenin alleviates myocardial infarction injury through inhibition of the NFAT5-related inflammatory phenotype of cardiac macrophages/monocytes in mice. Laboratory Investigation, 100, 527–541.CrossRef
19.
go back to reference Nural-Guvener, H. F., Mutlu, N., & Gaballa, M. A. (2013). BACE1 levels are elevated in congestive heart failure. Neuroscience Letters, 532, 7–11.CrossRef Nural-Guvener, H. F., Mutlu, N., & Gaballa, M. A. (2013). BACE1 levels are elevated in congestive heart failure. Neuroscience Letters, 532, 7–11.CrossRef
20.
go back to reference Shia, W. C., Ku, T. H., Tsao, Y. M., Hsia, C. H., Chang, Y. M., Huang, C. H., Chung, Y. C., Hsu, S. L., Liang, K. W., & Hsu, F. R. (2011). Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genomics, 12(Suppl 3), S23.CrossRef Shia, W. C., Ku, T. H., Tsao, Y. M., Hsia, C. H., Chang, Y. M., Huang, C. H., Chung, Y. C., Hsu, S. L., Liang, K. W., & Hsu, F. R. (2011). Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genomics, 12(Suppl 3), S23.CrossRef
21.
go back to reference Su, H., Li, Y., Hu, D., Xie, L., Ke, H., Zheng, X., & Chen, W. (2018). Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radical Biology & Medicine, 126, 269–286.CrossRef Su, H., Li, Y., Hu, D., Xie, L., Ke, H., Zheng, X., & Chen, W. (2018). Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radical Biology & Medicine, 126, 269–286.CrossRef
22.
go back to reference Zhang, X., Chen, X., Qi, T., Kong, Q., Cheng, H., Cao, X., Li, Y., Li, C., Liu, L., & Ding, Z. (2019). HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback regulation with PPARgamma. Cell Death and Differentiation, 26, 2253–2267.CrossRef Zhang, X., Chen, X., Qi, T., Kong, Q., Cheng, H., Cao, X., Li, Y., Li, C., Liu, L., & Ding, Z. (2019). HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback regulation with PPARgamma. Cell Death and Differentiation, 26, 2253–2267.CrossRef
23.
go back to reference Zhu, Y. J., Wang, C., Song, G., Zang, S. S., Liu, Y. X., & Li, L. (2015). Toll-like receptor-2 and -4 are associated with hyperlipidemia. Molecular Medicine Reports, 12, 8241–8246.CrossRef Zhu, Y. J., Wang, C., Song, G., Zang, S. S., Liu, Y. X., & Li, L. (2015). Toll-like receptor-2 and -4 are associated with hyperlipidemia. Molecular Medicine Reports, 12, 8241–8246.CrossRef
24.
go back to reference DattaChaudhuri, R., Banerjee, D., Banik, A., & Sarkar, S. (2020). Severity and duration of hypoxic stress differentially regulates HIF-1alpha-mediated cardiomyocyte apoptotic signaling milieu during myocardial infarction. Archives of Biochemistry and Biophysics, 690, 108430.CrossRef DattaChaudhuri, R., Banerjee, D., Banik, A., & Sarkar, S. (2020). Severity and duration of hypoxic stress differentially regulates HIF-1alpha-mediated cardiomyocyte apoptotic signaling milieu during myocardial infarction. Archives of Biochemistry and Biophysics, 690, 108430.CrossRef
25.
go back to reference Radhiga, T., Senthil, S., Sundaresan, A., & Pugalendi, K. V. (2019). Ursolic acid modulates MMPs, collagen-I, alpha-SMA, and TGF-beta expression in isoproterenol-induced myocardial infarction in rats. Human and Experimental Toxicology, 38, 785–793.CrossRef Radhiga, T., Senthil, S., Sundaresan, A., & Pugalendi, K. V. (2019). Ursolic acid modulates MMPs, collagen-I, alpha-SMA, and TGF-beta expression in isoproterenol-induced myocardial infarction in rats. Human and Experimental Toxicology, 38, 785–793.CrossRef
26.
go back to reference Kannan, M. M., & Quine, S. D. (2013). Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism, 62, 52–61.CrossRef Kannan, M. M., & Quine, S. D. (2013). Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism, 62, 52–61.CrossRef
27.
go back to reference Tao, A., Xu, X., Kvietys, P., Kao, R., Martin, C., & Rui, T. (2018). Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial sirt1 and subsequent Akt/Drp1 interaction. International Journal of Biochemistry & Cell Biology, 105, 94–103.CrossRef Tao, A., Xu, X., Kvietys, P., Kao, R., Martin, C., & Rui, T. (2018). Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial sirt1 and subsequent Akt/Drp1 interaction. International Journal of Biochemistry & Cell Biology, 105, 94–103.CrossRef
28.
go back to reference Cao, K., Xu, J., Zou, X., Li, Y., Chen, C., Zheng, A., Li, H., Li, H., Szeto, I. M., Shi, Y., Long, J., Liu, J., & Feng, Z. (2014). Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radical Biology & Medicine, 67, 396–407.CrossRef Cao, K., Xu, J., Zou, X., Li, Y., Chen, C., Zheng, A., Li, H., Li, H., Szeto, I. M., Shi, Y., Long, J., Liu, J., & Feng, Z. (2014). Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radical Biology & Medicine, 67, 396–407.CrossRef
29.
go back to reference Shen, Y. L., Shi, Y. Z., Chen, G. G., Wang, L. L., Zheng, M. Z., Jin, H. F., & Chen, Y. Y. (2018). TNF-alpha induces Drp1-mediated mitochondrial fragmentation during inflammatory cardiomyocyte injury. International Journal of Molecular Medicine, 41, 2317–2327.PubMed Shen, Y. L., Shi, Y. Z., Chen, G. G., Wang, L. L., Zheng, M. Z., Jin, H. F., & Chen, Y. Y. (2018). TNF-alpha induces Drp1-mediated mitochondrial fragmentation during inflammatory cardiomyocyte injury. International Journal of Molecular Medicine, 41, 2317–2327.PubMed
30.
go back to reference Zou, X., Xie, L., Wang, W., Zhao, G., Tian, X., & Chen, M. (2020). FK866 alleviates cerebral pyroptosis and inflammation mediated by Drp1 in a rat cardiopulmonary resuscitation model. International Immunopharmacology, 89, 1032.CrossRef Zou, X., Xie, L., Wang, W., Zhao, G., Tian, X., & Chen, M. (2020). FK866 alleviates cerebral pyroptosis and inflammation mediated by Drp1 in a rat cardiopulmonary resuscitation model. International Immunopharmacology, 89, 1032.CrossRef
31.
go back to reference Ferko, M., Farkasova, V., Jasova, M., Kancirova, I., Ravingerova, T., DurisAdameova, A., Andelova, N., & Waczulikova, I. (2018). Hypercholesterolemia antagonized heart adaptation and functional remodeling of the mitochondria observed in acute diabetes mellitus subjected to ischemia/reperfusion injury. Journal of Physiology and Pharmacology. https://doi.org/10.26402/jpp.2018.5.03CrossRefPubMed Ferko, M., Farkasova, V., Jasova, M., Kancirova, I., Ravingerova, T., DurisAdameova, A., Andelova, N., & Waczulikova, I. (2018). Hypercholesterolemia antagonized heart adaptation and functional remodeling of the mitochondria observed in acute diabetes mellitus subjected to ischemia/reperfusion injury. Journal of Physiology and Pharmacology. https://​doi.​org/​10.​26402/​jpp.​2018.​5.​03CrossRefPubMed
32.
go back to reference Chan, D. C. (2012). Fusion and fission: Interlinked processes critical for mitochondrial health. Annual Review of Genetics, 46, 265–287.CrossRef Chan, D. C. (2012). Fusion and fission: Interlinked processes critical for mitochondrial health. Annual Review of Genetics, 46, 265–287.CrossRef
33.
go back to reference Givvimani, S., Pushpakumar, S. B., Metreveli, N., Veeranki, S., Kundu, S., & Tyagi, S. C. (2015). Role of mitochondrial fission and fusion in cardiomyocyte contractility. International Journal of Cardiology, 187, 325–333.CrossRef Givvimani, S., Pushpakumar, S. B., Metreveli, N., Veeranki, S., Kundu, S., & Tyagi, S. C. (2015). Role of mitochondrial fission and fusion in cardiomyocyte contractility. International Journal of Cardiology, 187, 325–333.CrossRef
35.
go back to reference Sharp, W. W., Fang, Y. H., Han, M., Zhang, H. J., Hong, Z., Banathy, A., Morrow, E., Ryan, J. J., & Archer, S. L. (2014). Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: Therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. The FASEB Journal, 28, 316–326.CrossRef Sharp, W. W., Fang, Y. H., Han, M., Zhang, H. J., Hong, Z., Banathy, A., Morrow, E., Ryan, J. J., & Archer, S. L. (2014). Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: Therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. The FASEB Journal, 28, 316–326.CrossRef
37.
go back to reference Toldo, S., & Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews Cardiology, 15, 203–214.CrossRef Toldo, S., & Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews Cardiology, 15, 203–214.CrossRef
Metadata
Title
Anti-hyperlipidemic, Anti-inflammatory, and Ameliorative Effects of DRP1 Inhibition in Rats with Experimentally Induced Myocardial Infarction
Authors
Xiehui Chen
Jinjie Liang
Wugang Bin
Hongmin Luo
Xu Yang
Publication date
01-12-2021
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 12/2021
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-021-09691-w

Other articles of this Issue 12/2021

Cardiovascular Toxicology 12/2021 Go to the issue