Skip to main content
Top
Published in: Current Cardiovascular Imaging Reports 1/2014

01-01-2014 | Molecular Imaging (G Strijkers, Section Editor)

Myocardial Blood Flow Quantification from MRI – an Image Analysis Perspective

Authors: Niloufar Zarinabad, Amedeo Chiribiri, Marcel Breeuwer

Published in: Current Cardiovascular Imaging Reports | Issue 1/2014

Login to get access

Abstract

First-pass perfusion imaging allows for a very high spatial resolution, noninvasive and radiation free quantification of myocardial blood flow. True quantification of perfusion images offers a unique capability to localize and measure subendocardial ischemia. Several techniques such as semiquantitative, model independent and model dependent methods are available for calculating MBF from perfusion CMR. However, for accurate perfusion quantification a few requirements need to be addressed beforehand. These include but are not limited to the relationship between the amount of injected contrast agent and the signal intensity of the MR image, used pulse sequence, and the extraction of an arterial input function. Moreover, with the new advances in CMR perfusion imaging, high spatial resolution voxel-wise quantitative analysis of myocardial perfusion is feasible. Voxel-wise quantification has the potential to combine the advantage of visual analysis with the objective and reproducible evaluation made by true quantitative methods.
Literature
1.
2.
go back to reference Hamon M, Fau G, Nee G, Ehtisham J, Morello R. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson. 2010;12:29. doi:10.1186/1532-429X-12-29.PubMedCrossRef Hamon M, Fau G, Nee G, Ehtisham J, Morello R. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson. 2010;12:29. doi:10.​1186/​1532-429X-12-29.PubMedCrossRef
4.
go back to reference Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A, et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J. 2006;27:1465–71. doi:10.1093/eurheartj/ehl039.PubMedCrossRef Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A, et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J. 2006;27:1465–71. doi:10.​1093/​eurheartj/​ehl039.PubMedCrossRef
5.
go back to reference Kuhl HP, Katoh M, Buhr C, Krombach GA, Hoffmann R, Rassaf T, et al. Comparison of magnetic resonance perfusion imaging vs invasive fractional flow reserve for assessment of the hemodynamic significance of epicardial coronary artery stenosis. Am J Cardiol. 2007;99:1090–5. doi:10.1016/j.amjcard.2006.11.061.PubMedCrossRef Kuhl HP, Katoh M, Buhr C, Krombach GA, Hoffmann R, Rassaf T, et al. Comparison of magnetic resonance perfusion imaging vs invasive fractional flow reserve for assessment of the hemodynamic significance of epicardial coronary artery stenosis. Am J Cardiol. 2007;99:1090–5. doi:10.​1016/​j.​amjcard.​2006.​11.​061.PubMedCrossRef
6.
go back to reference Costa MA, Shoemaker S, Futamatsu H, Klassen C, Angiolillo DJ, Nguyen M, et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol. 2007;50:514–22. doi:10.1016/j.jacc.2007.04.053.PubMedCrossRef Costa MA, Shoemaker S, Futamatsu H, Klassen C, Angiolillo DJ, Nguyen M, et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol. 2007;50:514–22. doi:10.​1016/​j.​jacc.​2007.​04.​053.PubMedCrossRef
7.
go back to reference Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, et al. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol. 2011;57:70–5.PubMedCrossRef Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, et al. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol. 2011;57:70–5.PubMedCrossRef
8.
go back to reference Ishida N, Sakuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003;229:209–16. doi:10.1148/radiol.2291021118.PubMedCrossRef Ishida N, Sakuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003;229:209–16. doi:10.​1148/​radiol.​2291021118.PubMedCrossRef
9.
go back to reference Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–9. doi:10.1093/eurheartj/ehm617.PubMedCrossRef Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–9. doi:10.​1093/​eurheartj/​ehm617.PubMedCrossRef
10.
go back to reference Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J. 2013;34:775–81. doi:10.1093/eurheartj/ehs022.PubMedCrossRef Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J. 2013;34:775–81. doi:10.​1093/​eurheartj/​ehs022.PubMedCrossRef
13.
go back to reference Ishida M, Sakuma H, Kato N, Ishida N, Kitagawa K, Shimono T, et al. Contrast-enhanced MR imaging for evaluation of coronary artery disease before elective repair of aortic aneurysm. Radiology. 2005;237:458–64. doi:10.1148/radiol.2372040962.PubMedCrossRef Ishida M, Sakuma H, Kato N, Ishida N, Kitagawa K, Shimono T, et al. Contrast-enhanced MR imaging for evaluation of coronary artery disease before elective repair of aortic aneurysm. Radiology. 2005;237:458–64. doi:10.​1148/​radiol.​2372040962.PubMedCrossRef
14.
go back to reference Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379–83.PubMedCrossRef Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379–83.PubMedCrossRef
15.
go back to reference Al-Saadi N, Nagel E, Gross M, Schnackenburg B, Paetsch I, Klein C, et al. Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2000;36:1557–64.PubMedCrossRef Al-Saadi N, Nagel E, Gross M, Schnackenburg B, Paetsch I, Klein C, et al. Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2000;36:1557–64.PubMedCrossRef
16.••
go back to reference Pack NA, DiBella EV. Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods. Magn Reson Med. 2010;64:125–37. doi:10.1002/mrm.22282. In this study 4 quantitative analysis methods (2-compartment modeling, Fermi function modeling, model-independent analysis, and Patlak plot analysis) were implemented and compared for quantifying myocardial perfusion.PubMedCentralPubMedCrossRef Pack NA, DiBella EV. Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods. Magn Reson Med. 2010;64:125–37. doi:10.​1002/​mrm.​22282. In this study 4 quantitative analysis methods (2-compartment modeling, Fermi function modeling, model-independent analysis, and Patlak plot analysis) were implemented and compared for quantifying myocardial perfusion.PubMedCentralPubMedCrossRef
18.
go back to reference Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002;29:886–97.PubMedCrossRef Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002;29:886–97.PubMedCrossRef
19.••
go back to reference Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:57. doi:10.1186/1532-429X-12-57. A review article which provides a synopsis of the current status of the field; and introduces the reader to the technical aspects of perfusion quantification by CMR.PubMedCrossRef Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:57. doi:10.​1186/​1532-429X-12-57. A review article which provides a synopsis of the current status of the field; and introduces the reader to the technical aspects of perfusion quantification by CMR.PubMedCrossRef
20.
go back to reference Neyran B, Janier MF, Casali C, Revel D, Canet Soulas EP. Mapping myocardial perfusion with an intravascular MR contrast agent: robustness of deconvolution methods at various blood flows. Magn Reson Med. 2002;48:166–79. doi:10.1002/mrm.10201.PubMedCrossRef Neyran B, Janier MF, Casali C, Revel D, Canet Soulas EP. Mapping myocardial perfusion with an intravascular MR contrast agent: robustness of deconvolution methods at various blood flows. Magn Reson Med. 2002;48:166–79. doi:10.​1002/​mrm.​10201.PubMedCrossRef
21.
go back to reference Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen BV, Stillman AE, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204:373–84.PubMed Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen BV, Stillman AE, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204:373–84.PubMed
22.
go back to reference Pack NA, DiBella EV, Rust TC, Kadrmas DJ, McGann CJ, Butterfield R, et al. Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method. J Cardiovasc Magn Reson. 2008;10:52. doi:10.1186/1532-429X-10-52.PubMedCrossRef Pack NA, DiBella EV, Rust TC, Kadrmas DJ, McGann CJ, Butterfield R, et al. Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method. J Cardiovasc Magn Reson. 2008;10:52. doi:10.​1186/​1532-429X-10-52.PubMedCrossRef
23.
go back to reference Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998;25:73–84.PubMedCrossRef Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998;25:73–84.PubMedCrossRef
24.
go back to reference Parkka JP, Niemi P, Saraste A, Koskenvuo JW, Komu M, Oikonen V, et al. Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans. Magn Reson Med. 2006;55:772–9. doi:10.1002/mrm.20833.PubMedCrossRef Parkka JP, Niemi P, Saraste A, Koskenvuo JW, Komu M, Oikonen V, et al. Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans. Magn Reson Med. 2006;55:772–9. doi:10.​1002/​mrm.​20833.PubMedCrossRef
25.
go back to reference Ichihara T, Ishida M, Kitagawa K, Ichikawa Y, Natsume T, Yamaki N, et al. Quantitative analysis of first-pass contrast-enhanced myocardial perfusion MRI using a Patlak plot method and blood saturation correction. Magn Reson Med. 2009;62:373–83. doi:10.1002/mrm.22018.PubMedCrossRef Ichihara T, Ishida M, Kitagawa K, Ichikawa Y, Natsume T, Yamaki N, et al. Quantitative analysis of first-pass contrast-enhanced myocardial perfusion MRI using a Patlak plot method and blood saturation correction. Magn Reson Med. 2009;62:373–83. doi:10.​1002/​mrm.​22018.PubMedCrossRef
26.
go back to reference Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB. Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging. 2008;27:818–24. doi:10.1002/jmri.21306.PubMedCrossRef Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB. Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging. 2008;27:818–24. doi:10.​1002/​jmri.​21306.PubMedCrossRef
27.••
go back to reference Zarinabad N, Chiribiri A, Hautvast GL, Ishida M, Schuster A, Cvetkovic Z, et al. Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison. Magn Reson Med. 2012;68:1994–2004. doi:10.1002/mrm.24195. This study compares different quantitative methods and applies these techniques to high resolution voxel-wise analysis. It demonstrates the feasibility of voxel-wise analysis.PubMedCrossRef Zarinabad N, Chiribiri A, Hautvast GL, Ishida M, Schuster A, Cvetkovic Z, et al. Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison. Magn Reson Med. 2012;68:1994–2004. doi:10.​1002/​mrm.​24195. This study compares different quantitative methods and applies these techniques to high resolution voxel-wise analysis. It demonstrates the feasibility of voxel-wise analysis.PubMedCrossRef
28.••
go back to reference Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012;5:154–66. doi:10.1016/j.jcmg.2011.07.013. This study evaluates fully quantitative myocardial blood flow (MBF) at a voxel level based on contrast-enhanced first-pass cardiac magnetic resonance (CMR) imaging in dogs and in patients.PubMedCentralPubMedCrossRef Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012;5:154–66. doi:10.​1016/​j.​jcmg.​2011.​07.​013. This study evaluates fully quantitative myocardial blood flow (MBF) at a voxel level based on contrast-enhanced first-pass cardiac magnetic resonance (CMR) imaging in dogs and in patients.PubMedCentralPubMedCrossRef
29.
go back to reference Larsson HB, Fritz-Hansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O. Myocardial perfusion modeling using MRI. Magn Reson Med. 1996;35:716–26.PubMedCrossRef Larsson HB, Fritz-Hansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O. Myocardial perfusion modeling using MRI. Magn Reson Med. 1996;35:716–26.PubMedCrossRef
31.
go back to reference Evelhoch JL. Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging. 1999;10:254–9.PubMedCrossRef Evelhoch JL. Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging. 1999;10:254–9.PubMedCrossRef
32.
33.
go back to reference Hsu LY, Kellman P, Arai AE. Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging. 2008;27:793–801. doi:10.1002/jmri.21286.PubMedCrossRef Hsu LY, Kellman P, Arai AE. Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging. 2008;27:793–801. doi:10.​1002/​jmri.​21286.PubMedCrossRef
34.
go back to reference Muehling OM, Huber A, Cyran C, Schoenberg SO, Reiser M, Steinbeck G, et al. The delay of contrast arrival in magnetic resonance first-pass perfusion imaging: a novel noninvasive parameter detecting collateral-dependent myocardium. Heart. 2007;93:842–7. doi:10.1136/hrt.2006.103788.PubMedCrossRef Muehling OM, Huber A, Cyran C, Schoenberg SO, Reiser M, Steinbeck G, et al. The delay of contrast arrival in magnetic resonance first-pass perfusion imaging: a novel noninvasive parameter detecting collateral-dependent myocardium. Heart. 2007;93:842–7. doi:10.​1136/​hrt.​2006.​103788.PubMedCrossRef
35.
go back to reference Futamatsu H, Wilke N, Klassen C, Shoemaker S, Angiolillo DJ, Siuciak A, et al. Evaluation of cardiac magnetic resonance imaging parameters to detect anatomically and hemodynamically significant coronary artery disease. Am Heart J. 2007;154:298–305. doi:10.1016/j.ahj.2007.04.024.PubMedCrossRef Futamatsu H, Wilke N, Klassen C, Shoemaker S, Angiolillo DJ, Siuciak A, et al. Evaluation of cardiac magnetic resonance imaging parameters to detect anatomically and hemodynamically significant coronary artery disease. Am Heart J. 2007;154:298–305. doi:10.​1016/​j.​ahj.​2007.​04.​024.PubMedCrossRef
36.
go back to reference Hsu LY, Rhoads KL, Holly JE, Kellman P, Aletras AH, Arai AE. Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging. 2006;23:315–22. doi:10.1002/jmri.20502.PubMedCrossRef Hsu LY, Rhoads KL, Holly JE, Kellman P, Aletras AH, Arai AE. Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging. 2006;23:315–22. doi:10.​1002/​jmri.​20502.PubMedCrossRef
37.
38.
go back to reference Christian TF, Aletras AH, Arai AE. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J Magn Reson Imaging. 2008;27:1271–7. doi:10.1002/jmri.21383.PubMedCrossRef Christian TF, Aletras AH, Arai AE. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J Magn Reson Imaging. 2008;27:1271–7. doi:10.​1002/​jmri.​21383.PubMedCrossRef
39.
go back to reference Utz W, Greiser A, Niendorf T, Dietz R, Schulz-Menger J. Single- or dual-bolus approach for the assessment of myocardial perfusion reserve in quantitative MR perfusion imaging. Magn Reson Med. 2008;59:1373–7. doi:10.1002/mrm.21611.PubMedCrossRef Utz W, Greiser A, Niendorf T, Dietz R, Schulz-Menger J. Single- or dual-bolus approach for the assessment of myocardial perfusion reserve in quantitative MR perfusion imaging. Magn Reson Med. 2008;59:1373–7. doi:10.​1002/​mrm.​21611.PubMedCrossRef
41.•
go back to reference Ishida M, Schuster A, Morton G, Chiribiri A, Hussain S, Paul M, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:28. doi:10.1186/1532-429X-13-28. This study demonstrates the feasibility of the universal dual-bolus injection scheme.PubMedCrossRef Ishida M, Schuster A, Morton G, Chiribiri A, Hussain S, Paul M, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:28. doi:10.​1186/​1532-429X-13-28. This study demonstrates the feasibility of the universal dual-bolus injection scheme.PubMedCrossRef
42.
go back to reference Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004;20:39–45. doi:10.1002/jmri.20054.PubMedCrossRef Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004;20:39–45. doi:10.​1002/​jmri.​20054.PubMedCrossRef
43.
45.
go back to reference Plein S, Schwitter J, Suerder D, Greenwood JP, Boesiger P, Kozerke S. k-space and time sensitivity encoding-accelerated myocardial perfusion MR imaging at 3.0 T: comparison with 1.5 T. Radiology. 2008;249:493–500.PubMedCentralPubMedCrossRef Plein S, Schwitter J, Suerder D, Greenwood JP, Boesiger P, Kozerke S. k-space and time sensitivity encoding-accelerated myocardial perfusion MR imaging at 3.0 T: comparison with 1.5 T. Radiology. 2008;249:493–500.PubMedCentralPubMedCrossRef
46.
go back to reference Breeuwer M, Quist M, Spreeuwers L. Automatic quantitative analysis of cardiac MR perfusion images. Proc SPIE Med Imaging, San Diego, CA, USA. 2001;4322:733–42. Breeuwer M, Quist M, Spreeuwers L. Automatic quantitative analysis of cardiac MR perfusion images. Proc SPIE Med Imaging, San Diego, CA, USA. 2001;4322:733–42.
47.
go back to reference Spreeuwers L, Breeuwer M. Automatic detection of myocardial boundaries in MR cardio perfusion images. Proceedings of Medical Image Computing and Computer-Assisted Intervention, Utrecht, Netherlands. 2001:1228–31. Spreeuwers L, Breeuwer M. Automatic detection of myocardial boundaries in MR cardio perfusion images. Proceedings of Medical Image Computing and Computer-Assisted Intervention, Utrecht, Netherlands. 2001:1228–31.
48.••
go back to reference Hautvast GL, Chiribiri A, Lockie T, Breeuwer M, Nagel E, Plein S. Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images. Magn Reson Med. 2011;66:1477–87. doi:10.1002/mrm.22930. This study introduces the new transmural gradient analysis semiquantitative method. Hautvast GL, Chiribiri A, Lockie T, Breeuwer M, Nagel E, Plein S. Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images. Magn Reson Med. 2011;66:1477–87. doi:10.​1002/​mrm.​22930. This study introduces the new transmural gradient analysis semiquantitative method.
49.••
go back to reference Hautvast G, Chiribiri A, Zarinabad N, Schuster A, Breeuwer M, Nagel E. Myocardial blood flow quantification from MRI by deconvolution using an exponential approximation basis. IEEE Trans Bio-med Eng. 2012;59:2060–7. doi:10.1109/TBME.2012.2197620. This study demonstrated the feasibility of exponential basis deconvolution for MBF quantification.CrossRef Hautvast G, Chiribiri A, Zarinabad N, Schuster A, Breeuwer M, Nagel E. Myocardial blood flow quantification from MRI by deconvolution using an exponential approximation basis. IEEE Trans Bio-med Eng. 2012;59:2060–7. doi:10.​1109/​TBME.​2012.​2197620. This study demonstrated the feasibility of exponential basis deconvolution for MBF quantification.CrossRef
50.
go back to reference Li-Yueh Hsu, Aletras AH, Arai AE. Correcting surface coil intensity inhomogeneity improves quantitative analysis of cardiac magnetic resonance images. Biomedical Imaging: from Nano to Macro, ISBI, IEEE International Symposium 14-17 May Paris: IEEE; 2008. Li-Yueh Hsu, Aletras AH, Arai AE. Correcting surface coil intensity inhomogeneity improves quantitative analysis of cardiac magnetic resonance images. Biomedical Imaging: from Nano to Macro, ISBI, IEEE International Symposium 14-17 May Paris: IEEE; 2008.
52.•
go back to reference Zarinabad N, Hautvast G, Breeuwer M, Nagel E, Chiribiri A. Effect of tracer arrival time on the estimation of the myocardial perfusion in DCE-CMR. J Cardiovasc Magn Reson. 2012;14:1. doi:10.1186/1532-429X-14-S1-P16. This abstract evaluates the effect of contrast agent arrival into myocardium on the accuracy of the quantification methods for the estimation of MBF.CrossRef Zarinabad N, Hautvast G, Breeuwer M, Nagel E, Chiribiri A. Effect of tracer arrival time on the estimation of the myocardial perfusion in DCE-CMR. J Cardiovasc Magn Reson. 2012;14:1. doi:10.​1186/​1532-429X-14-S1-P16. This abstract evaluates the effect of contrast agent arrival into myocardium on the accuracy of the quantification methods for the estimation of MBF.CrossRef
53.
go back to reference Di Bella EV, Wu YJ, Alexander AL, Parker DL, Green D, McGann CJ. Comparison of temporal filtering methods for dynamic contrast MRI myocardial perfusion studies. Magn Reson Med. 2003;49:895–902. doi:10.1002/mrm.10439.PubMedCrossRef Di Bella EV, Wu YJ, Alexander AL, Parker DL, Green D, McGann CJ. Comparison of temporal filtering methods for dynamic contrast MRI myocardial perfusion studies. Magn Reson Med. 2003;49:895–902. doi:10.​1002/​mrm.​10439.PubMedCrossRef
54.
go back to reference Zierler KL. Tracer-dilution techniques in the study of microvascular behavior. Fed Proc. 1965;24:1085–91.PubMed Zierler KL. Tracer-dilution techniques in the study of microvascular behavior. Fed Proc. 1965;24:1085–91.PubMed
55.
go back to reference Jerosch-Herold M, Wilke N, Stillman A. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998;25(1):73–84. Jerosch-Herold M, Wilke N, Stillman A. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998;25(1):73–84.
57.
go back to reference Tong CY, Prato FS, Wisenberg G, Lee TY, Carroll E, Sandler D, et al. Techniques for the measurement of the local myocardial extraction efficiency for inert diffusible contrast agents such as gadopentate dimeglumine. Magn Reson Med. 1993;30:332–6.PubMedCrossRef Tong CY, Prato FS, Wisenberg G, Lee TY, Carroll E, Sandler D, et al. Techniques for the measurement of the local myocardial extraction efficiency for inert diffusible contrast agents such as gadopentate dimeglumine. Magn Reson Med. 1993;30:332–6.PubMedCrossRef
58.
go back to reference Tong CY, Prato FS, Wisenberg G, Lee TY, Carroll E, Sandler D, et al. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. Magn Reson Med. 1993;30:337–46.PubMedCrossRef Tong CY, Prato FS, Wisenberg G, Lee TY, Carroll E, Sandler D, et al. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. Magn Reson Med. 1993;30:337–46.PubMedCrossRef
59.
go back to reference Larsson HB, Stubgaard M, Sondergaard L, Henriksen O. In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging. J Magn Reson Imaging. 1994;4:433–40.PubMedCrossRef Larsson HB, Stubgaard M, Sondergaard L, Henriksen O. In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging. J Magn Reson Imaging. 1994;4:433–40.PubMedCrossRef
60.
go back to reference Diesbourg LD, Prato FS, Wisenberg G, Drost DJ, Marshall TP, Carroll SE, et al. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med. 1992;23:239–53.PubMedCrossRef Diesbourg LD, Prato FS, Wisenberg G, Drost DJ, Marshall TP, Carroll SE, et al. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med. 1992;23:239–53.PubMedCrossRef
61.
go back to reference Vallee JP, Sostman HD, MacFall JR, DeGrado TR, Zhang J, Sebbag L, et al. Quantification of myocardial perfusion by MRI after coronary occlusion. Magn Reson Med. 1998;40:287–97.PubMedCrossRef Vallee JP, Sostman HD, MacFall JR, DeGrado TR, Zhang J, Sebbag L, et al. Quantification of myocardial perfusion by MRI after coronary occlusion. Magn Reson Med. 1998;40:287–97.PubMedCrossRef
62.
63.
go back to reference Donaldson SB, West CM, Davidson SE, Carrington BM, Hutchison G, Jones AP, et al. A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med. 2010;63:691–700. doi:10.1002/mrm.22217.PubMedCrossRef Donaldson SB, West CM, Davidson SE, Carrington BM, Hutchison G, Jones AP, et al. A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med. 2010;63:691–700. doi:10.​1002/​mrm.​22217.PubMedCrossRef
65.••
go back to reference Zarinabad N, Chiribiri A, Hautvast G, Shuster A, Sinclair M, Wijngaard JPHMVD, et al. Modelling parameter role on accuracy of cardiac perfusion quantification. Lect Notes Comput Sci. 2013;7945:13. In this paper, effects of deconvolution model order on the accuracy of different quantification methods have been compared. Zarinabad N, Chiribiri A, Hautvast G, Shuster A, Sinclair M, Wijngaard JPHMVD, et al. Modelling parameter role on accuracy of cardiac perfusion quantification. Lect Notes Comput Sci. 2013;7945:13. In this paper, effects of deconvolution model order on the accuracy of different quantification methods have been compared.
66.
go back to reference Klocke FJ, Simonetti OP, Judd RM, Kim RJ, Harris KR, Hedjbeli S, et al. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation. 2001;104:2412–6.PubMedCrossRef Klocke FJ, Simonetti OP, Judd RM, Kim RJ, Harris KR, Hedjbeli S, et al. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation. 2001;104:2412–6.PubMedCrossRef
67.
go back to reference Al-Saadi N, Gross M, Bornstedt A, Schnackenburg B, Klein C, Fleck E, et al. Comparison of various parameters for determining an index of myocardial perfusion reserve in detecting coronary stenosis with cardiovascular magnetic resonance tomography. Z Kardiol. 2001;90:824–34.PubMedCrossRef Al-Saadi N, Gross M, Bornstedt A, Schnackenburg B, Klein C, Fleck E, et al. Comparison of various parameters for determining an index of myocardial perfusion reserve in detecting coronary stenosis with cardiovascular magnetic resonance tomography. Z Kardiol. 2001;90:824–34.PubMedCrossRef
69.••
go back to reference Chiribiri A, Hautvast GL, Lockie T, Schuster A, Bigalke B, Olivotti L, et al. Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI vs FFR. JACC Cardiovasc Imaging. 2013;6:600–9. doi:10.1016/j.jcmg.2012.09.019. This paper demonstrates that the transmural perfusion gradients (TPG) method can predict significant coronary artery disease (CAD) as defined by fractional flow reserve (FFR).PubMedCrossRef Chiribiri A, Hautvast GL, Lockie T, Schuster A, Bigalke B, Olivotti L, et al. Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI vs FFR. JACC Cardiovasc Imaging. 2013;6:600–9. doi:10.​1016/​j.​jcmg.​2012.​09.​019. This paper demonstrates that the transmural perfusion gradients (TPG) method can predict significant coronary artery disease (CAD) as defined by fractional flow reserve (FFR).PubMedCrossRef
70.
go back to reference Schuster A, Sinclair M, Zarinabad N, Ishida M, Wijngaard JPvd, Paul M, et al, editors. Quantitative high resolution assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model. Society Cardiovascular Magnetic Resonance annual meeting; San Francisco; 2013. J. Cardiovasc Magn Reson 2013;15(Suppl 1):E19 Schuster A, Sinclair M, Zarinabad N, Ishida M, Wijngaard JPvd, Paul M, et al, editors. Quantitative high resolution assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model. Society Cardiovascular Magnetic Resonance annual meeting; San Francisco; 2013. J. Cardiovasc Magn Reson 2013;15(Suppl 1):E19
71.•
go back to reference Zarinabad N, Hautvast G, Breeuwer M, Nagel E, Chiribiri A, editors. The relationship between spatial resolution levels and quantitative myocardial perfusion. Society of Cardiovascular Magnetic Resonance; San Francisco; 2013. J Cardiovasc Magn Reson. This study evaluates the effects of spatial resolution level on the accuracy of the perfusion estimates. Zarinabad N, Hautvast G, Breeuwer M, Nagel E, Chiribiri A, editors. The relationship between spatial resolution levels and quantitative myocardial perfusion. Society of Cardiovascular Magnetic Resonance; San Francisco; 2013. J Cardiovasc Magn Reson. This study evaluates the effects of spatial resolution level on the accuracy of the perfusion estimates.
72.••
Metadata
Title
Myocardial Blood Flow Quantification from MRI – an Image Analysis Perspective
Authors
Niloufar Zarinabad
Amedeo Chiribiri
Marcel Breeuwer
Publication date
01-01-2014
Publisher
Springer US
Published in
Current Cardiovascular Imaging Reports / Issue 1/2014
Print ISSN: 1941-9066
Electronic ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-013-9246-9

Other articles of this Issue 1/2014

Current Cardiovascular Imaging Reports 1/2014 Go to the issue

Heart Failure and Targeted Imaging (T. Schindler and E. Schelbert, Section Editors)

What You See is What You Get? Imaging of Cell Therapy for Cardiac Regeneration

Heart Failure and Targeted Imaging (T. Schindler and E. Schelbert, Section Editors)

Recent Developments in Imaging of Myocardial Angiotensin Receptors

Heart Failure and Targeted Imaging (T Schindler and E Schelbert, Section Editors)

Imaging of Myocardial Oxidative Metabolism in Heart Failure

Heart Failure and Targeted Imaging (T Schindler and E Schelbert, Section Editors)

Imaging of Cardiac Autonomic Innervation with SPECT and PET