Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2011

01-03-2011

Myeloid cell diversification and complexity: an old concept with new turns in oncology

Authors: Mariacristina Chioda, Elisa Peranzoni, Giacomo Desantis, Francesca Papalini, Erika Falisi, Solito Samantha, Susanna Mandruzzato, Vincenzo Bronte

Published in: Cancer and Metastasis Reviews | Issue 1/2011

Login to get access

Abstract

Tumour development is accompanied by an enhanced haematopoiesis. This is not a widespread activation since only cells belonging to the myelo-monocytic compartment are expanded and mobilized from primary sites of haematopoiesis to other organs, reaching also the tumour stroma. This process occurs early during tumour formation but becomes more evident in advanced disease. Far from being a simple, unwanted consequence of cancer development, accumulation of myelo-monocytitc cells plays a role in tumour vascularization, local spreading, establishment of metastasis at distant sites, and contribute to create an environment unfavourable for the adoptive immunity against tumour-associated antigens. Myeloid populations involved in these process are likely different but many cells, expanded in primary and secondary lymphoid organs of tumour-bearing mice, share various levels of the CD11b and Gr-1 (Ly6C/G) markers. CD11b+Gr-1+ cells are currently named myeloid-derived suppressor cells for their ability to inhibit T lymphocyte responses in tumour-bearing hosts. In this manuscript, we review the recent literature on tumour-conditioned myeloid subsets that assist tumour growth, both in mice and humans.
Literature
1.
go back to reference Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., et al. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature Immunology, 9(6), 676–683.PubMedCrossRef Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., et al. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature Immunology, 9(6), 676–683.PubMedCrossRef
2.
go back to reference Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Review of Immunology, 27, 669–692.PubMedCrossRef Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Review of Immunology, 27, 669–692.PubMedCrossRef
3.
go back to reference Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science, 327(5966), 656–661.PubMedCrossRef Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science, 327(5966), 656–661.PubMedCrossRef
4.
go back to reference Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.PubMedCrossRef Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.PubMedCrossRef
5.
go back to reference Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8(8), 618–631.PubMedCrossRef Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8(8), 618–631.PubMedCrossRef
6.
go back to reference Shojaei, F., Zhong, C., Wu, X., Yu, L., & Ferrara, N. (2008). Role of myeloid cells in tumor angiogenesis and growth. Trends in Cell Biology, 18(8), 372–378.PubMedCrossRef Shojaei, F., Zhong, C., Wu, X., Yu, L., & Ferrara, N. (2008). Role of myeloid cells in tumor angiogenesis and growth. Trends in Cell Biology, 18(8), 372–378.PubMedCrossRef
7.
go back to reference Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.PubMedCrossRef Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.PubMedCrossRef
8.
go back to reference Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265.PubMedCrossRef Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265.PubMedCrossRef
9.
go back to reference Melillo, R. M., Guarino, V., Avilla, E., Galdiero, M. R., Liotti, F., Prevete, N., et al. (2010). Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 29, 6203–6215.PubMedCrossRef Melillo, R. M., Guarino, V., Avilla, E., Galdiero, M. R., Liotti, F., Prevete, N., et al. (2010). Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 29, 6203–6215.PubMedCrossRef
10.
go back to reference Strouch, M. J., Cheon, E. C., Salabat, M. R., Krantz, S. B., Gounaris, E., Melstrom, L. G., et al. (2010). Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res, 16(8), 2257–2265.PubMedCrossRef Strouch, M. J., Cheon, E. C., Salabat, M. R., Krantz, S. B., Gounaris, E., Melstrom, L. G., et al. (2010). Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res, 16(8), 2257–2265.PubMedCrossRef
11.
go back to reference Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., et al. (2010). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat, 1–19. doi:10.1007/s10549-010-1154-y. Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., et al. (2010). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat, 1–19. doi:10.​1007/​s10549-010-1154-y.
12.
go back to reference Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., et al. (2010). Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol, 22(2), 238–244.PubMedCrossRef Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., et al. (2010). Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol, 22(2), 238–244.PubMedCrossRef
13.
go back to reference Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., et al. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Research, 67(1), 425. author reply 426.PubMedCrossRef Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., et al. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Research, 67(1), 425. author reply 426.PubMedCrossRef
14.
go back to reference Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19(1), 71–82.PubMedCrossRef Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19(1), 71–82.PubMedCrossRef
15.
go back to reference Sunderkotter, C., Nikolic, T., Dillon, M. J., Van Rooijen, N., Stehling, M., Drevets, D. A., et al. (2004). Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. Journal of Immunology, 172(7), 4410–4417. Sunderkotter, C., Nikolic, T., Dillon, M. J., Van Rooijen, N., Stehling, M., Drevets, D. A., et al. (2004). Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. Journal of Immunology, 172(7), 4410–4417.
16.
go back to reference Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8(12), 958–969.PubMedCrossRef Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8(12), 958–969.PubMedCrossRef
17.
go back to reference Pollard, J. W. (2009). Trophic macrophages in development and disease. Nature Reviews. Immunology, 9(4), 259–270.PubMedCrossRef Pollard, J. W. (2009). Trophic macrophages in development and disease. Nature Reviews. Immunology, 9(4), 259–270.PubMedCrossRef
18.
go back to reference Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. Journal of Immunology, 164(12), 6166–6173. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. Journal of Immunology, 164(12), 6166–6173.
19.
go back to reference Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews. Immunology, 3(1), 23–35.PubMedCrossRef Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews. Immunology, 3(1), 23–35.PubMedCrossRef
20.
go back to reference Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686.PubMedCrossRef Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686.PubMedCrossRef
21.
go back to reference Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. Journal of Clinical Investigation, 117(5), 1155–1166.PubMedCrossRef Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. Journal of Clinical Investigation, 117(5), 1155–1166.PubMedCrossRef
22.
go back to reference Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51.PubMedCrossRef Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51.PubMedCrossRef
23.
go back to reference Meira, L. B., Bugni, J. M., Green, S. L., Lee, C. W., Pang, B., Borenshtein, D., et al. (2008). DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. Journal of Clinical Investigation, 118(7), 2516–2525.PubMed Meira, L. B., Bugni, J. M., Green, S. L., Lee, C. W., Pang, B., Borenshtein, D., et al. (2008). DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. Journal of Clinical Investigation, 118(7), 2516–2525.PubMed
24.
go back to reference Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30(7), 1073–1081.PubMedCrossRef Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30(7), 1073–1081.PubMedCrossRef
25.
go back to reference Bollrath, J., Phesse, T. J., von Burstin, V. A., Putoczki, T., Bennecke, M., Bateman, T., et al. (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15(2), 91–102.PubMedCrossRef Bollrath, J., Phesse, T. J., von Burstin, V. A., Putoczki, T., Bennecke, M., Bateman, T., et al. (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15(2), 91–102.PubMedCrossRef
26.
go back to reference Park, E. J., Lee, J. H., Yu, G. Y., He, G., Ali, S. R., Holzer, R. G., et al. (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 140(2), 197–208.PubMedCrossRef Park, E. J., Lee, J. H., Yu, G. Y., He, G., Ali, S. R., Holzer, R. G., et al. (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 140(2), 197–208.PubMedCrossRef
27.
go back to reference Ojalvo, L. S., King, W., Cox, D., & Pollard, J. W. (2009). High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. The American Journal of Pathology, 174(3), 1048–1064.PubMedCrossRef Ojalvo, L. S., King, W., Cox, D., & Pollard, J. W. (2009). High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. The American Journal of Pathology, 174(3), 1048–1064.PubMedCrossRef
28.
go back to reference Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66(23), 11238–11246.PubMedCrossRef Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66(23), 11238–11246.PubMedCrossRef
29.
go back to reference Coffelt, S. B., Hughes, R., & Lewis, C. E. (2009). Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochimica et Biophysica Acta, 1796(1), 11–18.PubMed Coffelt, S. B., Hughes, R., & Lewis, C. E. (2009). Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochimica et Biophysica Acta, 1796(1), 11–18.PubMed
30.
go back to reference De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226.PubMedCrossRef De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226.PubMedCrossRef
31.
go back to reference Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., et al. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114(4), 901–914.PubMedCrossRef Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., et al. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114(4), 901–914.PubMedCrossRef
32.
go back to reference Fantin, A., Vieira, J. M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., et al. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 116(5), 829–840.PubMedCrossRef Fantin, A., Vieira, J. M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., et al. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 116(5), 829–840.PubMedCrossRef
33.
go back to reference Kerber, M., Reiss, Y., Wickersheim, A., Jugold, M., Kiessling, F., Heil, M., et al. (2008). Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Research, 68(18), 7342–7351.PubMedCrossRef Kerber, M., Reiss, Y., Wickersheim, A., Jugold, M., Kiessling, F., Heil, M., et al. (2008). Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Research, 68(18), 7342–7351.PubMedCrossRef
34.
go back to reference Muramatsu, M., Yamamoto, S., Osawa, T., & Shibuya, M. (2010). Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res, 70(20), 8211–8221.PubMedCrossRef Muramatsu, M., Yamamoto, S., Osawa, T., & Shibuya, M. (2010). Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res, 70(20), 8211–8221.PubMedCrossRef
35.
go back to reference Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Natural Medicines, 7(11), 1194–1201.CrossRef Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Natural Medicines, 7(11), 1194–1201.CrossRef
36.
go back to reference Jeon, B. H., Jang, C., Han, J., Kataru, R. P., Piao, L., Jung, K., et al. (2008). Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b + macrophages in advanced ovarian cancer. Cancer Research, 68(4), 1100–1109.PubMedCrossRef Jeon, B. H., Jang, C., Han, J., Kataru, R. P., Piao, L., Jung, K., et al. (2008). Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b + macrophages in advanced ovarian cancer. Cancer Research, 68(4), 1100–1109.PubMedCrossRef
37.
go back to reference Schoppmann, S. F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. The American Journal of Pathology, 161(3), 947–956.PubMedCrossRef Schoppmann, S. F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. The American Journal of Pathology, 161(3), 947–956.PubMedCrossRef
38.
go back to reference Priceman, S. J., Sung, J. L., Shaposhnik, Z., Burton, J. B., Torres-Collado, A. X., Moughon, D. L., et al. (2010). Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood, 115(7), 1461–1471.PubMedCrossRef Priceman, S. J., Sung, J. L., Shaposhnik, Z., Burton, J. B., Torres-Collado, A. X., Moughon, D. L., et al. (2010). Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood, 115(7), 1461–1471.PubMedCrossRef
39.
go back to reference Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2(3), 161–174.PubMedCrossRef Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2(3), 161–174.PubMedCrossRef
40.
go back to reference Gocheva, V., Wang, H. W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., et al. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 24(3), 241–255.PubMedCrossRef Gocheva, V., Wang, H. W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., et al. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 24(3), 241–255.PubMedCrossRef
41.
go back to reference Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022–7029.PubMedCrossRef Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022–7029.PubMedCrossRef
42.
go back to reference Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Research, 65(12), 5278–5283.PubMedCrossRef Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Research, 65(12), 5278–5283.PubMedCrossRef
43.
go back to reference DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16(2), 91–102.PubMedCrossRef DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16(2), 91–102.PubMedCrossRef
44.
go back to reference Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. The Journal of Cell Biology, 168(3), 441–452.PubMedCrossRef Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. The Journal of Cell Biology, 168(3), 441–452.PubMedCrossRef
45.
go back to reference Yamaguchi, H., Pixley, F., & Condeelis, J. (2006). Invadopodia and podosomes in tumor invasion. European Journal of Cell Biology, 85(3–4), 213–218.PubMedCrossRef Yamaguchi, H., Pixley, F., & Condeelis, J. (2006). Invadopodia and podosomes in tumor invasion. European Journal of Cell Biology, 85(3–4), 213–218.PubMedCrossRef
46.
go back to reference Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656.PubMedCrossRef Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656.PubMedCrossRef
47.
go back to reference Kusmartsev, S., & Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. Journal of Immunology, 174(8), 4880–4891. Kusmartsev, S., & Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. Journal of Immunology, 174(8), 4880–4891.
48.
go back to reference Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Natural Medicines, 10(9), 942–949.CrossRef Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Natural Medicines, 10(9), 942–949.CrossRef
49.
go back to reference Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69(11), 4800–4809.PubMedCrossRef Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69(11), 4800–4809.PubMedCrossRef
50.
go back to reference Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C., et al. (2009). Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. The Journal of Experimental Medicine, 206(6), 1327–1337.PubMedCrossRef Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C., et al. (2009). Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. The Journal of Experimental Medicine, 206(6), 1327–1337.PubMedCrossRef
51.
go back to reference Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179(2), 977–983. Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179(2), 977–983.
52.
go back to reference Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res, 70(14), 5728–5739.PubMedCrossRef Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res, 70(14), 5728–5739.PubMedCrossRef
53.
go back to reference Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J. E., Abe, J., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.PubMedCrossRef Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J. E., Abe, J., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.PubMedCrossRef
54.
go back to reference Umemura, N., Saio, M., Suwa, T., Kitoh, Y., Bai, J., Nonaka, K., et al. (2008). Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. Journal of Leukocyte Biology, 83(5), 1136–1144.PubMedCrossRef Umemura, N., Saio, M., Suwa, T., Kitoh, Y., Bai, J., Nonaka, K., et al. (2008). Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. Journal of Leukocyte Biology, 83(5), 1136–1144.PubMedCrossRef
55.
go back to reference Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell, 16(3), 183–194.PubMedCrossRef Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell, 16(3), 183–194.PubMedCrossRef
56.
go back to reference Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D. N., & Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity, 21(2), 215–226.PubMedCrossRef Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D. N., & Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity, 21(2), 215–226.PubMedCrossRef
57.
go back to reference Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802. Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.
58.
go back to reference Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.PubMedCrossRef Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.PubMedCrossRef
59.
go back to reference Bronte, V. (2009). Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. European Journal of Immunology, 39(10), 2670–2672.PubMedCrossRef Bronte, V. (2009). Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. European Journal of Immunology, 39(10), 2670–2672.PubMedCrossRef
60.
go back to reference Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol, 40(1), 22–35.PubMedCrossRef Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol, 40(1), 22–35.PubMedCrossRef
61.
go back to reference Haile, L. A., Gamrekelashvili, J., Manns, M. P., Korangy, F., & Greten, T. F. (2010). CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol, 185(1), 203–210.PubMedCrossRef Haile, L. A., Gamrekelashvili, J., Manns, M. P., Korangy, F., & Greten, T. F. (2010). CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol, 185(1), 203–210.PubMedCrossRef
62.
go back to reference Shojaei, F., & Ferrara, N. (2008). Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Research, 68(14), 5501–5504.PubMedCrossRef Shojaei, F., & Ferrara, N. (2008). Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Research, 68(14), 5501–5504.PubMedCrossRef
63.
go back to reference Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X. H., Yao, J., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450(7171), 825–831.PubMedCrossRef Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X. H., Yao, J., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450(7171), 825–831.PubMedCrossRef
64.
go back to reference Kaser, A., Winklmayr, M., Lepperdinger, G., & Kreil, G. (2003). The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep, 4(5), 469–473. Kaser, A., Winklmayr, M., Lepperdinger, G., & Kreil, G. (2003). The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep, 4(5), 469–473.
65.
go back to reference Masuda, Y., Takatsu, Y., Terao, Y., Kumano, S., Ishibashi, Y., Suenaga, M., et al. (2002). Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochemical and Biophysical Research Communications, 293(1), 396–402.PubMedCrossRef Masuda, Y., Takatsu, Y., Terao, Y., Kumano, S., Ishibashi, Y., Suenaga, M., et al. (2002). Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochemical and Biophysical Research Communications, 293(1), 396–402.PubMedCrossRef
66.
go back to reference LeCouter, J., Kowalski, J., Foster, J., Hass, P., Zhang, Z., Dillard-Telm, L., et al. (2001). Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature, 412(6850), 877–884.PubMedCrossRef LeCouter, J., Kowalski, J., Foster, J., Hass, P., Zhang, Z., Dillard-Telm, L., et al. (2001). Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature, 412(6850), 877–884.PubMedCrossRef
67.
go back to reference LeCouter, J., Lin, R., Tejada, M., Frantz, G., Peale, F., Hillan, K. J., et al. (2003). The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: localization of Bv8 receptors to endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2685–2690.PubMedCrossRef LeCouter, J., Lin, R., Tejada, M., Frantz, G., Peale, F., Hillan, K. J., et al. (2003). The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: localization of Bv8 receptors to endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2685–2690.PubMedCrossRef
68.
go back to reference LeCouter, J., Lin, R., & Ferrara, N. (2002). Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Natural Medicines, 8(9), 913–917.CrossRef LeCouter, J., Lin, R., & Ferrara, N. (2002). Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Natural Medicines, 8(9), 913–917.CrossRef
69.
go back to reference LeCouter, J., Zlot, C., Tejada, M., Peale, F., & Ferrara, N. (2004). Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proceedings of the National Academy of Sciences of the United States of America, 101(48), 16813–16818.PubMedCrossRef LeCouter, J., Zlot, C., Tejada, M., Peale, F., & Ferrara, N. (2004). Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proceedings of the National Academy of Sciences of the United States of America, 101(48), 16813–16818.PubMedCrossRef
70.
go back to reference Dorsch, M., Qiu, Y., Soler, D., Frank, N., Duong, T., Goodearl, A., et al. (2005). PK1/EG-VEGF induces monocyte differentiation and activation. Journal of Leukocyte Biology, 78(2), 426–434.PubMedCrossRef Dorsch, M., Qiu, Y., Soler, D., Frank, N., Duong, T., Goodearl, A., et al. (2005). PK1/EG-VEGF induces monocyte differentiation and activation. Journal of Leukocyte Biology, 78(2), 426–434.PubMedCrossRef
71.
go back to reference Swirski, F. K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V., Panizzi, P., et al. (2009). Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 325(5940), 612–616.PubMedCrossRef Swirski, F. K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V., Panizzi, P., et al. (2009). Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 325(5940), 612–616.PubMedCrossRef
72.
go back to reference Ilkovitch, D., & Lopez, D. M. (2009). The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Research, 69(13), 5514–5521.PubMedCrossRef Ilkovitch, D., & Lopez, D. M. (2009). The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Research, 69(13), 5514–5521.PubMedCrossRef
73.
go back to reference Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K., et al. (2010). Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature, 464(7293), 1367–1370.PubMedCrossRef Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K., et al. (2010). Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature, 464(7293), 1367–1370.PubMedCrossRef
74.
go back to reference Saenz, S. A., Siracusa, M. C., Perrigoue, J. G., Spencer, S. P., Urban, J. F., Jr., Tocker, J. E., et al. (2010). IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature, 464(7293), 1362–1366.PubMedCrossRef Saenz, S. A., Siracusa, M. C., Perrigoue, J. G., Spencer, S. P., Urban, J. F., Jr., Tocker, J. E., et al. (2010). IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature, 464(7293), 1362–1366.PubMedCrossRef
75.
go back to reference Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef
76.
go back to reference Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.PubMedCrossRef Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.PubMedCrossRef
77.
go back to reference Hiratsuka, S., Watanabe, A., Sakurai, Y., Akashi-Takamura, S., Ishibashi, S., Miyake, K., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.PubMedCrossRef Hiratsuka, S., Watanabe, A., Sakurai, Y., Akashi-Takamura, S., Ishibashi, S., Miyake, K., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.PubMedCrossRef
78.
go back to reference Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457(7225), 102–106.PubMedCrossRef Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457(7225), 102–106.PubMedCrossRef
79.
go back to reference Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.PubMedCrossRef Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.PubMedCrossRef
80.
go back to reference Ruzinova, M. B., Schoer, R. A., Gerald, W., Egan, J. E., Pandolfi, P. P., Rafii, S., et al. (2003). Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell, 4(4), 277–289.PubMedCrossRef Ruzinova, M. B., Schoer, R. A., Gerald, W., Egan, J. E., Pandolfi, P. P., Rafii, S., et al. (2003). Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell, 4(4), 277–289.PubMedCrossRef
81.
go back to reference Pawelek, J. M., & Chakraborty, A. K. (2008). Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nature Reviews. Cancer, 8(5), 377–386.PubMedCrossRef Pawelek, J. M., & Chakraborty, A. K. (2008). Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nature Reviews. Cancer, 8(5), 377–386.PubMedCrossRef
82.
go back to reference Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., et al. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE, 4(8), e6562.PubMedCrossRef Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., et al. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE, 4(8), e6562.PubMedCrossRef
83.
go back to reference Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., et al. (2010). Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res, 70(15), 6139–6149.PubMedCrossRef Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., et al. (2010). Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res, 70(15), 6139–6149.PubMedCrossRef
84.
go back to reference Tjiu, J. W., Chen, J. S., Shun, C. T., Lin, S. J., Liao, Y. H., Chu, C. Y., et al. (2009). Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. Journal of Investigative Dermatology, 129(4), 1016–1025.PubMedCrossRef Tjiu, J. W., Chen, J. S., Shun, C. T., Lin, S. J., Liao, Y. H., Chu, C. Y., et al. (2009). Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. Journal of Investigative Dermatology, 129(4), 1016–1025.PubMedCrossRef
85.
go back to reference Connolly, M. K., Mallen-St Clair, J., Bedrosian, A. S., Malhotra, A., Vera, V., Ibrahim, J., et al. (2010). Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leukoc Biol, 87(4), 713–725.PubMedCrossRef Connolly, M. K., Mallen-St Clair, J., Bedrosian, A. S., Malhotra, A., Vera, V., Ibrahim, J., et al. (2010). Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leukoc Biol, 87(4), 713–725.PubMedCrossRef
86.
go back to reference Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews. Immunology, 4(12), 941–952.PubMedCrossRef Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews. Immunology, 4(12), 941–952.PubMedCrossRef
87.
go back to reference Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P., & Bronte, V. (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 222, 162–179.PubMedCrossRef Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P., & Bronte, V. (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 222, 162–179.PubMedCrossRef
88.
go back to reference Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6(5), 1755–1766.PubMed Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6(5), 1755–1766.PubMed
89.
go back to reference Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 96(12), 3838–3846.PubMed Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 96(12), 3838–3846.PubMed
90.
go back to reference Nefedova, Y., Huang, M., Kusmartsev, S., Bhattacharya, R., Cheng, P., Salup, R., et al. (2004). Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. Journal of Immunology, 172(1), 464–474. Nefedova, Y., Huang, M., Kusmartsev, S., Bhattacharya, R., Cheng, P., Salup, R., et al. (2004). Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. Journal of Immunology, 172(1), 464–474.
91.
go back to reference Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., et al. (2010). Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity, 32(6), 790–802.PubMedCrossRef Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., et al. (2010). Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity, 32(6), 790–802.PubMedCrossRef
92.
go back to reference Rosenbauer, F., & Tenen, D. G. (2007). Transcription factors in myeloid development: balancing differentiation with transformation. Nature Reviews. Immunology, 7(2), 105–117.PubMedCrossRef Rosenbauer, F., & Tenen, D. G. (2007). Transcription factors in myeloid development: balancing differentiation with transformation. Nature Reviews. Immunology, 7(2), 105–117.PubMedCrossRef
93.
go back to reference Hirai, H., Zhang, P., Dayaram, T., Hetherington, C. J., Mizuno, S., Imanishi, J., et al. (2006). C/EBPbeta is required for 'emergency' granulopoiesis. Nature Immunology, 7(7), 732–739.PubMedCrossRef Hirai, H., Zhang, P., Dayaram, T., Hetherington, C. J., Mizuno, S., Imanishi, J., et al. (2006). C/EBPbeta is required for 'emergency' granulopoiesis. Nature Immunology, 7(7), 732–739.PubMedCrossRef
94.
go back to reference Lechner, M. G., Liebertz, D. J., & Epstein, A. L. (2010). Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol, 185(4), 2273–2284.PubMedCrossRef Lechner, M. G., Liebertz, D. J., & Epstein, A. L. (2010). Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol, 185(4), 2273–2284.PubMedCrossRef
95.
go back to reference Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., et al. (2004). Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Natural Medicines, 10(1), 48–54.CrossRef Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., et al. (2004). Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Natural Medicines, 10(1), 48–54.CrossRef
96.
go back to reference Zhang, H., Nguyen-Jackson, H., Panopoulos, A. D., Li, H. S., Murray, P. J., & Watowich, S. S. (2010). STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood, 116(14), 2462–2471.PubMedCrossRef Zhang, H., Nguyen-Jackson, H., Panopoulos, A. D., Li, H. S., Murray, P. J., & Watowich, S. S. (2010). STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood, 116(14), 2462–2471.PubMedCrossRef
97.
go back to reference Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116(10), 2777–2790.PubMedCrossRef Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116(10), 2777–2790.PubMedCrossRef
98.
go back to reference Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354.PubMedCrossRef Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354.PubMedCrossRef
99.
go back to reference Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.PubMedCrossRef Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.PubMedCrossRef
100.
go back to reference Jakowlew, S. B. (2006). Transforming growth factor-beta in cancer and metastasis. Cancer and Metastasis Reviews, 25(3), 435–457.PubMedCrossRef Jakowlew, S. B. (2006). Transforming growth factor-beta in cancer and metastasis. Cancer and Metastasis Reviews, 25(3), 435–457.PubMedCrossRef
101.
go back to reference Takaku, K., Oshima, M., Miyoshi, H., Matsui, M., Seldin, M. F., & Taketo, M. M. (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell, 92(5), 645–656.PubMedCrossRef Takaku, K., Oshima, M., Miyoshi, H., Matsui, M., Seldin, M. F., & Taketo, M. M. (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell, 92(5), 645–656.PubMedCrossRef
102.
go back to reference Kitamura, T., Kometani, K., Hashida, H., Matsunaga, A., Miyoshi, H., Hosogi, H., et al. (2007). SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 39(4), 467–475.PubMedCrossRef Kitamura, T., Kometani, K., Hashida, H., Matsunaga, A., Miyoshi, H., Hosogi, H., et al. (2007). SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 39(4), 467–475.PubMedCrossRef
103.
go back to reference Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.PubMedCrossRef Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.PubMedCrossRef
104.
go back to reference Sitkovsky, M., & Lukashev, D. (2005). Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nature Reviews. Immunology, 5(9), 712–721.PubMedCrossRef Sitkovsky, M., & Lukashev, D. (2005). Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nature Reviews. Immunology, 5(9), 712–721.PubMedCrossRef
105.
go back to reference Appelhoff, R. J., Tian, Y. M., Raval, R. R., Turley, H., Harris, A. L., Pugh, C. W., et al. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. The Journal of Biological Chemistry, 279(37), 38458–38465.PubMedCrossRef Appelhoff, R. J., Tian, Y. M., Raval, R. R., Turley, H., Harris, A. L., Pugh, C. W., et al. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. The Journal of Biological Chemistry, 279(37), 38458–38465.PubMedCrossRef
106.
go back to reference Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468–472.PubMedCrossRef Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468–472.PubMedCrossRef
107.
go back to reference Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733), 271–275.PubMedCrossRef Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733), 271–275.PubMedCrossRef
108.
go back to reference Takeda, N., O'Dea, E. L., Doedens, A., Kim, J. W., Weidemann, A., Stockmann, C., et al. (2010). Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev, 24(5), 491–501.PubMedCrossRef Takeda, N., O'Dea, E. L., Doedens, A., Kim, J. W., Weidemann, A., Stockmann, C., et al. (2010). Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev, 24(5), 491–501.PubMedCrossRef
109.
go back to reference Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res, 70(19), 7465–7475.PubMedCrossRef Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res, 70(19), 7465–7475.PubMedCrossRef
110.
go back to reference Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., et al. (2010). HIF-1{alpha} regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med, 207(11), 2439–2453.PubMedCrossRef Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., et al. (2010). HIF-1{alpha} regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med, 207(11), 2439–2453.PubMedCrossRef
111.
go back to reference Corzo, C. A., Cotter, M. J., Cheng, P., Cheng, F., Kusmartsev, S., Sotomayor, E., et al. (2009). Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. Journal of Immunology, 182(9), 5693–5701.CrossRef Corzo, C. A., Cotter, M. J., Cheng, P., Cheng, F., Kusmartsev, S., Sotomayor, E., et al. (2009). Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. Journal of Immunology, 182(9), 5693–5701.CrossRef
112.
go back to reference Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., et al. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Natural Medicines, 13(7), 828–835.CrossRef Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., et al. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Natural Medicines, 13(7), 828–835.CrossRef
113.
go back to reference Li, F., Sonveaux, P., Rabbani, Z. N., Liu, S., Yan, B., Huang, Q., et al. (2007). Regulation of HIF-1alpha stability through S-nitrosylation. Molecular Cell, 26(1), 63–74.PubMedCrossRef Li, F., Sonveaux, P., Rabbani, Z. N., Liu, S., Yan, B., Huang, Q., et al. (2007). Regulation of HIF-1alpha stability through S-nitrosylation. Molecular Cell, 26(1), 63–74.PubMedCrossRef
114.
go back to reference Chin, B. Y., Jiang, G., Wegiel, B., Wang, H. J., Macdonald, T., Zhang, X. C., et al. (2007). Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5109–5114.PubMedCrossRef Chin, B. Y., Jiang, G., Wegiel, B., Wang, H. J., Macdonald, T., Zhang, X. C., et al. (2007). Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5109–5114.PubMedCrossRef
115.
go back to reference Niu, G., Briggs, J., Deng, J., Ma, Y., Lee, H., Kortylewski, M., et al. (2008). Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Molecular Cancer Research, 6(7), 1099–1105.PubMedCrossRef Niu, G., Briggs, J., Deng, J., Ma, Y., Lee, H., Kortylewski, M., et al. (2008). Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Molecular Cancer Research, 6(7), 1099–1105.PubMedCrossRef
116.
go back to reference Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.PubMed Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.PubMed
117.
go back to reference Du, R., Lu, K. V., Petritsch, C., Liu, P., Ganss, R., Passegue, E., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 13(3), 206–220.PubMedCrossRef Du, R., Lu, K. V., Petritsch, C., Liu, P., Ganss, R., Passegue, E., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 13(3), 206–220.PubMedCrossRef
118.
go back to reference Beck, H., Raab, S., Copanaki, E., Heil, M., Scholz, A., Shibuya, M., et al. (2010). VEGFR-1 signaling regulates the homing of bone marrow-derived cells in a mouse stroke model. J Neuropathol Exp Neurol, 69(2), 168–175.PubMedCrossRef Beck, H., Raab, S., Copanaki, E., Heil, M., Scholz, A., Shibuya, M., et al. (2010). VEGFR-1 signaling regulates the homing of bone marrow-derived cells in a mouse stroke model. J Neuropathol Exp Neurol, 69(2), 168–175.PubMedCrossRef
119.
go back to reference Gille, J., Heidenreich, R., Pinter, A., Schmitz, J., Boehme, B., Hicklin, D. J., et al. (2007). Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. International Journal of Cancer, 120(9), 1899–1908.CrossRef Gille, J., Heidenreich, R., Pinter, A., Schmitz, J., Boehme, B., Hicklin, D. J., et al. (2007). Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. International Journal of Cancer, 120(9), 1899–1908.CrossRef
120.
go back to reference Kusmartsev, S., Eruslanov, E., Kubler, H., Tseng, T., Sakai, Y., Su, Z., et al. (2008). Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. Journal of Immunology, 181(1), 346–353. Kusmartsev, S., Eruslanov, E., Kubler, H., Tseng, T., Sakai, Y., Su, Z., et al. (2008). Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. Journal of Immunology, 181(1), 346–353.
121.
go back to reference Dikov, M. M., Ohm, J. E., Ray, N., Tchekneva, E. E., Burlison, J., Moghanaki, D., et al. (2005). Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. Journal of Immunology, 174(1), 215–222. Dikov, M. M., Ohm, J. E., Ray, N., Tchekneva, E. E., Burlison, J., Moghanaki, D., et al. (2005). Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. Journal of Immunology, 174(1), 215–222.
122.
go back to reference Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59.PubMedCrossRef Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59.PubMedCrossRef
123.
go back to reference Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V., & Kiessling, R. (2010). Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Research, 70(11), 4335–4345.PubMedCrossRef Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V., & Kiessling, R. (2010). Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Research, 70(11), 4335–4345.PubMedCrossRef
124.
go back to reference Zimmermann, H. W., Seidler, S., Nattermann, J., Gassler, N., Hellerbrand, C., Zernecke, A., et al. (2010). Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS ONE, 5(6), e11049.PubMedCrossRef Zimmermann, H. W., Seidler, S., Nattermann, J., Gassler, N., Hellerbrand, C., Zernecke, A., et al. (2010). Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS ONE, 5(6), e11049.PubMedCrossRef
125.
go back to reference Kitamura, T., Fujishita, T., Loetscher, P., Revesz, L., Hashida, H., Kizaka-Kondoh, S., et al. (2010). Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 13063–13068.PubMedCrossRef Kitamura, T., Fujishita, T., Loetscher, P., Revesz, L., Hashida, H., Kizaka-Kondoh, S., et al. (2010). Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 13063–13068.PubMedCrossRef
126.
go back to reference Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612.PubMedCrossRef Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612.PubMedCrossRef
127.
go back to reference Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 22(2), 231–237.PubMedCrossRef Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 22(2), 231–237.PubMedCrossRef
128.
go back to reference Roca, H., Varsos, Z., & Pienta, K. J. (2008). CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. The Journal of Biological Chemistry, 283(36), 25057–25073.PubMedCrossRef Roca, H., Varsos, Z., & Pienta, K. J. (2008). CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. The Journal of Biological Chemistry, 283(36), 25057–25073.PubMedCrossRef
129.
go back to reference Siegall, C. B., Schwab, G., Nordan, R. P., FitzGerald, D. J., & Pastan, I. (1990). Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Research, 50(24), 7786–7788.PubMed Siegall, C. B., Schwab, G., Nordan, R. P., FitzGerald, D. J., & Pastan, I. (1990). Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Research, 50(24), 7786–7788.PubMed
130.
go back to reference Solinas, G., Schiarea, S., Liguori, M., Fabbri, M., Pesce, S., Zammataro, L., et al. (2010). Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol, 185(1), 642–652.PubMedCrossRef Solinas, G., Schiarea, S., Liguori, M., Fabbri, M., Pesce, S., Zammataro, L., et al. (2010). Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol, 185(1), 642–652.PubMedCrossRef
131.
go back to reference Schor, S. L., Ellis, I. R., Jones, S. J., Baillie, R., Seneviratne, K., Clausen, J., et al. (2003). Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor-associated stromal cells. Cancer Research, 63(24), 8827–8836.PubMed Schor, S. L., Ellis, I. R., Jones, S. J., Baillie, R., Seneviratne, K., Clausen, J., et al. (2003). Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor-associated stromal cells. Cancer Research, 63(24), 8827–8836.PubMed
132.
go back to reference Murphy, G., & Nagase, H. (2008). Progress in matrix metalloproteinase research. Molecular Aspects of Medicine, 29(5), 290–308.PubMedCrossRef Murphy, G., & Nagase, H. (2008). Progress in matrix metalloproteinase research. Molecular Aspects of Medicine, 29(5), 290–308.PubMedCrossRef
133.
go back to reference Herszenyi, L., Sipos, F., Galamb, O., Solymosi, N., Hritz, I., Miheller, P., et al. (2008). Matrix metalloproteinase-9 expression in the normal mucosa–adenoma–dysplasia–adenocarcinoma sequence of the colon. Pathology Oncology Research, 14(1), 31–37.PubMedCrossRef Herszenyi, L., Sipos, F., Galamb, O., Solymosi, N., Hritz, I., Miheller, P., et al. (2008). Matrix metalloproteinase-9 expression in the normal mucosa–adenoma–dysplasia–adenocarcinoma sequence of the colon. Pathology Oncology Research, 14(1), 31–37.PubMedCrossRef
134.
go back to reference Papadopoulou, S., Scorilas, A., Arnogianaki, N., Papapanayiotou, B., Tzimogiani, A., Agnantis, N., et al. (2001). Expression of gelatinase-A (MMP-2) in human colon cancer and normal colon mucosa. Tumour Biology, 22(6), 383–389.PubMedCrossRef Papadopoulou, S., Scorilas, A., Arnogianaki, N., Papapanayiotou, B., Tzimogiani, A., Agnantis, N., et al. (2001). Expression of gelatinase-A (MMP-2) in human colon cancer and normal colon mucosa. Tumour Biology, 22(6), 383–389.PubMedCrossRef
135.
go back to reference Kang, J. C., Chen, J. S., Lee, C. H., Chang, J. J., & Shieh, Y. S. (2010). Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol, 102(3), 242–248.PubMedCrossRef Kang, J. C., Chen, J. S., Lee, C. H., Chang, J. J., & Shieh, Y. S. (2010). Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol, 102(3), 242–248.PubMedCrossRef
136.
go back to reference Sconocchia, G., Zlobec, I., Lugli, A., Calabrese, D., Iezzi, G., Karamitopoulou, E., et al. (2010). Tumor infiltration by FcγRIII (CD16) + myeloid cells is associated with improved survival in patients with colorectal carcinoma. Int J Cancer. doi:10.1002/ijc.25609. Sconocchia, G., Zlobec, I., Lugli, A., Calabrese, D., Iezzi, G., Karamitopoulou, E., et al. (2010). Tumor infiltration by FcγRIII (CD16) + myeloid cells is associated with improved survival in patients with colorectal carcinoma. Int J Cancer. doi:10.​1002/​ijc.​25609.
137.
go back to reference Hasita, H., Komohara, Y., Okabe, H., Masuda, T., Ohnishi, K., Lei, X. F., et al. (2010). Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci, 101(8), 1913–1919.PubMedCrossRef Hasita, H., Komohara, Y., Okabe, H., Masuda, T., Ohnishi, K., Lei, X. F., et al. (2010). Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci, 101(8), 1913–1919.PubMedCrossRef
138.
go back to reference Takaishi, K., Komohara, Y., Tashiro, H., Ohtake, H., Nakagawa, T., Katabuchi, H., et al. (2010). Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci, 101(10), 2128–2136.PubMedCrossRef Takaishi, K., Komohara, Y., Tashiro, H., Ohtake, H., Nakagawa, T., Katabuchi, H., et al. (2010). Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci, 101(10), 2128–2136.PubMedCrossRef
139.
go back to reference Wang, X., Deavers, M., Patenia, R., Bassett, R. L., Jr., Mueller, P., Ma, Q., et al. (2006). Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. Journal of Translational Medicine, 4, 30.PubMedCrossRef Wang, X., Deavers, M., Patenia, R., Bassett, R. L., Jr., Mueller, P., Ma, Q., et al. (2006). Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. Journal of Translational Medicine, 4, 30.PubMedCrossRef
140.
go back to reference Wang, E., Ngalame, Y., Panelli, M. C., Nguyen-Jackson, H., Deavers, M., Mueller, P., et al. (2005). Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clinical Cancer Research, 11(1), 113–122. Wang, E., Ngalame, Y., Panelli, M. C., Nguyen-Jackson, H., Deavers, M., Mueller, P., et al. (2005). Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clinical Cancer Research, 11(1), 113–122.
141.
go back to reference Zhang, T., Ma, Z., Wang, R., Wang, Y., Wang, S., Cheng, Z., et al. (2010). Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunol Immunother, 59(7), 1097–1108.PubMedCrossRef Zhang, T., Ma, Z., Wang, R., Wang, Y., Wang, S., Cheng, Z., et al. (2010). Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunol Immunother, 59(7), 1097–1108.PubMedCrossRef
142.
go back to reference Huh, S. J., Liang, S., Sharma, A., Dong, C., & Robertson, G. P. (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res, 70(14), 6071–6082.PubMedCrossRef Huh, S. J., Liang, S., Sharma, A., Dong, C., & Robertson, G. P. (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res, 70(14), 6071–6082.PubMedCrossRef
Metadata
Title
Myeloid cell diversification and complexity: an old concept with new turns in oncology
Authors
Mariacristina Chioda
Elisa Peranzoni
Giacomo Desantis
Francesca Papalini
Erika Falisi
Solito Samantha
Susanna Mandruzzato
Vincenzo Bronte
Publication date
01-03-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9268-1

Other articles of this Issue 1/2011

Cancer and Metastasis Reviews 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine