Skip to main content
Top
Published in: Neurology and Therapy 2/2023

Open Access 14-02-2023 | Myasthenia Gravis | ORIGINAL RESEARCH

Identification of Potential Serum Protein Biomarkers in Thymoma with Myasthenia Gravis After Docetaxel Treatment

Authors: Hongxia Yang, Guoyan Qi, Huimin Dong, Ze Liu, Mei Ma, Peng Liu

Published in: Neurology and Therapy | Issue 2/2023

Login to get access

Abstract

Introduction

Myasthenia gravis (MG) is a devastating acquired autoimmune disease that can seriously affect the patient’s quality of life. It is also a common complication of thymoma. Previous studies have shown that docetaxel alleviates myasthenic symptoms in thymoma with MG (TMG). However, little is known about the protein expression profiles and biomarkers for efficacy after docetaxel treatment.

Methods

We recruited 9 healthy controls and 30 patients with TMG for the serum proteomics study with data-independent acquisition (DIA) technology. We further recruited additional 30 patients for the key protein validation by enzyme-linked immunosorbent assay (ELISA).

Results

We identified 43 proteins by trend analysis and analyzed the interaction between these proteins and MG pathogenic proteins from the DisGNET database and the correlation analysis with clinical data of patients with TMG. Among these, KRAS and SELP were screened out and validated. KRAS and SELP increased in patients with TMG and decreased significantly after docetaxel treatment.

Conclusions

Our study revealed that the serum proteins were differentially expressed after docetaxel treatment, suggesting their important role in patients with TMG, as well as the critical role of KRAS and SELP as biomarkers in evaluating the efficacy of docetaxel treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers. 2019;5(1):30.PubMedCrossRef Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers. 2019;5(1):30.PubMedCrossRef
2.
go back to reference Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in myasthenia gravis. BMC Neurol. 2010;10:46.PubMedPubMedCentralCrossRef Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in myasthenia gravis. BMC Neurol. 2010;10:46.PubMedPubMedCentralCrossRef
3.
go back to reference Heldal AT, Owe JF, Gilhus NE, Romi F. Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology. 2009;73(2):150–1.PubMedCrossRef Heldal AT, Owe JF, Gilhus NE, Romi F. Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology. 2009;73(2):150–1.PubMedCrossRef
4.
go back to reference Chen J, Tian DC, Zhang C, et al. Incidence, mortality, and economic burden of myasthenia gravis in China: a nationwide population-based study. Lancet Reg Health West Pac. 2020;5:100063.PubMedPubMedCentralCrossRef Chen J, Tian DC, Zhang C, et al. Incidence, mortality, and economic burden of myasthenia gravis in China: a nationwide population-based study. Lancet Reg Health West Pac. 2020;5:100063.PubMedPubMedCentralCrossRef
5.
go back to reference Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36.PubMedCrossRef Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36.PubMedCrossRef
6.
go back to reference Vincent A, Huda S, Cao M, et al. Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci. 2018;1413(1):143–53.PubMedCrossRef Vincent A, Huda S, Cao M, et al. Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci. 2018;1413(1):143–53.PubMedCrossRef
7.
go back to reference Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57(2):172–84.PubMedCrossRef Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57(2):172–84.PubMedCrossRef
8.
go back to reference Uzawa A, Kuwabara S, Suzuki S, et al. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol. 2021;203(3):366–74.PubMedCrossRef Uzawa A, Kuwabara S, Suzuki S, et al. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol. 2021;203(3):366–74.PubMedCrossRef
9.
go back to reference Ingelfinger F, Krishnarajah S, Kramer M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141(6):901–15.PubMedPubMedCentralCrossRef Ingelfinger F, Krishnarajah S, Kramer M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141(6):901–15.PubMedPubMedCentralCrossRef
10.
go back to reference Okumura M, Fujii Y, Shiono H, et al. Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis. Gen Thorac Cardiovasc Surg. 2008;56(4):143–50.PubMedCrossRef Okumura M, Fujii Y, Shiono H, et al. Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis. Gen Thorac Cardiovasc Surg. 2008;56(4):143–50.PubMedCrossRef
11.
go back to reference Álvarez-Velasco R, Gutiérrez-Gutiérrez G, Trujillo JC, et al. Clinical characteristics and outcomes of thymoma-associated myasthenia gravis. Eur J Neurol. 2021;28(6):2083–91.PubMedCrossRef Álvarez-Velasco R, Gutiérrez-Gutiérrez G, Trujillo JC, et al. Clinical characteristics and outcomes of thymoma-associated myasthenia gravis. Eur J Neurol. 2021;28(6):2083–91.PubMedCrossRef
12.
go back to reference Na KJ, Hyun K, Kang CH, et al. Predictors of post-thymectomy long-term neurological remission in thymomatous myasthenia gravis: an analysis from a multi-institutional database. Eur J Cardiothorac Surg. 2020;57(5):867–73.PubMedCrossRef Na KJ, Hyun K, Kang CH, et al. Predictors of post-thymectomy long-term neurological remission in thymomatous myasthenia gravis: an analysis from a multi-institutional database. Eur J Cardiothorac Surg. 2020;57(5):867–73.PubMedCrossRef
13.
go back to reference Kaufman AJ, Palatt J, Sivak M, et al. Thymectomy for myasthenia gravis: complete stable remission and associated prognostic factors in over 1000 cases. Semin Thorac Cardiovasc Surg. 2016;28(2):561–8.PubMedCrossRef Kaufman AJ, Palatt J, Sivak M, et al. Thymectomy for myasthenia gravis: complete stable remission and associated prognostic factors in over 1000 cases. Semin Thorac Cardiovasc Surg. 2016;28(2):561–8.PubMedCrossRef
14.
go back to reference Park S, Ahn MJ, Ahn JS, et al. A prospective phase II trial of induction chemotherapy with docetaxel/cisplatin for Masaoka stage III/IV thymic epithelial tumors. J Thorac Oncol. 2013;8(7):959–66.PubMedCrossRef Park S, Ahn MJ, Ahn JS, et al. A prospective phase II trial of induction chemotherapy with docetaxel/cisplatin for Masaoka stage III/IV thymic epithelial tumors. J Thorac Oncol. 2013;8(7):959–66.PubMedCrossRef
15.
go back to reference Qi G, Liu P, Dong H, Gu S, Yang H, Xue Y. Therapeutic potential of docetaxel plus cisplatin chemotherapy for myasthenia gravis patients with metastatic thymoma. Tohoku J Exp Med. 2017;241(4):281–6.PubMedCrossRef Qi G, Liu P, Dong H, Gu S, Yang H, Xue Y. Therapeutic potential of docetaxel plus cisplatin chemotherapy for myasthenia gravis patients with metastatic thymoma. Tohoku J Exp Med. 2017;241(4):281–6.PubMedCrossRef
16.
go back to reference Qi G, Xue Y, Li Y, Yang H, Zhang X. Docetaxel/cisplatin therapy in myasthenia gravis with hypertension/diabetes. Open Med (Wars). 2017;12:403–8.PubMedCrossRef Qi G, Xue Y, Li Y, Yang H, Zhang X. Docetaxel/cisplatin therapy in myasthenia gravis with hypertension/diabetes. Open Med (Wars). 2017;12:403–8.PubMedCrossRef
17.
go back to reference Blackmore D, Siddiqi Z, Li L, Wang N, Maksymowych W. Beyond the antibodies: serum metabolomic profiling of myasthenia gravis. Metabolomics. 2019;15(8):109.PubMedCrossRef Blackmore D, Siddiqi Z, Li L, Wang N, Maksymowych W. Beyond the antibodies: serum metabolomic profiling of myasthenia gravis. Metabolomics. 2019;15(8):109.PubMedCrossRef
18.
go back to reference Zhang QX, Li Y, Jiang SM, et al. Increased serum IL-36γ levels are associated with disease severity in myasthenia gravis patients. BMC Neurol. 2020;20(1):307.PubMedPubMedCentralCrossRef Zhang QX, Li Y, Jiang SM, et al. Increased serum IL-36γ levels are associated with disease severity in myasthenia gravis patients. BMC Neurol. 2020;20(1):307.PubMedPubMedCentralCrossRef
19.
go back to reference Uzawa A, Akamine H, Kojima Y, et al. High levels of serum interleukin-6 are associated with disease activity in myasthenia gravis. J Neuroimmunol. 2021;358: 577634.PubMedCrossRef Uzawa A, Akamine H, Kojima Y, et al. High levels of serum interleukin-6 are associated with disease activity in myasthenia gravis. J Neuroimmunol. 2021;358: 577634.PubMedCrossRef
20.
go back to reference Sanders DB, Wolfe GI, Benatar M, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87(4):419–25.PubMedPubMedCentralCrossRef Sanders DB, Wolfe GI, Benatar M, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87(4):419–25.PubMedPubMedCentralCrossRef
21.
go back to reference Jaretzki A 3rd, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23.PubMedCrossRef Jaretzki A 3rd, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23.PubMedCrossRef
22.
go back to reference The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–8.CrossRef The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–8.CrossRef
23.
go back to reference Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform. 2006;7:191.CrossRef Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform. 2006;7:191.CrossRef
24.
go back to reference Piñero J, Queralt-Rosinach N, Bravo À, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford). 2015;2015:bav028.PubMedCrossRef Piñero J, Queralt-Rosinach N, Bravo À, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford). 2015;2015:bav028.PubMedCrossRef
25.
go back to reference Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833–9.PubMedCrossRef Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833–9.PubMedCrossRef
26.
go back to reference Zhang E, Xing R, Liu S, Li P. Current advances in development of new docetaxel formulations. Expert Opin Drug Deliv. 2019;16(3):301–12.PubMedCrossRef Zhang E, Xing R, Liu S, Li P. Current advances in development of new docetaxel formulations. Expert Opin Drug Deliv. 2019;16(3):301–12.PubMedCrossRef
27.
28.
go back to reference Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin Cancer Res. 2008;14(11):3536–44.PubMedPubMedCentralCrossRef Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin Cancer Res. 2008;14(11):3536–44.PubMedPubMedCentralCrossRef
29.
go back to reference Blumenschein GR Jr, Smit EF, Planchard D, et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2015;26(5):894–901.PubMedPubMedCentralCrossRef Blumenschein GR Jr, Smit EF, Planchard D, et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2015;26(5):894–901.PubMedPubMedCentralCrossRef
33.
go back to reference Chen Y, Zheng Y, You X, et al. Kras is critical for B cell lymphopoiesis. J Immunol. 2016;196(4):1678–85.PubMedCrossRef Chen Y, Zheng Y, You X, et al. Kras is critical for B cell lymphopoiesis. J Immunol. 2016;196(4):1678–85.PubMedCrossRef
34.
go back to reference Zdanov S, Mandapathil M, Abu Eid R, et al. Mutant KRAS conversion of conventional T cells into regulatory T cells. Cancer Immunol Res. 2016;4(4):354–65.PubMedPubMedCentralCrossRef Zdanov S, Mandapathil M, Abu Eid R, et al. Mutant KRAS conversion of conventional T cells into regulatory T cells. Cancer Immunol Res. 2016;4(4):354–65.PubMedPubMedCentralCrossRef
35.
go back to reference Singh K, Deshpande P, Li G, et al. K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis. Proc Natl Acad Sci USA. 2012;109(25):E1629–37.PubMedPubMedCentralCrossRef Singh K, Deshpande P, Li G, et al. K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis. Proc Natl Acad Sci USA. 2012;109(25):E1629–37.PubMedPubMedCentralCrossRef
36.
go back to reference Burkhardt J, Blume M, Petit-Teixeira E, et al. Cellular adhesion gene SELP is associated with rheumatoid arthritis and displays differential allelic expression. PLoS ONE. 2014;9(8):e103872.PubMedPubMedCentralCrossRef Burkhardt J, Blume M, Petit-Teixeira E, et al. Cellular adhesion gene SELP is associated with rheumatoid arthritis and displays differential allelic expression. PLoS ONE. 2014;9(8):e103872.PubMedPubMedCentralCrossRef
37.
go back to reference Marazuela M, Sánchez-Madrid F, Acevedo A, Larrañaga E, de Landázuri MO. Expression of vascular adhesion molecules on human endothelia in autoimmune thyroid disorders. Clin Exp Immunol. 1995;102(2):328–34.PubMedPubMedCentralCrossRef Marazuela M, Sánchez-Madrid F, Acevedo A, Larrañaga E, de Landázuri MO. Expression of vascular adhesion molecules on human endothelia in autoimmune thyroid disorders. Clin Exp Immunol. 1995;102(2):328–34.PubMedPubMedCentralCrossRef
38.
go back to reference Hu YH, Zhou PF, Long GF, et al. Elevated plasma P-selectin autoantibodies in primary Sjögren syndrome patients with thrombocytopenia. Med Sci Monit. 2015;21:3690–5.PubMedPubMedCentralCrossRef Hu YH, Zhou PF, Long GF, et al. Elevated plasma P-selectin autoantibodies in primary Sjögren syndrome patients with thrombocytopenia. Med Sci Monit. 2015;21:3690–5.PubMedPubMedCentralCrossRef
39.
go back to reference Haddad W, Cooper CJ, Zhang Z, et al. P-selectin and P-selectin glycoprotein ligand 1 are major determinants for Th1 cell recruitment to nonlymphoid effector sites in the intestinal lamina propria. J Exp Med. 2003;198(3):369–77.PubMedPubMedCentralCrossRef Haddad W, Cooper CJ, Zhang Z, et al. P-selectin and P-selectin glycoprotein ligand 1 are major determinants for Th1 cell recruitment to nonlymphoid effector sites in the intestinal lamina propria. J Exp Med. 2003;198(3):369–77.PubMedPubMedCentralCrossRef
40.
go back to reference Hirata T, Furie BC, Furie B. P-, E-, and L-selectin mediate migration of activated CD8+ T lymphocytes into inflamed skin. J Immunol. 2002;169(8):4307–13.PubMedCrossRef Hirata T, Furie BC, Furie B. P-, E-, and L-selectin mediate migration of activated CD8+ T lymphocytes into inflamed skin. J Immunol. 2002;169(8):4307–13.PubMedCrossRef
41.
go back to reference Scherlinger M, Guillotin V, Douchet I, et al. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci Transl Med. 2021;13(600):eabi4994.PubMedCrossRef Scherlinger M, Guillotin V, Douchet I, et al. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci Transl Med. 2021;13(600):eabi4994.PubMedCrossRef
Metadata
Title
Identification of Potential Serum Protein Biomarkers in Thymoma with Myasthenia Gravis After Docetaxel Treatment
Authors
Hongxia Yang
Guoyan Qi
Huimin Dong
Ze Liu
Mei Ma
Peng Liu
Publication date
14-02-2023
Publisher
Springer Healthcare
Published in
Neurology and Therapy / Issue 2/2023
Print ISSN: 2193-8253
Electronic ISSN: 2193-6536
DOI
https://doi.org/10.1007/s40120-023-00442-3

Other articles of this Issue 2/2023

Neurology and Therapy 2/2023 Go to the issue