Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Myasthenia Gravis | Research

Identification of the regulatory role of lncRNA HCG18 in myasthenia gravis by integrated bioinformatics and experimental analyses

Authors: Shuang Li, Xu Wang, Tianfeng Wang, Huixue Zhang, Xiaoyu Lu, Li Liu, Lifang Li, Chunrui Bo, Xiaotong Kong, Si Xu, Shangwei Ning, Jianjian Wang, Lihua Wang

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Long non-coding RNAs (lncRNAs), functioning as competing endogenous RNAs (ceRNAs), have been reported to play important roles in the pathogenesis of autoimmune diseases. However, little is known about the regulatory roles of lncRNAs underlying the mechanism of myasthenia gravis (MG). The aim of the present study was to explore the roles of lncRNAs as ceRNAs associated with the progression of MG.

Methods

MG risk genes and miRNAs were obtained from public databases. Protein–protein interaction (PPI) network analysis and module analysis were performed. A lncRNA-mediated module-associated ceRNA (LMMAC) network, which integrated risk genes in modules, risk miRNAs and predicted lncRNAs, was constructed to systematically explore the regulatory roles of lncRNAs in MG. Through performing random walk with restart on the network, HCG18/miR-145-5p/CD28 ceRNA axis was found to play important roles in MG, potentially. The expression of HCG18 in MG patients was detected using RT-PCR. The effects of HCG18 knockdown on cell proliferation and apoptosis were determined by CCK-8 assay and flow cytometry. The interactions among HCG18, miR-145-5p and CD28 were explored by luciferase assay, RT-PCR and western blot assay.

Results

Based on PPI network, we identified 9 modules. Functional enrichment analyses revealed these modules were enriched in immune-related signaling pathways. We then constructed LMMAC network, containing 25 genes, 50 miRNAs, and 64 lncRNAs. Through bioinformatics algorithm, we found lncRNA HCG18 as a ceRNA, might play important roles in MG. Further experiments indicated that HCG18 was overexpressed in MG patients and was a target of miR-145-5p. Functional assays illustrated that HCG18 suppressed Jurkat cell apoptosis and promoted cell proliferation. Mechanistically, knockdown of HCG18 inhibited the CD28 mRNA and protein expression levels in Jurkat cells, while miR-145-5p inhibitor blocked the reduction of CD28 expression induced by HCG18 suppression.

Conclusion

We have reported a novel HCG18/miR-145-5p/CD28 ceRNA axis in MG. Our findings will contribute to a deeper understanding of the molecular mechanism of and provide a novel potential therapeutic target for MG.
Appendix
Available only for authorised users
Literature
2.
go back to reference Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V, Mantegazza R, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–45.PubMedCrossRef Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V, Mantegazza R, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–45.PubMedCrossRef
3.
go back to reference Yeh JH, Chen HJ, Chen YK, Chiu HC, Kao CH. Increased risk of osteoporosis in patients with myasthenia gravis: a population-based cohort study. Neurology. 2014;83(12):1075–9.PubMedCrossRef Yeh JH, Chen HJ, Chen YK, Chiu HC, Kao CH. Increased risk of osteoporosis in patients with myasthenia gravis: a population-based cohort study. Neurology. 2014;83(12):1075–9.PubMedCrossRef
4.
go back to reference Eftekhari A, Arjmand A, Asheghvatan A, Švajdlenková H, Šauša O, Abiyev H, et al. The potential application of magnetic nanoparticles for liver fibrosis theranostics. Front Chem. 2021;9:674786.PubMedPubMedCentralCrossRef Eftekhari A, Arjmand A, Asheghvatan A, Švajdlenková H, Šauša O, Abiyev H, et al. The potential application of magnetic nanoparticles for liver fibrosis theranostics. Front Chem. 2021;9:674786.PubMedPubMedCentralCrossRef
5.
go back to reference Eftekhari A, Maleki Dizaj S, Ahmadian E, Przekora A, Hosseiniyan Khatibi SM, Ardalan M, et al. Application of advanced nanomaterials for kidney failure treatment and regeneration. Materials. 2021;14(11):2939.PubMedPubMedCentralCrossRef Eftekhari A, Maleki Dizaj S, Ahmadian E, Przekora A, Hosseiniyan Khatibi SM, Ardalan M, et al. Application of advanced nanomaterials for kidney failure treatment and regeneration. Materials. 2021;14(11):2939.PubMedPubMedCentralCrossRef
6.
go back to reference Cai GM, Gao Z, Yue YX, Xie YC, Gao X, Hao HJ, et al. Association between CTLA-4 gene polymorphism and myasthenia gravis in a Chinese cohort. J Clin Neurosci. 2019;69:31–7.PubMedCrossRef Cai GM, Gao Z, Yue YX, Xie YC, Gao X, Hao HJ, et al. Association between CTLA-4 gene polymorphism and myasthenia gravis in a Chinese cohort. J Clin Neurosci. 2019;69:31–7.PubMedCrossRef
7.
go back to reference Zhang S, Zhao H, Ng MK. Functional module analysis for gene coexpression networks with network integration. IEEE/ACM Trans Comput Biol Bioinform. 2015;12(5):1146–60.PubMedPubMedCentralCrossRef Zhang S, Zhao H, Ng MK. Functional module analysis for gene coexpression networks with network integration. IEEE/ACM Trans Comput Biol Bioinform. 2015;12(5):1146–60.PubMedPubMedCentralCrossRef
8.
9.
go back to reference Fabian MR, Sundermeier TR, Sonenberg N. Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol. 2010;50:1–20.PubMedCrossRef Fabian MR, Sundermeier TR, Sonenberg N. Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol. 2010;50:1–20.PubMedCrossRef
10.
go back to reference Luo M, Liu X, Meng H, Xu L, Li Y, Li Z, et al. IFNA-AS1 regulates CD4(+) T cell activation in myasthenia gravis though HLA-DRB1. Clin Immunol. 2017;183:121–31.PubMedCrossRef Luo M, Liu X, Meng H, Xu L, Li Y, Li Z, et al. IFNA-AS1 regulates CD4(+) T cell activation in myasthenia gravis though HLA-DRB1. Clin Immunol. 2017;183:121–31.PubMedCrossRef
12.
go back to reference Cao YL, Dong W, Li YZ, Han W. MicroRNA-653 inhibits thymocyte proliferation and induces thymocyte apoptosis in mice with autoimmune myasthenia gravis by downregulating TRIM9. NeuroImmunoModulation. 2019;26(1):7–18.PubMedCrossRef Cao YL, Dong W, Li YZ, Han W. MicroRNA-653 inhibits thymocyte proliferation and induces thymocyte apoptosis in mice with autoimmune myasthenia gravis by downregulating TRIM9. NeuroImmunoModulation. 2019;26(1):7–18.PubMedCrossRef
13.
14.
go back to reference Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J, Tang Z, et al. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/beta-catenin pathway. Mol Cancer. 2018;17(1):126.PubMedPubMedCentralCrossRef Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J, Tang Z, et al. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/beta-catenin pathway. Mol Cancer. 2018;17(1):126.PubMedPubMedCentralCrossRef
15.
go back to reference Dalakas MC. Immunotherapy in myasthenia gravis in the era of biologics. Nat Rev Neurol. 2019;15(2):113–24.PubMedCrossRef Dalakas MC. Immunotherapy in myasthenia gravis in the era of biologics. Nat Rev Neurol. 2019;15(2):113–24.PubMedCrossRef
16.
go back to reference Li S, Cao Y, Li L, Zhang H, Lu X, Bo C, et al. Building the drug-GO function network to screen significant candidate drugs for myasthenia gravis. PLoS ONE. 2019;14(4):e0214857.PubMedPubMedCentralCrossRef Li S, Cao Y, Li L, Zhang H, Lu X, Bo C, et al. Building the drug-GO function network to screen significant candidate drugs for myasthenia gravis. PLoS ONE. 2019;14(4):e0214857.PubMedPubMedCentralCrossRef
17.
go back to reference Yang L, Wang J, Sun X, Cao Y, Ning S, Zhang H, et al. Identifying a polymorphic “switch” that influences miRNAs’ regulation of a myasthenia gravis risk pathway. PLoS ONE. 2014;9(8):e104827.PubMedPubMedCentralCrossRef Yang L, Wang J, Sun X, Cao Y, Ning S, Zhang H, et al. Identifying a polymorphic “switch” that influences miRNAs’ regulation of a myasthenia gravis risk pathway. PLoS ONE. 2014;9(8):e104827.PubMedPubMedCentralCrossRef
18.
go back to reference Wang J, Cao Y, Zhang H, Wang T, Tian Q, Lu X, et al. NSDNA: a manually curated database of experimentally supported ncRNAs associated with nervous system diseases. Nucleic Acids Res. 2017;45(D1):D902–7.PubMedCrossRef Wang J, Cao Y, Zhang H, Wang T, Tian Q, Lu X, et al. NSDNA: a manually curated database of experimentally supported ncRNAs associated with nervous system diseases. Nucleic Acids Res. 2017;45(D1):D902–7.PubMedCrossRef
19.
go back to reference Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef
20.
go back to reference Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2.CrossRef Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2.CrossRef
22.
go back to reference Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48(D1):D148–54.PubMed Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48(D1):D148–54.PubMed
23.
go back to reference Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.PubMedCrossRef Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.PubMedCrossRef
24.
go back to reference Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRef Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRef
25.
go back to reference Zhang J, Gao Y, Wang P, Zhi H, Zhang Y, Guo M, et al. CLING: candidate cancer-related lncRNA prioritization via integrating multiple biological networks. Front Bioeng Biotechnol. 2020;8:138.PubMedPubMedCentralCrossRef Zhang J, Gao Y, Wang P, Zhi H, Zhang Y, Guo M, et al. CLING: candidate cancer-related lncRNA prioritization via integrating multiple biological networks. Front Bioeng Biotechnol. 2020;8:138.PubMedPubMedCentralCrossRef
26.
go back to reference Wang M, Zheng S, Li X, Ding Y, Zhang M, Lin L, et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network identified lncRNA EPB41L4A-AS1 as a potential biomarker in non-small cell lung cancer. Front Genet. 2020;11:511676.PubMedPubMedCentralCrossRef Wang M, Zheng S, Li X, Ding Y, Zhang M, Lin L, et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network identified lncRNA EPB41L4A-AS1 as a potential biomarker in non-small cell lung cancer. Front Genet. 2020;11:511676.PubMedPubMedCentralCrossRef
27.
go back to reference Jaretzki AR, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23.PubMedCrossRef Jaretzki AR, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23.PubMedCrossRef
28.
go back to reference Wang J, Cao Y, Lu X, Wang X, Kong X, Bo C, et al. Identification of the regulatory role of lncRNA SNHG16 in myasthenia gravis by constructing a competing endogenous RNA network. Mol Ther Nucleic Acids. 2020;19:1123–33.PubMedPubMedCentralCrossRef Wang J, Cao Y, Lu X, Wang X, Kong X, Bo C, et al. Identification of the regulatory role of lncRNA SNHG16 in myasthenia gravis by constructing a competing endogenous RNA network. Mol Ther Nucleic Acids. 2020;19:1123–33.PubMedPubMedCentralCrossRef
29.
go back to reference Wang J, Zheng S, Xin N, Dou C, Fu L, Zhang X, et al. Identification of novel MicroRNA signatures linked to experimental autoimmune myasthenia gravis pathogenesis: down-regulated miR-145 promotes pathogenetic Th17 cell response. J Neuroimmune Pharmacol. 2013;8(5):1287–302.PubMedCrossRef Wang J, Zheng S, Xin N, Dou C, Fu L, Zhang X, et al. Identification of novel MicroRNA signatures linked to experimental autoimmune myasthenia gravis pathogenesis: down-regulated miR-145 promotes pathogenetic Th17 cell response. J Neuroimmune Pharmacol. 2013;8(5):1287–302.PubMedCrossRef
30.
go back to reference Huang D, Giscombe R, Zhou Y, Pirskanen R, Lefvert AK. Dinucleotide repeat expansion in the CTLA-4 gene leads to T cell hyper-reactivity via the CD28 pathway in myasthenia gravis. J Neuroimmunol. 2000;105(1):69–77.PubMedCrossRef Huang D, Giscombe R, Zhou Y, Pirskanen R, Lefvert AK. Dinucleotide repeat expansion in the CTLA-4 gene leads to T cell hyper-reactivity via the CD28 pathway in myasthenia gravis. J Neuroimmunol. 2000;105(1):69–77.PubMedCrossRef
31.
go back to reference Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, et al. Identification of HCG18 and MCM3AP-AS1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat. 2021;20:1533033821990064.PubMedPubMedCentralCrossRef Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, et al. Identification of HCG18 and MCM3AP-AS1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat. 2021;20:1533033821990064.PubMedPubMedCentralCrossRef
32.
go back to reference Beyersdorf N, Kerkau T, Hunig T. CD28 co-stimulation in T-cell homeostasis: a recent perspective. Immunotargets Ther. 2015;4:111–22.PubMedPubMedCentral Beyersdorf N, Kerkau T, Hunig T. CD28 co-stimulation in T-cell homeostasis: a recent perspective. Immunotargets Ther. 2015;4:111–22.PubMedPubMedCentral
33.
go back to reference Cheng Z, Qiu S, Jiang L, Zhang A, Bao W, Liu P, et al. MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogen-activated protein kinase 1. J Clin Immunol. 2013;33(3):567–76.PubMedCrossRef Cheng Z, Qiu S, Jiang L, Zhang A, Bao W, Liu P, et al. MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogen-activated protein kinase 1. J Clin Immunol. 2013;33(3):567–76.PubMedCrossRef
35.
go back to reference Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long noncoding RNAs and circular RNAs in autoimmune diseases. Biomolecules. 2020;10(7):1044.PubMedCentralCrossRef Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long noncoding RNAs and circular RNAs in autoimmune diseases. Biomolecules. 2020;10(7):1044.PubMedCentralCrossRef
36.
go back to reference Zhang K, Zhang L, Mi Y, Tang Y, Ren F, Liu B, et al. A ceRNA network and a potential regulatory axis in gastric cancer with different degrees of immune cell infiltration. Cancer Sci. 2020;111(11):4041–50.PubMedPubMedCentralCrossRef Zhang K, Zhang L, Mi Y, Tang Y, Ren F, Liu B, et al. A ceRNA network and a potential regulatory axis in gastric cancer with different degrees of immune cell infiltration. Cancer Sci. 2020;111(11):4041–50.PubMedPubMedCentralCrossRef
37.
go back to reference Sheng W, Guo W, Lu F, Liu H, Xia R, Dong F. Upregulation of Linc00284 promotes lung cancer progression by regulating the miR-205-3pc-Met axis. Front Genet. 2021;12:694571.PubMedPubMedCentralCrossRef Sheng W, Guo W, Lu F, Liu H, Xia R, Dong F. Upregulation of Linc00284 promotes lung cancer progression by regulating the miR-205-3pc-Met axis. Front Genet. 2021;12:694571.PubMedPubMedCentralCrossRef
38.
go back to reference Zou Y, Sun Z, Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J Biochem. 2020;168(5):535–46.PubMedCrossRef Zou Y, Sun Z, Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J Biochem. 2020;168(5):535–46.PubMedCrossRef
39.
go back to reference Li L, Ma TT, Ma YH, Jiang YF. LncRNA HCG18 contributes to nasopharyngeal carcinoma development by modulating miR-140CCND1 and Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(23):10387–99.PubMed Li L, Ma TT, Ma YH, Jiang YF. LncRNA HCG18 contributes to nasopharyngeal carcinoma development by modulating miR-140CCND1 and Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(23):10387–99.PubMed
40.
go back to reference Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, et al. Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem. 2021;476(1):471–82.PubMedCrossRef Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, et al. Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem. 2021;476(1):471–82.PubMedCrossRef
41.
go back to reference Cao Y, Lu X, Wang J, Zhang H, Liu Z, Xu S, et al. Construction of an miRNA-regulated drug-pathway network reveals drug repurposing candidates for myasthenia gravis. Int J Mol Med. 2017;39(2):268–78.PubMedPubMedCentralCrossRef Cao Y, Lu X, Wang J, Zhang H, Liu Z, Xu S, et al. Construction of an miRNA-regulated drug-pathway network reveals drug repurposing candidates for myasthenia gravis. Int J Mol Med. 2017;39(2):268–78.PubMedPubMedCentralCrossRef
42.
go back to reference Bo C, Zhang H, Cao Y, Lu X, Zhang C, Li S, et al. Construction of a TF-miRNA-gene feed-forward loop network predicts biomarkers and potential drugs for myasthenia gravis. Sci Rep. 2021;11(1):2416.PubMedPubMedCentralCrossRef Bo C, Zhang H, Cao Y, Lu X, Zhang C, Li S, et al. Construction of a TF-miRNA-gene feed-forward loop network predicts biomarkers and potential drugs for myasthenia gravis. Sci Rep. 2021;11(1):2416.PubMedPubMedCentralCrossRef
43.
go back to reference He X, Deng H, Hwang HM. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2019;27(1):1–21.PubMedCrossRef He X, Deng H, Hwang HM. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2019;27(1):1–21.PubMedCrossRef
44.
go back to reference Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, et al. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother. 2018;103:1018–27.PubMedCrossRef Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, et al. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother. 2018;103:1018–27.PubMedCrossRef
45.
go back to reference Yu WJ, Huang DX, Liu S, Sha YL, Gao FH, Liu H. Polymeric nanoscale drug carriers mediate the delivery of methotrexate for developing therapeutic interventions against cancer and rheumatoid arthritis. Front Oncol. 2020;10:1734.PubMedPubMedCentralCrossRef Yu WJ, Huang DX, Liu S, Sha YL, Gao FH, Liu H. Polymeric nanoscale drug carriers mediate the delivery of methotrexate for developing therapeutic interventions against cancer and rheumatoid arthritis. Front Oncol. 2020;10:1734.PubMedPubMedCentralCrossRef
Metadata
Title
Identification of the regulatory role of lncRNA HCG18 in myasthenia gravis by integrated bioinformatics and experimental analyses
Authors
Shuang Li
Xu Wang
Tianfeng Wang
Huixue Zhang
Xiaoyu Lu
Li Liu
Lifang Li
Chunrui Bo
Xiaotong Kong
Si Xu
Shangwei Ning
Jianjian Wang
Lihua Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-03138-0

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.