Skip to main content
Top
Published in: Virology Journal 1/2009

Open Access 01-12-2009 | Research

Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry

Authors: Jeroen Corver, Rene Broer, Puck van Kasteren, Willy Spaan

Published in: Virology Journal | Issue 1/2009

Login to get access

Abstract

Background

The spike protein (S) of SARS Coronavirus (SARS-CoV) mediates entry of the virus into target cells, including receptor binding and membrane fusion. Close to or in the viral membrane, the S protein contains three distinct motifs: a juxtamembrane aromatic part, a central highly hydrophobic stretch and a cysteine rich motif. Here, we investigate the role of aromatic and hydrophobic parts of S in the entry of SARS CoV and in cell-cell fusion. This was investigated using the previously described SARS pseudotyped particles system (SARSpp) and by fluorescence-based cell-cell fusion assays.

Results

Mutagenesis showed that the aromatic domain was crucial for SARSpp entry into cells, with a likely role in pore enlargement.
Introduction of lysine residues in the hydrophobic stretch of S also resulted in a block of entry, suggesting the borders of the actual transmembrane domain. Surprisingly, replacement of a glycine residue, situated close to the aromatic domain, with a lysine residue was tolerated, whereas the introduction of a lysine adjacent to the glycine, was not. In a model, we propose that during fusion, the lateral flexibility of the transmembrane domain plays a critical role, as do the tryptophans and the cysteines.

Conclusions

The aromatic domain plays a crucial role in the entry of SARS CoV into target cells. The positioning of the aromatic domain and the hydrophobic domain relative to each other is another essential characteristic of this membrane fusion process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schibli DJ, Weissenhorn W: Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol. 2004, 21 (6): 361-71. 10.1080/09687860400017784.CrossRefPubMed Schibli DJ, Weissenhorn W: Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol. 2004, 21 (6): 361-71. 10.1080/09687860400017784.CrossRefPubMed
2.
go back to reference Armstrong RT, Kushnir AS, White JM: The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J Cell Biol. 2000, 151 (2): 425-37. 10.1083/jcb.151.2.425.PubMedCentralCrossRefPubMed Armstrong RT, Kushnir AS, White JM: The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J Cell Biol. 2000, 151 (2): 425-37. 10.1083/jcb.151.2.425.PubMedCentralCrossRefPubMed
3.
go back to reference Frolov VA, Cho MS, Bronk P, Reese TS, Zimmerberg J: Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic. 2000, 1 (8): 622-30. 10.1034/j.1600-0854.2000.010806.x.CrossRefPubMed Frolov VA, Cho MS, Bronk P, Reese TS, Zimmerberg J: Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic. 2000, 1 (8): 622-30. 10.1034/j.1600-0854.2000.010806.x.CrossRefPubMed
4.
go back to reference Melikyan GB, White JM, Cohen FS: GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol. 1995, 131 (3): 679-91. 10.1083/jcb.131.3.679.CrossRefPubMed Melikyan GB, White JM, Cohen FS: GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol. 1995, 131 (3): 679-91. 10.1083/jcb.131.3.679.CrossRefPubMed
5.
go back to reference Kemble GW, Danieli T, White JM: Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell. 1994, 76 (2): 383-91. 10.1016/0092-8674(94)90344-1.CrossRefPubMed Kemble GW, Danieli T, White JM: Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell. 1994, 76 (2): 383-91. 10.1016/0092-8674(94)90344-1.CrossRefPubMed
6.
go back to reference Cleverley DZ, Lenard J: The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci USA. 1998, 95 (7): 3425-30. 10.1073/pnas.95.7.3425.PubMedCentralCrossRefPubMed Cleverley DZ, Lenard J: The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci USA. 1998, 95 (7): 3425-30. 10.1073/pnas.95.7.3425.PubMedCentralCrossRefPubMed
7.
go back to reference Munoz-Barroso I, Salzwedel K, Hunter E, Blumenthal R: Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J Virol. 1999, 73 (7): 6089-92.PubMedCentralPubMed Munoz-Barroso I, Salzwedel K, Hunter E, Blumenthal R: Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J Virol. 1999, 73 (7): 6089-92.PubMedCentralPubMed
8.
go back to reference Salzwedel K, West JT, Hunter E: A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J Virol. 1999, 73 (3): 2469-80.PubMedCentralPubMed Salzwedel K, West JT, Hunter E: A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J Virol. 1999, 73 (3): 2469-80.PubMedCentralPubMed
9.
go back to reference Bos EC, Heijnen L, Luytjes W, Spaan WJ: Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology. 1995, 214 (2): 453-63. 10.1006/viro.1995.0056.CrossRefPubMed Bos EC, Heijnen L, Luytjes W, Spaan WJ: Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology. 1995, 214 (2): 453-63. 10.1006/viro.1995.0056.CrossRefPubMed
10.
go back to reference Chang KW, Sheng Y, Gombold JL: Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology. 2000, 269 (1): 212-24. 10.1006/viro.2000.0219.CrossRefPubMed Chang KW, Sheng Y, Gombold JL: Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology. 2000, 269 (1): 212-24. 10.1006/viro.2000.0219.CrossRefPubMed
11.
go back to reference Petit CM, Chouljenko VN, Iyer A, et al: Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology. 2006, 360 (2): 264-74. 10.1016/j.virol.2006.10.034.CrossRefPubMed Petit CM, Chouljenko VN, Iyer A, et al: Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology. 2006, 360 (2): 264-74. 10.1016/j.virol.2006.10.034.CrossRefPubMed
12.
go back to reference Ye R, Montalto-Morrison C, Masters PS: Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain. J Virol. 2004, 78 (18): 9904-17. 10.1128/JVI.78.18.9904-9917.2004.PubMedCentralCrossRefPubMed Ye R, Montalto-Morrison C, Masters PS: Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain. J Virol. 2004, 78 (18): 9904-17. 10.1128/JVI.78.18.9904-9917.2004.PubMedCentralCrossRefPubMed
13.
go back to reference Sakai T, Ohuchi R, Ohuchi M: Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J Virol. 2002, 76 (9): 4603-11. 10.1128/JVI.76.9.4603-4611.2002.PubMedCentralCrossRefPubMed Sakai T, Ohuchi R, Ohuchi M: Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J Virol. 2002, 76 (9): 4603-11. 10.1128/JVI.76.9.4603-4611.2002.PubMedCentralCrossRefPubMed
14.
go back to reference Broer R, Boson B, Spaan W, Cosset FL, Corver J: Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. J Virol. 2006, 80 (3): 1302-10. 10.1128/JVI.80.3.1302-1310.2006.PubMedCentralCrossRefPubMed Broer R, Boson B, Spaan W, Cosset FL, Corver J: Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. J Virol. 2006, 80 (3): 1302-10. 10.1128/JVI.80.3.1302-1310.2006.PubMedCentralCrossRefPubMed
15.
go back to reference Howard MW, Travanty EA, Jeffers SA, et al: Aromatic amino acids in the juxtamembrane domain of SARS coronavirus spike glycoprotein are important for receptor-dependent virus entry and cell-cell fusion. J Virol. 2008, 82 (6): 2883-94. 10.1128/JVI.01805-07.PubMedCentralCrossRefPubMed Howard MW, Travanty EA, Jeffers SA, et al: Aromatic amino acids in the juxtamembrane domain of SARS coronavirus spike glycoprotein are important for receptor-dependent virus entry and cell-cell fusion. J Virol. 2008, 82 (6): 2883-94. 10.1128/JVI.01805-07.PubMedCentralCrossRefPubMed
16.
go back to reference Wimley WC, White SH: Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Structural Biology. 1996, 3 (10): 842-8. 10.1038/nsb1096-842.CrossRefPubMed Wimley WC, White SH: Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Structural Biology. 1996, 3 (10): 842-8. 10.1038/nsb1096-842.CrossRefPubMed
17.
go back to reference McBride CE, Li J, Machamer CE: The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol. 2007, 81 (5): 2418-28. 10.1128/JVI.02146-06.PubMedCentralCrossRefPubMed McBride CE, Li J, Machamer CE: The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol. 2007, 81 (5): 2418-28. 10.1128/JVI.02146-06.PubMedCentralCrossRefPubMed
18.
go back to reference Versteeg GA, Bredenbeek PJ, Worm van den SH, Spaan WJ: Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology. 2007, 361 (1): 18-26. 10.1016/j.virol.2007.01.020.CrossRefPubMed Versteeg GA, Bredenbeek PJ, Worm van den SH, Spaan WJ: Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology. 2007, 361 (1): 18-26. 10.1016/j.virol.2007.01.020.CrossRefPubMed
19.
go back to reference Cocquerel L, Wychowski C, Minner F, Penin F, Dubuisson J: Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a major role in the processing, subcellular localization, and assembly of these envelope proteins. J Virol. 2000, 74 (8): 3623-33. 10.1128/JVI.74.8.3623-3633.2000.PubMedCentralCrossRefPubMed Cocquerel L, Wychowski C, Minner F, Penin F, Dubuisson J: Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a major role in the processing, subcellular localization, and assembly of these envelope proteins. J Virol. 2000, 74 (8): 3623-33. 10.1128/JVI.74.8.3623-3633.2000.PubMedCentralCrossRefPubMed
20.
go back to reference Lu Y, Neo TL, Liu DX, Tam JP: Importance of SARS-CoV spike protein Trp-rich region in viral infectivity. Biochem Biophys Res Commun. 2008, 371 (3): 356-60. 10.1016/j.bbrc.2008.04.044.PubMedCentralCrossRefPubMed Lu Y, Neo TL, Liu DX, Tam JP: Importance of SARS-CoV spike protein Trp-rich region in viral infectivity. Biochem Biophys Res Commun. 2008, 371 (3): 356-60. 10.1016/j.bbrc.2008.04.044.PubMedCentralCrossRefPubMed
21.
go back to reference Saez-Cirion A, Arrondo JL, Gomara MJ, et al: Structural and functional roles of HIV-1 gp41 pretransmembrane sequence segmentation. Biophys J. 2003, 85 (6): 3769-80. 10.1016/S0006-3495(03)74792-4.PubMedCentralCrossRefPubMed Saez-Cirion A, Arrondo JL, Gomara MJ, et al: Structural and functional roles of HIV-1 gp41 pretransmembrane sequence segmentation. Biophys J. 2003, 85 (6): 3769-80. 10.1016/S0006-3495(03)74792-4.PubMedCentralCrossRefPubMed
22.
go back to reference Sainz B, Rausch JM, Gallaher WR, Garry RF, Wimley WC: The Aromatic Domain of the Coronavirus Class I Viral Fusion Protein Induces Membrane Permeabilization: Putative Role during Viral Entry. Biochemistry. 2005, 44 (3): 947-58. 10.1021/bi048515g.CrossRefPubMed Sainz B, Rausch JM, Gallaher WR, Garry RF, Wimley WC: The Aromatic Domain of the Coronavirus Class I Viral Fusion Protein Induces Membrane Permeabilization: Putative Role during Viral Entry. Biochemistry. 2005, 44 (3): 947-58. 10.1021/bi048515g.CrossRefPubMed
23.
go back to reference Guillen J, Perez-Berna AJ, Moreno MR, Villalain J: Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer Peptide scan: implications for the viral fusion mechanism. J Virol. 2005, 79 (3): 1743-52. 10.1128/JVI.79.3.1743-1752.2005.PubMedCentralCrossRefPubMed Guillen J, Perez-Berna AJ, Moreno MR, Villalain J: Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer Peptide scan: implications for the viral fusion mechanism. J Virol. 2005, 79 (3): 1743-52. 10.1128/JVI.79.3.1743-1752.2005.PubMedCentralCrossRefPubMed
24.
go back to reference Nieva JL, Suarez T: Hydrophobic-at-interface regions in viral fusion protein ectodomains. Biosci Rep. 2000, 20 (6): 519-33. 10.1023/A:1010458904487.CrossRefPubMed Nieva JL, Suarez T: Hydrophobic-at-interface regions in viral fusion protein ectodomains. Biosci Rep. 2000, 20 (6): 519-33. 10.1023/A:1010458904487.CrossRefPubMed
25.
go back to reference Suarez T, Gallaher WR, Agirre A, Goni FM, Nieva JL: Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: putative role during viral fusion. J Virol. 2000, 74 (17): 8038-47. 10.1128/JVI.74.17.8038-8047.2000.PubMedCentralCrossRefPubMed Suarez T, Gallaher WR, Agirre A, Goni FM, Nieva JL: Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: putative role during viral fusion. J Virol. 2000, 74 (17): 8038-47. 10.1128/JVI.74.17.8038-8047.2000.PubMedCentralCrossRefPubMed
26.
go back to reference van Duyl BY, Meeldijk H, Verkleij AJ, et al: A synergistic effect between cholesterol and tryptophan-flanked transmembrane helices modulates membrane curvature. Biochemistry. 2005, 44 (11): 4526-32. 10.1021/bi047937n.CrossRefPubMed van Duyl BY, Meeldijk H, Verkleij AJ, et al: A synergistic effect between cholesterol and tryptophan-flanked transmembrane helices modulates membrane curvature. Biochemistry. 2005, 44 (11): 4526-32. 10.1021/bi047937n.CrossRefPubMed
27.
go back to reference Epand RF, Sayer BG, Epand RM: The tryptophan-rich region of HIV gp41 and the promotion of cholesterol-rich domains. Biochemistry. 2005, 44 (14): 5525-31. 10.1021/bi0500224.CrossRefPubMed Epand RF, Sayer BG, Epand RM: The tryptophan-rich region of HIV gp41 and the promotion of cholesterol-rich domains. Biochemistry. 2005, 44 (14): 5525-31. 10.1021/bi0500224.CrossRefPubMed
28.
go back to reference Epand RM, Sayer BG, Epand RF: Peptide-induced formation of cholesterol-rich domains. Biochemistry. 2003, 42 (49): 14677-89. 10.1021/bi035587j.CrossRefPubMed Epand RM, Sayer BG, Epand RF: Peptide-induced formation of cholesterol-rich domains. Biochemistry. 2003, 42 (49): 14677-89. 10.1021/bi035587j.CrossRefPubMed
29.
go back to reference Li H, Papadopoulos V: Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998, 139 (12): 4991-7. 10.1210/en.139.12.4991.PubMed Li H, Papadopoulos V: Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998, 139 (12): 4991-7. 10.1210/en.139.12.4991.PubMed
30.
go back to reference Vincent N, Genin C, Malvoisin E: Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochim Biophys Acta. 2002, 1567 (1-2): 157-64.CrossRefPubMed Vincent N, Genin C, Malvoisin E: Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochim Biophys Acta. 2002, 1567 (1-2): 157-64.CrossRefPubMed
31.
go back to reference Lu Y, Liu DX, Tam JP: Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem Biophys Res Commun. 2008, 369 (2): 344-9. 10.1016/j.bbrc.2008.02.023.CrossRefPubMed Lu Y, Liu DX, Tam JP: Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem Biophys Res Commun. 2008, 369 (2): 344-9. 10.1016/j.bbrc.2008.02.023.CrossRefPubMed
32.
go back to reference Zhu P, Liu J, Bess J, et al: Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature. 2006, 441 (7095): 847-52. 10.1038/nature04817.CrossRefPubMed Zhu P, Liu J, Bess J, et al: Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature. 2006, 441 (7095): 847-52. 10.1038/nature04817.CrossRefPubMed
33.
go back to reference Beniac DR, Andonov A, Grudeski E, Booth TF: Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006, 13 (8): 751-2. 10.1038/nsmb1123.CrossRefPubMed Beniac DR, Andonov A, Grudeski E, Booth TF: Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006, 13 (8): 751-2. 10.1038/nsmb1123.CrossRefPubMed
34.
go back to reference Corver J, Broer R, van KP, Spaan W: GxxxG motif of SARS coronavirus spike glycoprotein transmembrane domain is not involved in trimerization and is not important for entry. J Virol. 2007, 81 (15): 8352-5. 10.1128/JVI.00014-07.PubMedCentralCrossRefPubMed Corver J, Broer R, van KP, Spaan W: GxxxG motif of SARS coronavirus spike glycoprotein transmembrane domain is not involved in trimerization and is not important for entry. J Virol. 2007, 81 (15): 8352-5. 10.1128/JVI.00014-07.PubMedCentralCrossRefPubMed
35.
go back to reference Bartosch B, Dubuisson J, Cosset FL: Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. Journal of Experimental Medicine. 2003, 197 (5): 633-42. 10.1084/jem.20021756.PubMedCentralCrossRefPubMed Bartosch B, Dubuisson J, Cosset FL: Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. Journal of Experimental Medicine. 2003, 197 (5): 633-42. 10.1084/jem.20021756.PubMedCentralCrossRefPubMed
Metadata
Title
Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry
Authors
Jeroen Corver
Rene Broer
Puck van Kasteren
Willy Spaan
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2009
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-6-230

Other articles of this Issue 1/2009

Virology Journal 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.