Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Muscovy duck reovirus σNS protein triggers autophagy enhancing virus replication

Authors: Yijian Wu, Longping Cui, Erpeng Zhu, Wuduo Zhou, Quanxi Wang, Xiaoping Wu, Baocheng Wu, Yifan Huang, Hung-Jen Liu

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Muscovy duck reovirus (MDRV) causes high morbidity and mortality in Muscovy ducklings at 10 days old and can persist in an infected flock until the ducklings of 6 weeks old. It shares common physicochemical properties with avian reovirus (ARV) and differs in coding assignment and pathogenicity. The ARV p17 protein has been shown to trigger autophagy via activation multiple signaling pathways, which benefits virus replication. Since MDRV lacks the p17 protein, whether and how MDRV induces autophagy remains unknown. The aim of this study was to explore whether MDRV induces autophagy and which viral proteins are involved in MDRV-induced autophagy.

Methods

The autophagosome-like structures in MDRV-infected cells was observed under transmission electron microscopy. MDRV-induced autophagy was examined by analyzing the LC3-II level and phosphorylated form of mammalian target of rapamycin (mTOR) by Western blot assays. The effects of 3-methyladenine, rapamycin, chloroquine on viral yields were measured with quantitative(q) real-time reverse transcription (RT)-polymerase chain reaction (PCR) and 50% tissue culture infective dose (TCID50) assays, respectively. Additionally, to determine which viral protein is responsible for MDRV-induced autophagy, both p10.8- and σNS-encoding genes of MDRV were cloned into the pCI-neo-flag vector and transfected into DF-1 cells for detection of LC3-II.

Results

The typical double-membrane vesicles containing cytoplasmic inclusions were visible in MDRV-infected immortalized chicken embryo fibroblast (DF-1) cells under transmission electron microscopy. Both primary Muscovy duck embryo fibroblasts (MDEF) and DF-1 cells infected with MDRV exhibited a significant increased levels of LC3-II accompanied with downregulation of phosphorylated form of mTOR, further confirming that MDRV is capable of inducing autophagy. Autophagy could be suppressed by 3-methylademine and induced by rapamycin and chloroquine. Furthermore, we found that σNS induces an increased levels of LC3-II, suggesting that the MDRV σNS protein is one of viral proteins involved in induction of autophagy. Both qRT-PCR and TCID50 assays showed that virus yield was increased in rapamycin treated DF-1 cells following MDRV infection. Conversely, when infected cells were pretreated with chloroquine, virus yield was decreased.

Conclusions

The MDRV σNS nonstructural protein is responsible for MDRV-induced autophagy and benefits virus replication.
Literature
1.
go back to reference Gaudry D, Charles JM, Tektoff J. A new disease expressing itself by a viral pericarditis in Barbary ducks. C R Acad Sci Hebd Seances Acad Sci D. 1972;274:2916–9.PubMed Gaudry D, Charles JM, Tektoff J. A new disease expressing itself by a viral pericarditis in Barbary ducks. C R Acad Sci Hebd Seances Acad Sci D. 1972;274:2916–9.PubMed
2.
go back to reference Heffels-Redmann U, Muller H, Kaleta EF. Structural and biological characteristics of reoviruses isolated from Muscovy ducks (Cairina moschata). Avian Pathol. 1992;21:481–91.CrossRefPubMed Heffels-Redmann U, Muller H, Kaleta EF. Structural and biological characteristics of reoviruses isolated from Muscovy ducks (Cairina moschata). Avian Pathol. 1992;21:481–91.CrossRefPubMed
3.
go back to reference Wu BC, Chen JX, Yao JS, Chen ZH, Chen WL, Li GP, Zeng XC. Isolation and identification of Muscovy duck reovirus. Journal of Fujian Agricultural University. 2001;30:227–30. Wu BC, Chen JX, Yao JS, Chen ZH, Chen WL, Li GP, Zeng XC. Isolation and identification of Muscovy duck reovirus. Journal of Fujian Agricultural University. 2001;30:227–30.
4.
go back to reference Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD. The International Committee on Taxonomy of Viruses. Virus Taxonomy Viiith Report of the International Committee on Taxonomy of Viruses. 2005;10:313–4. Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD. The International Committee on Taxonomy of Viruses. Virus Taxonomy Viiith Report of the International Committee on Taxonomy of Viruses. 2005;10:313–4.
5.
go back to reference Kuntz-Simon G, Le Gall-Reculé G, de Boisséson C, Jestin V. Muscovy duck reovirus sigmaC protein is atypically encoded by the smallest genome segment. J Gen Virol. 2002;83:1189–200.CrossRefPubMed Kuntz-Simon G, Le Gall-Reculé G, de Boisséson C, Jestin V. Muscovy duck reovirus sigmaC protein is atypically encoded by the smallest genome segment. J Gen Virol. 2002;83:1189–200.CrossRefPubMed
6.
go back to reference Liu HJ, Lee LH, Hsu HW, Kuo LC, Liao MH. Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages. Virology. 2003;314(1):336–49.CrossRefPubMed Liu HJ, Lee LH, Hsu HW, Kuo LC, Liao MH. Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages. Virology. 2003;314(1):336–49.CrossRefPubMed
7.
go back to reference Chen SY, Chen SL, Lin FQ, Jiang B, Wang S, Cheng XX, Zhu XL, Zhang SZ, Li ZL, Cheng YQ. The primary study of pathogen of duck hemorrhagic-necrotic hepatitis. Chinese Agric Sci Bull. 2009;25:28–31. Chen SY, Chen SL, Lin FQ, Jiang B, Wang S, Cheng XX, Zhu XL, Zhang SZ, Li ZL, Cheng YQ. The primary study of pathogen of duck hemorrhagic-necrotic hepatitis. Chinese Agric Sci Bull. 2009;25:28–31.
8.
go back to reference Yuan YH, Wang JF, Wu ZX, Huang XG, He DS, Huang SJ. Biological identification of a new-type duck reovirus (QY strains) isolated from Muscovy duck. Chinese J Vet Sci. 2013;33:40–4. Yuan YH, Wang JF, Wu ZX, Huang XG, He DS, Huang SJ. Biological identification of a new-type duck reovirus (QY strains) isolated from Muscovy duck. Chinese J Vet Sci. 2013;33:40–4.
9.
go back to reference Yun T, Yu B, Ni Z, Ye W, Chen L, Hua J, Zhang C. Genomic characteristics of a novel reovirus from Muscovy duckling in China. Vet Microbiol. 2014;168:261–71.CrossRefPubMed Yun T, Yu B, Ni Z, Ye W, Chen L, Hua J, Zhang C. Genomic characteristics of a novel reovirus from Muscovy duckling in China. Vet Microbiol. 2014;168:261–71.CrossRefPubMed
11.
go back to reference Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36:2503–18.CrossRefPubMed Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36:2503–18.CrossRefPubMed
12.
go back to reference Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11:709–30.CrossRefPubMedPubMedCentral Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11:709–30.CrossRefPubMedPubMedCentral
13.
go back to reference Petiot A, Pattingre S, Arico S, Meley D, Codogno P. Diversity of signaling controls of macroautophagy in mammalian cells. Cell Struct Funct. 2003;27:431–41.CrossRef Petiot A, Pattingre S, Arico S, Meley D, Codogno P. Diversity of signaling controls of macroautophagy in mammalian cells. Cell Struct Funct. 2003;27:431–41.CrossRef
14.
go back to reference Chi PI, Huang WR, Lai IH, Cheng CY, Liu HJ. The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNA-dependent protein kinase (PKR)/eIF2alpha signaling pathways. J Biol Chem. 2013;288:3571–84.CrossRefPubMed Chi PI, Huang WR, Lai IH, Cheng CY, Liu HJ. The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNA-dependent protein kinase (PKR)/eIF2alpha signaling pathways. J Biol Chem. 2013;288:3571–84.CrossRefPubMed
16.
go back to reference Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.CrossRefPubMed Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.CrossRefPubMed
17.
go back to reference Maiuri MC, Toumelin GL, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl‐XL and a BH3‐like domain in Beclin‐1. Embo J. 2007;26:2527–39.CrossRefPubMedPubMedCentral Maiuri MC, Toumelin GL, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl‐XL and a BH3‐like domain in Beclin‐1. Embo J. 2007;26:2527–39.CrossRefPubMedPubMedCentral
18.
go back to reference Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-XL. Autophagy. 2007;3:374–6.CrossRefPubMed Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-XL. Autophagy. 2007;3:374–6.CrossRefPubMed
19.
go back to reference Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ. Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8. Science. 2004;304:1500–2.CrossRefPubMed Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ. Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8. Science. 2004;304:1500–2.CrossRefPubMed
20.
go back to reference Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, Dong X, Liu W, Luo Y, Liao M, Chen J. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 2014;10:93–110.CrossRefPubMed Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, Dong X, Liu W, Luo Y, Liao M, Chen J. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 2014;10:93–110.CrossRefPubMed
21.
go back to reference Zhu B, Zhou Y, Xu F, Shuai J, Li X, Fang W. Porcine circovirus type 2 induces autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in PK-15 Cells. J Virol. 2012;86:12003–12.CrossRefPubMedPubMedCentral Zhu B, Zhou Y, Xu F, Shuai J, Li X, Fang W. Porcine circovirus type 2 induces autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in PK-15 Cells. J Virol. 2012;86:12003–12.CrossRefPubMedPubMedCentral
22.
go back to reference Meng S, Jiang K, Zhang X, Zhang M, Zhou Z, Hu M, Yang R, Sun C, Wu Y. Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production. Arch Virol. 2012;157:661–8.CrossRefPubMed Meng S, Jiang K, Zhang X, Zhang M, Zhou Z, Hu M, Yang R, Sun C, Wu Y. Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production. Arch Virol. 2012;157:661–8.CrossRefPubMed
23.
go back to reference Li C, Wei H, Yu L, Duan S, Cheng J, Yan W, Zhang X, Wu Y. Nuclear localization of the p17 protein of avian reovirus is correlated with autophagy induction and an increase in viral replication. Arch Virol. 2015;160:3001–10.CrossRefPubMed Li C, Wei H, Yu L, Duan S, Cheng J, Yan W, Zhang X, Wu Y. Nuclear localization of the p17 protein of avian reovirus is correlated with autophagy induction and an increase in viral replication. Arch Virol. 2015;160:3001–10.CrossRefPubMed
24.
go back to reference Huang WR, Chiu HC, Liao TL, Chuang KP, Shih WL, Liu HJ. Avian reovirus protein p17 functions as a nucleoporin Tpr suppressor leading to activation of p53, p21 and PTEN and inactivation of PI3K/AKT/mTOR and ERK signaling pathways. PLoS One. 2015;10(8), e0133699.CrossRefPubMedPubMedCentral Huang WR, Chiu HC, Liao TL, Chuang KP, Shih WL, Liu HJ. Avian reovirus protein p17 functions as a nucleoporin Tpr suppressor leading to activation of p53, p21 and PTEN and inactivation of PI3K/AKT/mTOR and ERK signaling pathways. PLoS One. 2015;10(8), e0133699.CrossRefPubMedPubMedCentral
25.
go back to reference Wang QX, Wu YJ, Chen ZH, Li GP, Wu BC. Study on the establishment of indirecting ELISA for detecing the muscovy duck antibody of reovirus infection. Prog in Vet Med. 2005;26:44–7. Wang QX, Wu YJ, Chen ZH, Li GP, Wu BC. Study on the establishment of indirecting ELISA for detecing the muscovy duck antibody of reovirus infection. Prog in Vet Med. 2005;26:44–7.
26.
go back to reference Zhu EP, Cui LP, Lv XT, Yu SY, Zhou WD, Wu YJ, Wu XP, Wu BC. Prokaryotic expression of σNS protein of Muscovy duck reovirus and preparation of polyclonal antibody against expressed σNS protein. Chin Vet Sci. 2015;5:474–80.CrossRef Zhu EP, Cui LP, Lv XT, Yu SY, Zhou WD, Wu YJ, Wu XP, Wu BC. Prokaryotic expression of σNS protein of Muscovy duck reovirus and preparation of polyclonal antibody against expressed σNS protein. Chin Vet Sci. 2015;5:474–80.CrossRef
27.
go back to reference Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27:493–7.CrossRef Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27:493–7.CrossRef
28.
go back to reference Sir D, Ann DK, Ou JJ. Autophagy by hepatitis B virus and for hepatitis B virus. Autophagy. 2010;6:548–9.CrossRefPubMed Sir D, Ann DK, Ou JJ. Autophagy by hepatitis B virus and for hepatitis B virus. Autophagy. 2010;6:548–9.CrossRefPubMed
29.
go back to reference Cheng CY, Chi PY, Liu HJ. Commentary on the regulation of viral proteins in autophagy. BioMed Res International. 2014;2014. Cheng CY, Chi PY, Liu HJ. Commentary on the regulation of viral proteins in autophagy. BioMed Res International. 2014;2014.
30.
go back to reference Geng H, Zhang Y, Yin LP, Vanhanseng, Guo D, Wang Y, Liu M, Tong G. Apoptosis induced by duck reovirus p10.8 protein in primary duck embryonated fibroblast and Vero E6 cells. Avian Dis. 2009;53:434–40.CrossRefPubMed Geng H, Zhang Y, Yin LP, Vanhanseng, Guo D, Wang Y, Liu M, Tong G. Apoptosis induced by duck reovirus p10.8 protein in primary duck embryonated fibroblast and Vero E6 cells. Avian Dis. 2009;53:434–40.CrossRefPubMed
31.
go back to reference Guo D, Qiu N, Shaozhou W, Bai X, He Y, Zhang Q, Zhao J, Liu M, Zhang Y. Muscovy duck reovirus p10.8 protein localizes to the nucleus via a nonconventional nuclear localization signal. Virol J. 2014;11:707–12. Guo D, Qiu N, Shaozhou W, Bai X, He Y, Zhang Q, Zhao J, Liu M, Zhang Y. Muscovy duck reovirus p10.8 protein localizes to the nucleus via a nonconventional nuclear localization signal. Virol J. 2014;11:707–12.
32.
go back to reference Touris-Otero F, Martinez-Costas J, Vakharia VN, Benavente J. Characterization of the nucleic acid-binding activity of the avian reovirus non-structural protein sigma NS. J Gen Virol. 2005;86:1159–69.CrossRefPubMed Touris-Otero F, Martinez-Costas J, Vakharia VN, Benavente J. Characterization of the nucleic acid-binding activity of the avian reovirus non-structural protein sigma NS. J Gen Virol. 2005;86:1159–69.CrossRefPubMed
33.
go back to reference Touris OF, Benavente J. Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions. J Mol Biol. 2004;341:361–74.CrossRef Touris OF, Benavente J. Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions. J Mol Biol. 2004;341:361–74.CrossRef
34.
go back to reference Gillian AL, Schmechel SC, Livny J, Schiff LA, Nibert ML. Reovirus protein σNS binds in multiple copies to single-stranded RNA and shares properties with single-stranded DNA binding proteins. J Virol. 2000;74:5939–48.CrossRefPubMedPubMedCentral Gillian AL, Schmechel SC, Livny J, Schiff LA, Nibert ML. Reovirus protein σNS binds in multiple copies to single-stranded RNA and shares properties with single-stranded DNA binding proteins. J Virol. 2000;74:5939–48.CrossRefPubMedPubMedCentral
35.
go back to reference Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjumentbromage H, Tempst P, Sabatini DM. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11:895–904.CrossRefPubMed Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjumentbromage H, Tempst P, Sabatini DM. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11:895–904.CrossRefPubMed
36.
go back to reference Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.CrossRefPubMed Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.CrossRefPubMed
37.
go back to reference Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150:1507–13.CrossRefPubMedPubMedCentral Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150:1507–13.CrossRefPubMedPubMedCentral
38.
go back to reference Cheng CY, Shih WL, Huang WR, Chi PI, Liu HJ. Bovine ephemeral fever virus uses a clathrin-mediated and dynamin 2-dependent endocytosis pathway that requires Rab5 and Rab7 as well as microtubules. J Virol. 2012;86(24):13653–61.CrossRefPubMedPubMedCentral Cheng CY, Shih WL, Huang WR, Chi PI, Liu HJ. Bovine ephemeral fever virus uses a clathrin-mediated and dynamin 2-dependent endocytosis pathway that requires Rab5 and Rab7 as well as microtubules. J Virol. 2012;86(24):13653–61.CrossRefPubMedPubMedCentral
39.
go back to reference Huang WR, Wang YC, Chi PI, Wang L, Wang CY, Lin CH, Liu HJ. Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic p athway that requires activation of p38 MAPK and Src signaling pathways as well as microtubules and small GTPase Rab5 protein. J Biol Chem. 2011;286:30780–94.CrossRefPubMedPubMedCentral Huang WR, Wang YC, Chi PI, Wang L, Wang CY, Lin CH, Liu HJ. Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic p athway that requires activation of p38 MAPK and Src signaling pathways as well as microtubules and small GTPase Rab5 protein. J Biol Chem. 2011;286:30780–94.CrossRefPubMedPubMedCentral
40.
go back to reference Khan M, Santhosh SR, Tiwari M, Lakshmana Rao PV, Parida M. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells. J Med Virol. 2010;82(5):817–24.CrossRefPubMed Khan M, Santhosh SR, Tiwari M, Lakshmana Rao PV, Parida M. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells. J Med Virol. 2010;82(5):817–24.CrossRefPubMed
41.
go back to reference Wang S, Huang X, Huang Y, Hao X, Xu H, Cai M, Wang H, Qin Q. Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol. 2014;88(22):13047–63.CrossRefPubMedPubMedCentral Wang S, Huang X, Huang Y, Hao X, Xu H, Cai M, Wang H, Qin Q. Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol. 2014;88(22):13047–63.CrossRefPubMedPubMedCentral
42.
go back to reference Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe. 2007;1:23–5.CrossRefPubMed Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe. 2007;1:23–5.CrossRefPubMed
43.
go back to reference Geiser V, Rose S, Jones C. Bovine herpesvirus type 1 induces cell death by a cell-type-dependent fashion. Microb Pathogenesis. 2008;44:459–66.CrossRef Geiser V, Rose S, Jones C. Bovine herpesvirus type 1 induces cell death by a cell-type-dependent fashion. Microb Pathogenesis. 2008;44:459–66.CrossRef
Metadata
Title
Muscovy duck reovirus σNS protein triggers autophagy enhancing virus replication
Authors
Yijian Wu
Longping Cui
Erpeng Zhu
Wuduo Zhou
Quanxi Wang
Xiaoping Wu
Baocheng Wu
Yifan Huang
Hung-Jen Liu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0722-8

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.