Skip to main content
Top
Published in: European Radiology 5/2015

01-05-2015 | Oncology

Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters

Authors: S. F. Riches, G. S. Payne, V. A. Morgan, D. Dearnaley, S. Morgan, M. Partridge, N. Livni, C. Ogden, N. M. deSouza

Published in: European Radiology | Issue 5/2015

Login to get access

Abstract

Objectives

The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist.

Methods

Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T2-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T2, Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (Ktrans,Kep,Ve), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer.

Results

Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively.

Conclusion

The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data.

Key Points

The combined model increases diagnostic accuracy in prostate cancer compared with individual parameters
The optimal combined model includes parameters from diffusion, spectroscopy, perfusion, and anatominal MRI
The computed model improves tumour detection compared to an expert viewing parametric maps
Literature
1.
go back to reference Roethke MC, Kniess M, Kaufmann S et al (2014) Can high-spatial resolution T2-weighted endorectal MRI rule out clinically significant prostate cancer? World J Urol 32:379–383CrossRefPubMed Roethke MC, Kniess M, Kaufmann S et al (2014) Can high-spatial resolution T2-weighted endorectal MRI rule out clinically significant prostate cancer? World J Urol 32:379–383CrossRefPubMed
2.
go back to reference Yamamura J, Salomon G, Buchert R et al (2011) Magnetic resonance imaging of prostate cancer: diffusion-weighted imaging in comparison with sextant biopsy. J Comput Assist Tomogr 35:223–228CrossRefPubMed Yamamura J, Salomon G, Buchert R et al (2011) Magnetic resonance imaging of prostate cancer: diffusion-weighted imaging in comparison with sextant biopsy. J Comput Assist Tomogr 35:223–228CrossRefPubMed
3.
go back to reference Nagayama M, Watanabe Y, Terai A et al (2011) Determination of the cutoff level of apparent diffusion coefficient values for detection of prostate cancer. Jpn J Radiol 29:488–494CrossRefPubMed Nagayama M, Watanabe Y, Terai A et al (2011) Determination of the cutoff level of apparent diffusion coefficient values for detection of prostate cancer. Jpn J Radiol 29:488–494CrossRefPubMed
4.
go back to reference Mazaheri Y, Hricak H, Fine SW et al (2009) Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology 252:449–457CrossRefPubMedCentralPubMed Mazaheri Y, Hricak H, Fine SW et al (2009) Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology 252:449–457CrossRefPubMedCentralPubMed
5.
go back to reference Langer DL, van der Kwast TH, Evans AJ et al (2009) Prostate cancer detection with multi-parametric MRI: Logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:327–334CrossRefPubMed Langer DL, van der Kwast TH, Evans AJ et al (2009) Prostate cancer detection with multi-parametric MRI: Logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:327–334CrossRefPubMed
6.
go back to reference Bittencourt LK, Barentsz JO, de Miranda LC, Gasparetto EL (2012) Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason Grades than TRUS-guided biopsies in peripheral zone tumours. Eur Radiol 22:468–475CrossRefPubMed Bittencourt LK, Barentsz JO, de Miranda LC, Gasparetto EL (2012) Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason Grades than TRUS-guided biopsies in peripheral zone tumours. Eur Radiol 22:468–475CrossRefPubMed
7.
go back to reference Oto A, Yang C, Kayhan A et al (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197:1382–1390CrossRefPubMed Oto A, Yang C, Kayhan A et al (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197:1382–1390CrossRefPubMed
8.
go back to reference Langer DL, van der Kwast TH, Evans AJ et al (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology 255:485–494CrossRefPubMed Langer DL, van der Kwast TH, Evans AJ et al (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology 255:485–494CrossRefPubMed
9.
go back to reference Jackson AS, Reinsberg SA, Sohaib SA et al (2009) Dynamic contrast-enhanced MRI for prostate cancer localization. Br J Radiol 82:148–156CrossRefPubMed Jackson AS, Reinsberg SA, Sohaib SA et al (2009) Dynamic contrast-enhanced MRI for prostate cancer localization. Br J Radiol 82:148–156CrossRefPubMed
10.
go back to reference Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626CrossRefPubMed Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626CrossRefPubMed
11.
go back to reference Yamamura J, Salomon G, Buchert R et al (2011) MR imaging of prostate cancer: diffusion weighted imaging and (3D) hydrogen 1 (H) MR spectroscopy in comparison with histology. Radiol Res Pract 2011:616852PubMedCentralPubMed Yamamura J, Salomon G, Buchert R et al (2011) MR imaging of prostate cancer: diffusion weighted imaging and (3D) hydrogen 1 (H) MR spectroscopy in comparison with histology. Radiol Res Pract 2011:616852PubMedCentralPubMed
12.
go back to reference Reinsberg SA, Payne GS, Riches SF et al (2007) Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol 188:91–98CrossRefPubMed Reinsberg SA, Payne GS, Riches SF et al (2007) Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol 188:91–98CrossRefPubMed
13.
go back to reference Weinreb JC, Blume JD, Coakley FV et al (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251:122–133CrossRefPubMedCentralPubMed Weinreb JC, Blume JD, Coakley FV et al (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251:122–133CrossRefPubMedCentralPubMed
14.
go back to reference Scheenen TW, Futterer J, Weiland E et al (2011) Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Investig Radiol 46:25–33CrossRef Scheenen TW, Futterer J, Weiland E et al (2011) Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Investig Radiol 46:25–33CrossRef
15.
go back to reference Garcia-Martin ML, Adrados M, Ortega MP et al (2011) Quantitative (1) H MR spectroscopic imaging of the prostate gland using LCModel and a dedicated basis-set: correlation with histologic findings. Magn Reson Med 65:329–339CrossRefPubMed Garcia-Martin ML, Adrados M, Ortega MP et al (2011) Quantitative (1) H MR spectroscopic imaging of the prostate gland using LCModel and a dedicated basis-set: correlation with histologic findings. Magn Reson Med 65:329–339CrossRefPubMed
16.
go back to reference Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology 255:89–99CrossRefPubMedCentralPubMed Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology 255:89–99CrossRefPubMedCentralPubMed
17.
go back to reference Kumar V, Jagannathan NR, Kumar R et al (2006) Correlation between metabolite ratios and ADC values of prostate in men with increased PSA level. Magn Reson Imaging 24:541–548CrossRefPubMed Kumar V, Jagannathan NR, Kumar R et al (2006) Correlation between metabolite ratios and ADC values of prostate in men with increased PSA level. Magn Reson Imaging 24:541–548CrossRefPubMed
18.
go back to reference Groenendaal G, Borren A, Moman MR et al (2012) Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys 82:e537–e544CrossRefPubMed Groenendaal G, Borren A, Moman MR et al (2012) Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys 82:e537–e544CrossRefPubMed
19.
go back to reference Futterer JJ, Heijmink SW, Scheenen TW et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458CrossRefPubMed Futterer JJ, Heijmink SW, Scheenen TW et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458CrossRefPubMed
20.
go back to reference de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 202:343–351CrossRefPubMed de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 202:343–351CrossRefPubMed
21.
go back to reference Borren A, Groenendaal G, Moman MR et al (2014) Accurate prostate tumour detection with multiparametric magnetic resonance imaging: dependence on histological properties. Acta Oncol 53:88–95CrossRefPubMed Borren A, Groenendaal G, Moman MR et al (2014) Accurate prostate tumour detection with multiparametric magnetic resonance imaging: dependence on histological properties. Acta Oncol 53:88–95CrossRefPubMed
22.
go back to reference Riches SF, Payne GS, Morgan VA et al (2009) MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 193:1583–1591CrossRefPubMed Riches SF, Payne GS, Morgan VA et al (2009) MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 193:1583–1591CrossRefPubMed
23.
go back to reference Altman DG (1990) Practical Statistics for Medical Research. Taylor & Francis. Altman DG (1990) Practical Statistics for Medical Research. Taylor & Francis.
24.
go back to reference d’Arcy JA, Collins DJ, Padhani AR et al (2006) Magnetic Resonance Imaging Workbench: analysis and visualization of dynamic contrast-enhanced MR imaging data. Radiographics 26:621–632CrossRefPubMed d’Arcy JA, Collins DJ, Padhani AR et al (2006) Magnetic Resonance Imaging Workbench: analysis and visualization of dynamic contrast-enhanced MR imaging data. Radiographics 26:621–632CrossRefPubMed
25.
go back to reference Orton MR, d'Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239CrossRefPubMed Orton MR, d'Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239CrossRefPubMed
26.
go back to reference Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000CrossRefPubMed Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000CrossRefPubMed
27.
go back to reference Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig Radiol 40:715–724CrossRef Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig Radiol 40:715–724CrossRef
28.
go back to reference Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264CrossRefPubMed Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264CrossRefPubMed
29.
go back to reference Jhavar SG, Fisher C, Jackson A et al (2005) Processing of radical prostatectomy specimens for correlation of data from histopathological, molecular biological, and radiological studies: a new whole organ technique. J Clin Pathol 58:504–508CrossRefPubMedCentralPubMed Jhavar SG, Fisher C, Jackson A et al (2005) Processing of radical prostatectomy specimens for correlation of data from histopathological, molecular biological, and radiological studies: a new whole organ technique. J Clin Pathol 58:504–508CrossRefPubMedCentralPubMed
31.
go back to reference Selnaes KM, Heerschap A, Jensen LR et al (2012) Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Investig Radiol 47:624–633CrossRef Selnaes KM, Heerschap A, Jensen LR et al (2012) Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Investig Radiol 47:624–633CrossRef
32.
go back to reference Shah V, Turkbey B, Mani H et al (2012) Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Med Phys 39:4093–4103CrossRefPubMedCentralPubMed Shah V, Turkbey B, Mani H et al (2012) Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Med Phys 39:4093–4103CrossRefPubMedCentralPubMed
33.
go back to reference Wefer AE, Hricak H, Vigneron DB et al (2000) Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 164:400–404CrossRefPubMed Wefer AE, Hricak H, Vigneron DB et al (2000) Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 164:400–404CrossRefPubMed
34.
go back to reference Mazaheri Y, Shukla-Dave A, Hricak H et al (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging–correlation with pathologic findings. Radiology 246:480–488CrossRefPubMed Mazaheri Y, Shukla-Dave A, Hricak H et al (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging–correlation with pathologic findings. Radiology 246:480–488CrossRefPubMed
35.
go back to reference Le Nobin J, Orczyk C, Deng FM et al (2014) Prostate Tumor Volumes: Agreement Between MRI and Histology Using Novel Co-registration Software. BJU Int. Le Nobin J, Orczyk C, Deng FM et al (2014) Prostate Tumor Volumes: Agreement Between MRI and Histology Using Novel Co-registration Software. BJU Int.
36.
go back to reference Reisaeter LA, Futterer JJ, Halvorsen OJ et al (2014) 1.5-T multiparametric MRI using PI-RADS: a region by region analysis to localize the index-tumor of prostate cancer in patients undergoing prostatectomy. Acta Radiol. Reisaeter LA, Futterer JJ, Halvorsen OJ et al (2014) 1.5-T multiparametric MRI using PI-RADS: a region by region analysis to localize the index-tumor of prostate cancer in patients undergoing prostatectomy. Acta Radiol.
37.
go back to reference Engelbrecht MR, Huisman HJ, Laheij RJ et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229:248–254CrossRefPubMed Engelbrecht MR, Huisman HJ, Laheij RJ et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229:248–254CrossRefPubMed
38.
go back to reference Padhani AR, Gapinski CJ, Macvicar DA et al (2000) Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 55:99–109CrossRefPubMed Padhani AR, Gapinski CJ, Macvicar DA et al (2000) Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 55:99–109CrossRefPubMed
39.
go back to reference Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J (2008) Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging 26:1071–1080CrossRefPubMedCentralPubMed Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J (2008) Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging 26:1071–1080CrossRefPubMedCentralPubMed
40.
go back to reference Kozlowski P, Chang SD, Jones EC et al (2006) Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis–correlation with biopsy and histopathology. J Magn Reson Imaging 24:108–113CrossRefPubMed Kozlowski P, Chang SD, Jones EC et al (2006) Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis–correlation with biopsy and histopathology. J Magn Reson Imaging 24:108–113CrossRefPubMed
Metadata
Title
Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters
Authors
S. F. Riches
G. S. Payne
V. A. Morgan
D. Dearnaley
S. Morgan
M. Partridge
N. Livni
C. Ogden
N. M. deSouza
Publication date
01-05-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3479-0

Other articles of this Issue 5/2015

European Radiology 5/2015 Go to the issue