Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2024

Open Access 01-12-2024 | Research

Multiply restimulated human cord blood-derived Tregs maintain stabilized phenotype and suppressive function and predict their therapeutic effects on autoimmune diabetes

Authors: Yuanjie Bi, Ran Kong, Yani Peng, Donghua Cai, Yu Zhang, Fan Yang, Xia Li, Wen Deng, Fang Liu, Binbin He, Chuqing Cao, Chao Deng, Xiaohan Tang, Li Fan, Haibo Yu, Zhiguang Zhou

Published in: Diabetology & Metabolic Syndrome | Issue 1/2024

Login to get access

Abstract

Background

Regulatory T cells (Tregs) are involved in the maintenance of immune homeostasis and immune regulation. Clinical trials on the adoptive transfer of Tregs have been ongoing for > 10 years. However, many unresolved issues remain in the production of readymade Treg products and selection of patients. Hence, this study aimed to develop a method to expand off-the-shelf Tregs derived from umbilical cord blood (UCB-Tregs) in vitro without changing their phenotype and inhibitory function. In addition, the study intended to design an approach to precisely select patients who are more likely to benefit from the adoptive Treg transfer therapy.

Methods

UCB-Tregs were isolated and cultured in a medium containing human recombinant IL-2 and rapamycin and then multiply restimulated with human T-activator CD3/CD28 dynabeads. The phenotype and suppressive capacity of Tregs were assessed on days 18 and 42. The relationship between the suppressive function of UCB-Tregs in vitro and clinical indicators was analyzed, and the ability of the in vitro suppressive capacity to predict the in vivo therapeutic effects was evaluated.

Results

UCB-Tregs expanded 123-fold and 5,981-fold at 18 and 42 days, respectively. The suppressive function of UCB-Tregs on the proliferation of immune cells at 42 days was not significantly different compared with that of UCB-Tregs obtained at 18 days. The suppression rate of UCB-Tregs to PBMCs was negatively correlated with the course of diabetes. Moreover, the high-suppression group exhibited a better treatment response than the low-suppression group during the 12-month follow-up period.

Conclusions

Multiply restimulated UCB-Tregs expanded at a large scale without any alterations in their classical phenotypic features and inhibitory functions. The suppressive function of Tregs in vitro was negatively correlated with the disease duration. The present study revealed the possibility of predicting the in vivo therapeutic effects via the in vitro inhibition assay. Thus, these findings provided a method to obtain off-the-shelf Treg products and facilitated the selection of patients who are likely to respond to the treatment, thereby moving toward the goal of precision treatment.
Literature
2.
go back to reference Bluestone J, Buckner J, Herold K, Immunotherapy. Building a bridge to a cure for type 1 diabetes. Sci (New York NY). 2021;373(6554):510–6.CrossRef Bluestone J, Buckner J, Herold K, Immunotherapy. Building a bridge to a cure for type 1 diabetes. Sci (New York NY). 2021;373(6554):510–6.CrossRef
3.
go back to reference Lindley S, Dayan C, Bishop A, Roep B, Peakman M, Tree T. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92–9.PubMedCrossRef Lindley S, Dayan C, Bishop A, Roep B, Peakman M, Tree T. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92–9.PubMedCrossRef
4.
go back to reference Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Investig. 2002;109(1):131–40.PubMedPubMedCentralCrossRef Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Investig. 2002;109(1):131–40.PubMedPubMedCentralCrossRef
5.
go back to reference Radenkovic M, Silver C, Arvastsson J, Lynch K, Lernmark Å, Harris R, et al. Altered regulatory T cell phenotype in latent autoimmune diabetes of the adults (LADA). Clin Exp Immunol. 2016;186(1):46–56.PubMedPubMedCentralCrossRef Radenkovic M, Silver C, Arvastsson J, Lynch K, Lernmark Å, Harris R, et al. Altered regulatory T cell phenotype in latent autoimmune diabetes of the adults (LADA). Clin Exp Immunol. 2016;186(1):46–56.PubMedPubMedCentralCrossRef
6.
go back to reference Yang Z, Zhou Z, Huang G, Ling H, Yan X, Peng J, et al. The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract. 2007;76(1):126–31.PubMedCrossRef Yang Z, Zhou Z, Huang G, Ling H, Yan X, Peng J, et al. The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract. 2007;76(1):126–31.PubMedCrossRef
7.
go back to reference Salomon B, Lenschow D, Rhee L, Ashourian N, Singh B, Sharpe A, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25 + immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431–40.PubMedCrossRef Salomon B, Lenschow D, Rhee L, Ashourian N, Singh B, Sharpe A, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25 + immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431–40.PubMedCrossRef
8.
go back to reference You S, Slehoffer G, Barriot S, Bach J, Chatenoud L. Unique role of CD4 + CD62L + regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc Natl Acad Sci USA. 2004:14580–5. You S, Slehoffer G, Barriot S, Bach J, Chatenoud L. Unique role of CD4 + CD62L + regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc Natl Acad Sci USA. 2004:14580–5.
9.
go back to reference Tang Q, Henriksen K, Bi M, Finger E, Szot G, Ye J, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199(11):1455–65.PubMedPubMedCentralCrossRef Tang Q, Henriksen K, Bi M, Finger E, Szot G, Ye J, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199(11):1455–65.PubMedPubMedCentralCrossRef
10.
go back to reference Petzold C, Riewaldt J, Watts D, Sparwasser T, Schallenberg S, Kretschmer K. Foxp3(+) regulatory T cells in mouse models of type 1 diabetes. J Diabetes Res. 2013;2013:940710.PubMedPubMedCentralCrossRef Petzold C, Riewaldt J, Watts D, Sparwasser T, Schallenberg S, Kretschmer K. Foxp3(+) regulatory T cells in mouse models of type 1 diabetes. J Diabetes Res. 2013;2013:940710.PubMedPubMedCentralCrossRef
11.
go back to reference Wang G, Yan Y, Xu N, Yin D, Hui Y. Treatment of type 1 diabetes by regulatory T-cell infusion via regulating the expression of inflammatory cytokines. J Cell Biochem. 2019;120(12):19338–44.PubMedCrossRef Wang G, Yan Y, Xu N, Yin D, Hui Y. Treatment of type 1 diabetes by regulatory T-cell infusion via regulating the expression of inflammatory cytokines. J Cell Biochem. 2019;120(12):19338–44.PubMedCrossRef
12.
go back to reference Szanya V, Ermann J, Taylor C, Holness C, Fathman C. The subpopulation of CD4 + CD25 + splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol (Baltimore Md: 1950). 2002;169(5):2461–5.CrossRef Szanya V, Ermann J, Taylor C, Holness C, Fathman C. The subpopulation of CD4 + CD25 + splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol (Baltimore Md: 1950). 2002;169(5):2461–5.CrossRef
13.
go back to reference Orban T, Bundy B, Becker D, DiMeglio L, Gitelman S, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet (London England). 2011;378(9789):412–9.PubMedCrossRef Orban T, Bundy B, Becker D, DiMeglio L, Gitelman S, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet (London England). 2011;378(9789):412–9.PubMedCrossRef
14.
go back to reference Sherry N, Hagopian W, Ludvigsson J, Jain S, Wahlen J, Ferry R, et al. Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial. Lancet (London England). 2011;378(9790):487–97.PubMedCrossRef Sherry N, Hagopian W, Ludvigsson J, Jain S, Wahlen J, Ferry R, et al. Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial. Lancet (London England). 2011;378(9790):487–97.PubMedCrossRef
15.
go back to reference Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Rosenthal SM, Shuster JJ, et al. Anti-thymocyte globulin/G-CSF treatment preserves beta cell function in patients with established type 1 diabetes. J Clin Invest. 2015;125(1):448–55.PubMedCrossRef Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Rosenthal SM, Shuster JJ, et al. Anti-thymocyte globulin/G-CSF treatment preserves beta cell function in patients with established type 1 diabetes. J Clin Invest. 2015;125(1):448–55.PubMedCrossRef
16.
go back to reference Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Felner EI, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285–96.PubMedPubMedCentralCrossRef Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Felner EI, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285–96.PubMedPubMedCentralCrossRef
17.
go back to reference Herold K, Bundy B, Long S, Bluestone J, DiMeglio L, Dufort M, et al. An Anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.PubMedPubMedCentralCrossRef Herold K, Bundy B, Long S, Bluestone J, DiMeglio L, Dufort M, et al. An Anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.PubMedPubMedCentralCrossRef
18.
go back to reference Ramos E, Dayan C, Chatenoud L, Sumnik Z, Simmons K, Szypowska A, et al. Teplizumab and β-Cell function in newly diagnosed type 1 diabetes. N Engl J Med. 2023;389(23):2151–61.PubMedCrossRef Ramos E, Dayan C, Chatenoud L, Sumnik Z, Simmons K, Szypowska A, et al. Teplizumab and β-Cell function in newly diagnosed type 1 diabetes. N Engl J Med. 2023;389(23):2151–61.PubMedCrossRef
19.
go back to reference Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3.PubMedPubMedCentralCrossRef Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3.PubMedPubMedCentralCrossRef
20.
go back to reference Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Rosenthal SM, Shuster JJ, et al. Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1 diabetes. J Clin Invest. 2015;125(1):448–55.PubMedCrossRef Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Rosenthal SM, Shuster JJ, et al. Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1 diabetes. J Clin Invest. 2015;125(1):448–55.PubMedCrossRef
21.
go back to reference Haller MJ, Long SA, Blanchfield JL, Schatz DA, Skyler JS, Krischer JP, et al. Low-dose anti-thymocyte globulin preserves C-Peptide, reduces HbA (1c), and increases Regulatory to Conventional T-Cell Ratios in New-Onset type 1 diabetes: two-year clinical Trial Data. Diabetes. 2019;68(6):1267–76.PubMedPubMedCentralCrossRef Haller MJ, Long SA, Blanchfield JL, Schatz DA, Skyler JS, Krischer JP, et al. Low-dose anti-thymocyte globulin preserves C-Peptide, reduces HbA (1c), and increases Regulatory to Conventional T-Cell Ratios in New-Onset type 1 diabetes: two-year clinical Trial Data. Diabetes. 2019;68(6):1267–76.PubMedPubMedCentralCrossRef
22.
go back to reference Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, et al. Administration of CD4 + CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care. 2012;35(9):1817–20.PubMedPubMedCentralCrossRef Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, et al. Administration of CD4 + CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care. 2012;35(9):1817–20.PubMedPubMedCentralCrossRef
23.
go back to reference Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juscinska J, et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol. 2014;153(1):23–30.PubMedCrossRef Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juscinska J, et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol. 2014;153(1):23–30.PubMedCrossRef
24.
go back to reference Bluestone J, Buckner J, Fitch M, Gitelman S, Gupta S, Hellerstein M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189.PubMedPubMedCentralCrossRef Bluestone J, Buckner J, Fitch M, Gitelman S, Gupta S, Hellerstein M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189.PubMedPubMedCentralCrossRef
25.
go back to reference Godfrey W, Spoden D, Ge Y, Baker S, Liu B, Levine B, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8.PubMedCrossRef Godfrey W, Spoden D, Ge Y, Baker S, Liu B, Levine B, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8.PubMedCrossRef
26.
go back to reference Figueroa-Tentori D, Querol S, Dodi IA, Madrigal A, Duggleby R. High purity and yield of natural tregs from cord blood using a single step selection method. J Immunol Methods. 2008;339(2):228–35.PubMedCrossRef Figueroa-Tentori D, Querol S, Dodi IA, Madrigal A, Duggleby R. High purity and yield of natural tregs from cord blood using a single step selection method. J Immunol Methods. 2008;339(2):228–35.PubMedCrossRef
27.
go back to reference Seay H, Putnam A, Cserny J, Posgai A, Rosenau E, Wingard J, et al. Expansion of human tregs from Cryopreserved umbilical cord blood for GMP-Compliant autologous adoptive cell transfer therapy. Mol Therapy Methods Clin Dev. 2017;4:178–91.CrossRef Seay H, Putnam A, Cserny J, Posgai A, Rosenau E, Wingard J, et al. Expansion of human tregs from Cryopreserved umbilical cord blood for GMP-Compliant autologous adoptive cell transfer therapy. Mol Therapy Methods Clin Dev. 2017;4:178–91.CrossRef
28.
go back to reference Takahata Y, Nomura A, Takada H, Ohga S, Furuno K, Hikino S, et al. CD25 + CD4 + T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol. 2004;32(7):622–9.PubMedCrossRef Takahata Y, Nomura A, Takada H, Ohga S, Furuno K, Hikino S, et al. CD25 + CD4 + T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol. 2004;32(7):622–9.PubMedCrossRef
29.
go back to reference Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, et al. Only the CD45RA + subpopulation of CD4 + CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 2006;108(13):4260–7.PubMedCrossRef Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, et al. Only the CD45RA + subpopulation of CD4 + CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 2006;108(13):4260–7.PubMedCrossRef
30.
go back to reference Fan H, Yang J, Hao J, Ren Y, Chen L, Li G, et al. Comparative study of regulatory T cells expanded ex vivo from cord blood and adult peripheral blood. Immunology. 2012;136(2):218–30.PubMedPubMedCentralCrossRef Fan H, Yang J, Hao J, Ren Y, Chen L, Li G, et al. Comparative study of regulatory T cells expanded ex vivo from cord blood and adult peripheral blood. Immunology. 2012;136(2):218–30.PubMedPubMedCentralCrossRef
31.
go back to reference Motwani K, Peters L, Vliegen W, El-Sayed A, Seay H, Lopez M, et al. Human Regulatory T Cells from Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to adult peripheral blood. Front Immunol. 2020;11:611.PubMedPubMedCentralCrossRef Motwani K, Peters L, Vliegen W, El-Sayed A, Seay H, Lopez M, et al. Human Regulatory T Cells from Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to adult peripheral blood. Front Immunol. 2020;11:611.PubMedPubMedCentralCrossRef
32.
go back to reference Strauss L, Whiteside T, Knights A, Bergmann C, Knuth A, Zippelius A. Selective survival of naturally occurring human CD4 + CD25 + Foxp3 + regulatory T cells cultured with rapamycin. J Immunol (Baltimore Md: 1950). 2007;178(1):320–9.CrossRef Strauss L, Whiteside T, Knights A, Bergmann C, Knuth A, Zippelius A. Selective survival of naturally occurring human CD4 + CD25 + Foxp3 + regulatory T cells cultured with rapamycin. J Immunol (Baltimore Md: 1950). 2007;178(1):320–9.CrossRef
33.
go back to reference Battaglia M, Stabilini A, Roncarolo M. Rapamycin selectively expands CD4 + CD25 + FoxP3 + regulatory T cells. Blood. 2005;105(12):4743–8.PubMedCrossRef Battaglia M, Stabilini A, Roncarolo M. Rapamycin selectively expands CD4 + CD25 + FoxP3 + regulatory T cells. Blood. 2005;105(12):4743–8.PubMedCrossRef
34.
go back to reference Maecker H, Trotter J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry Part A: The Journal of the International Society for Analytical Cytology. 2006;69(9):1037–42.PubMedCrossRef Maecker H, Trotter J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry Part A: The Journal of the International Society for Analytical Cytology. 2006;69(9):1037–42.PubMedCrossRef
35.
go back to reference Brunstein C, Miller J, Cao Q, McKenna D, Hippen K, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.PubMedPubMedCentralCrossRef Brunstein C, Miller J, Cao Q, McKenna D, Hippen K, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.PubMedPubMedCentralCrossRef
36.
go back to reference Churlaud G, Pitoiset F, Jebbawi F, Lorenzon R, Bellier B, Rosenzwajg M, et al. Human and mouse CD8(+)CD25(+)FOXP3(+) Regulatory T cells at Steady State and during Interleukin-2 therapy. Front Immunol. 2015;6:171.PubMedPubMedCentralCrossRef Churlaud G, Pitoiset F, Jebbawi F, Lorenzon R, Bellier B, Rosenzwajg M, et al. Human and mouse CD8(+)CD25(+)FOXP3(+) Regulatory T cells at Steady State and during Interleukin-2 therapy. Front Immunol. 2015;6:171.PubMedPubMedCentralCrossRef
37.
go back to reference Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.PubMedPubMedCentralCrossRef Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.PubMedPubMedCentralCrossRef
38.
go back to reference Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3(2):135–42.PubMedCrossRef Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3(2):135–42.PubMedCrossRef
39.
go back to reference Gladstone D, Kim B, Mooney K, Karaba A, D’Alessio F. Regulatory T cells for treating patients with COVID-19 and Acute Respiratory Distress Syndrome: two case reports. Ann Intern Med. 2020;173(10):852–3.PubMedCrossRef Gladstone D, Kim B, Mooney K, Karaba A, D’Alessio F. Regulatory T cells for treating patients with COVID-19 and Acute Respiratory Distress Syndrome: two case reports. Ann Intern Med. 2020;173(10):852–3.PubMedCrossRef
40.
go back to reference Thonhoff J, Beers D, Zhao W, Pleitez M, Simpson E, Berry J, et al. Expanded autologous regulatory T-lymphocyte infusions in ALS: a phase I, first-in-human study. Neurology(R) Neuroimmunol Neuroinflammation. 2018;5(4):e465.CrossRef Thonhoff J, Beers D, Zhao W, Pleitez M, Simpson E, Berry J, et al. Expanded autologous regulatory T-lymphocyte infusions in ALS: a phase I, first-in-human study. Neurology(R) Neuroimmunol Neuroinflammation. 2018;5(4):e465.CrossRef
41.
go back to reference Tarbell K, Yamazaki S, Olson K, Toy P, Steinman R. CD25 + CD4 + T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004;199(11):1467–77.PubMedPubMedCentralCrossRef Tarbell K, Yamazaki S, Olson K, Toy P, Steinman R. CD25 + CD4 + T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004;199(11):1467–77.PubMedPubMedCentralCrossRef
42.
go back to reference Ferreira L, Muller Y, Bluestone J, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discovery. 2019;18(10):749–69.PubMedCrossRef Ferreira L, Muller Y, Bluestone J, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discovery. 2019;18(10):749–69.PubMedCrossRef
43.
go back to reference Paul M, Dayal D, Bhansali A, Dhaliwal L, Sachdeva N. In vitro assessment of cord blood-derived proinsulin-specific regulatory T cells for cellular therapy in type 1 diabetes. Cytotherapy. 2018;20(11):1355–70.PubMedCrossRef Paul M, Dayal D, Bhansali A, Dhaliwal L, Sachdeva N. In vitro assessment of cord blood-derived proinsulin-specific regulatory T cells for cellular therapy in type 1 diabetes. Cytotherapy. 2018;20(11):1355–70.PubMedCrossRef
44.
go back to reference Hippen K, Harker-Murray P, Porter S, Merkel S, Londer A, Taylor D, et al. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood. 2008;112(7):2847–57.PubMedPubMedCentralCrossRef Hippen K, Harker-Murray P, Porter S, Merkel S, Londer A, Taylor D, et al. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood. 2008;112(7):2847–57.PubMedPubMedCentralCrossRef
45.
go back to reference Trzonkowski P, Bacchetta R, Battaglia M, Berglund D, Bohnenkamp H, ten Brinke A, et al. Hurdles in therapy with regulatory T cells. Sci Transl Med. 2015;7(304):304ps18.PubMedCrossRef Trzonkowski P, Bacchetta R, Battaglia M, Berglund D, Bohnenkamp H, ten Brinke A, et al. Hurdles in therapy with regulatory T cells. Sci Transl Med. 2015;7(304):304ps18.PubMedCrossRef
46.
go back to reference Liu W, Putnam A, Xu-Yu Z, Szot G, Lee M, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med. 2006;203(7):1701–11.PubMedPubMedCentralCrossRef Liu W, Putnam A, Xu-Yu Z, Szot G, Lee M, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med. 2006;203(7):1701–11.PubMedPubMedCentralCrossRef
47.
go back to reference Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203(7):1693–700.PubMedPubMedCentralCrossRef Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203(7):1693–700.PubMedPubMedCentralCrossRef
48.
go back to reference Peters J, Preijers F, Woestenenk R, Hilbrands L, Koenen H, Joosten I. Clinical grade Treg: GMP isolation, improvement of purity by CD127 depletion, Treg expansion, and Treg cryopreservation. PLoS ONE. 2008;3(9):e3161.PubMedPubMedCentralCrossRef Peters J, Preijers F, Woestenenk R, Hilbrands L, Koenen H, Joosten I. Clinical grade Treg: GMP isolation, improvement of purity by CD127 depletion, Treg expansion, and Treg cryopreservation. PLoS ONE. 2008;3(9):e3161.PubMedPubMedCentralCrossRef
49.
go back to reference Hoffmann P, Boeld T, Eder R, Huehn J, Floess S, Wieczorek G, et al. Loss of FOXP3 expression in natural human CD4 + CD25 + regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol. 2009;39(4):1088–97.PubMedCrossRef Hoffmann P, Boeld T, Eder R, Huehn J, Floess S, Wieczorek G, et al. Loss of FOXP3 expression in natural human CD4 + CD25 + regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol. 2009;39(4):1088–97.PubMedCrossRef
50.
go back to reference Hippen K, Furlan S, Roychoudhuri R, Wang E, Zhang Y, Osborn M, et al. Multiply restimulated human thymic regulatory T cells express distinct signature regulatory T-cell transcription factors without evidence of exhaustion. Cytotherapy. 2021;23(8):704–14.PubMedPubMedCentralCrossRef Hippen K, Furlan S, Roychoudhuri R, Wang E, Zhang Y, Osborn M, et al. Multiply restimulated human thymic regulatory T cells express distinct signature regulatory T-cell transcription factors without evidence of exhaustion. Cytotherapy. 2021;23(8):704–14.PubMedPubMedCentralCrossRef
51.
go back to reference Wing JB, Tanaka A, Sakaguchi S. Human FOXP3(+) Regulatory T cell heterogeneity and function in autoimmunity and Cancer. Immunity. 2019;50(2):302–16.PubMedCrossRef Wing JB, Tanaka A, Sakaguchi S. Human FOXP3(+) Regulatory T cell heterogeneity and function in autoimmunity and Cancer. Immunity. 2019;50(2):302–16.PubMedCrossRef
52.
go back to reference Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA, et al. Treg cell therapy: how cell heterogeneity can make the difference. Eur J Immunol. 2021;51(1):39–55.PubMedCrossRef Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA, et al. Treg cell therapy: how cell heterogeneity can make the difference. Eur J Immunol. 2021;51(1):39–55.PubMedCrossRef
53.
go back to reference Schmidl C, Delacher M, Huehn J, Feuerer M. Epigenetic mechanisms regulating T-cell responses. J Allergy Clin Immunol. 2018;142(3):728–43.PubMedCrossRef Schmidl C, Delacher M, Huehn J, Feuerer M. Epigenetic mechanisms regulating T-cell responses. J Allergy Clin Immunol. 2018;142(3):728–43.PubMedCrossRef
54.
go back to reference Rossetti M, Spreafico R, Saidin S, Chua C, Moshref M, Leong J, et al. Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region. J Immunol (Baltimore Md: 1950). 2015;194(1):113–24.CrossRef Rossetti M, Spreafico R, Saidin S, Chua C, Moshref M, Leong J, et al. Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region. J Immunol (Baltimore Md: 1950). 2015;194(1):113–24.CrossRef
55.
go back to reference Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, et al. Pathogenic conversion of Foxp3 + T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62–8.PubMedCrossRef Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, et al. Pathogenic conversion of Foxp3 + T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62–8.PubMedCrossRef
56.
go back to reference Herold K, Gitelman S, Willi S, Gottlieb P, Waldron-Lynch F, Devine L, et al. Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial. Diabetologia. 2013;56(2):391–400.PubMedCrossRef Herold K, Gitelman S, Willi S, Gottlieb P, Waldron-Lynch F, Devine L, et al. Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial. Diabetologia. 2013;56(2):391–400.PubMedCrossRef
57.
go back to reference Warshauer J, Bluestone J, Anderson M. New frontiers in the treatment of type 1 diabetes. Cell Metabol. 2020;31(1):46–61.CrossRef Warshauer J, Bluestone J, Anderson M. New frontiers in the treatment of type 1 diabetes. Cell Metabol. 2020;31(1):46–61.CrossRef
58.
go back to reference Rosenzwajg M, Salet R, Lorenzon R, Tchitchek N, Roux A, Bernard C, et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia. 2020;63(9):1808–21.PubMedCrossRef Rosenzwajg M, Salet R, Lorenzon R, Tchitchek N, Roux A, Bernard C, et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia. 2020;63(9):1808–21.PubMedCrossRef
59.
go back to reference Marek-Trzonkowska N, Myśliwiec M, Iwaszkiewicz-Grześ D, Gliwiński M, Derkowska I, Żalińska M, et al. Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Translational Med. 2016;14(1):332.CrossRef Marek-Trzonkowska N, Myśliwiec M, Iwaszkiewicz-Grześ D, Gliwiński M, Derkowska I, Żalińska M, et al. Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Translational Med. 2016;14(1):332.CrossRef
Metadata
Title
Multiply restimulated human cord blood-derived Tregs maintain stabilized phenotype and suppressive function and predict their therapeutic effects on autoimmune diabetes
Authors
Yuanjie Bi
Ran Kong
Yani Peng
Donghua Cai
Yu Zhang
Fan Yang
Xia Li
Wen Deng
Fang Liu
Binbin He
Chuqing Cao
Chao Deng
Xiaohan Tang
Li Fan
Haibo Yu
Zhiguang Zhou
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2024
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-024-01277-0

Other articles of this Issue 1/2024

Diabetology & Metabolic Syndrome 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.