Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 11/2022

27-10-2022 | Multiple Sclerosis | Demyelinating Disorders (J. Bernard and M. Cameron, Section Editors)

Bruton’s Tyrosine Kinase Inhibition in Multiple Sclerosis

Authors: Raphael Schneider, Jiwon Oh

Published in: Current Neurology and Neuroscience Reports | Issue 11/2022

Login to get access

Abstract

Purpose of Review

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) with a chronic and often progressive disease course. The current disease-modifying treatments (DMTs) limit disease progression primarily by dampening immune cell activity in the peripheral blood or hindering their migration from the periphery into the CNS. New therapies are needed to target CNS immunopathology, which is a key driver of disability progression in MS. This article reviews Bruton’s Tyrosine Kinase Inhibitors (BTKIs), a new class of experimental therapy that is being intensely evaluated in MS. We focus on the potential peripheral and central mechanisms of action of BTKIs and their use in recent clinical trials in MS.

Recent Findings

There is evidence that some BTKIs cross the blood–brain barrier and may be superior to currently available DMTs at dampening the chronic neuroinflammatory processes compartmentalized within the CNS that contribute to progressive worsening in people withMS (pwMS). Recently, evobrutinib and tolebrutinib have shown efficacy in phase II clinical trials, and there are numerous ongoing phase III clinical trials of various BTKIs in relapsing and progressive forms of MS. Results from these clinical trials will be essential to understand the efficacy and safety of BTKIs across the spectrum of MS and keydifferences between specific BTKIs when treating pwMS.

Summary

Inhibition of BTK has emerged as an attractive strategy to target cells of the adaptive and innate immune system outside and within the CNS. BTKIs carry great therapeutic potential across the MS spectrum, where key pathobiology aspects seem confined to the CNS compartment.
Literature
3.
go back to reference Feinstein A, Amato MP, Brichetto G, Chataway J, Chiaravalloti N, Dalgas U, et al. Study protocol: improving cognition in people with progressive multiple sclerosis: a multi-arm, randomized, blinded, sham-controlled trial of cognitive rehabilitation and aerobic exercise (COGEx). Bmc Neurol. 2020;20:204.PubMedPubMedCentralCrossRef Feinstein A, Amato MP, Brichetto G, Chataway J, Chiaravalloti N, Dalgas U, et al. Study protocol: improving cognition in people with progressive multiple sclerosis: a multi-arm, randomized, blinded, sham-controlled trial of cognitive rehabilitation and aerobic exercise (COGEx). Bmc Neurol. 2020;20:204.PubMedPubMedCentralCrossRef
4.
go back to reference Cree BAC, Hartung H-P, Barnett M. New drugs for multiple sclerosis: new treatment algorithms. Curr Opin Neurol. 2022;35:262–70.PubMedCrossRef Cree BAC, Hartung H-P, Barnett M. New drugs for multiple sclerosis: new treatment algorithms. Curr Opin Neurol. 2022;35:262–70.PubMedCrossRef
5.
go back to reference Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q, Bernasconi C, et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. Jama Neurol. 2020;77:1132–40.PubMedCrossRef Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q, Bernasconi C, et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. Jama Neurol. 2020;77:1132–40.PubMedCrossRef
6.
go back to reference Martin R, Sospedra M, Rosito M, Engelhardt B. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. Eur J Immunol. 2016;46:2078–90.PubMedCrossRef Martin R, Sospedra M, Rosito M, Engelhardt B. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. Eur J Immunol. 2016;46:2078–90.PubMedCrossRef
7.
go back to reference Kappos L, Edan G, Freedman MS, Montalbán X, Hartung H-P, Hemmer B, et al. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology. 2016;87:978–87.PubMedPubMedCentralCrossRef Kappos L, Edan G, Freedman MS, Montalbán X, Hartung H-P, Hemmer B, et al. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology. 2016;87:978–87.PubMedPubMedCentralCrossRef
8.
go back to reference Team: U of C San Francisco MS-EPIC, Cree BAC, Gourraud P-A, Oksenberg JR, Bevan C, Crabtree-Hartman E, et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol. 2016;80:499–510.CrossRef Team: U of C San Francisco MS-EPIC, Cree BAC, Gourraud P-A, Oksenberg JR, Bevan C, Crabtree-Hartman E, et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol. 2016;80:499–510.CrossRef
9.
go back to reference Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A, et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA. 2019;321:175.PubMedPubMedCentralCrossRef Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A, et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA. 2019;321:175.PubMedPubMedCentralCrossRef
10.
go back to reference Fambiatos A, Jokubaitis V, Horakova D, Havrdova EK, Trojano M, Prat A, et al. Risk of secondary progressive multiple sclerosis: a longitudinal study. Mult Scler J. 2019;26:79–90.CrossRef Fambiatos A, Jokubaitis V, Horakova D, Havrdova EK, Trojano M, Prat A, et al. Risk of secondary progressive multiple sclerosis: a longitudinal study. Mult Scler J. 2019;26:79–90.CrossRef
11.
go back to reference Kappos L, Butzkueven H, Wiendl H, Spelman T, Pellegrini F, Chen Y, et al. Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study. Mult Scler J. 2017;24:963–73.CrossRef Kappos L, Butzkueven H, Wiendl H, Spelman T, Pellegrini F, Chen Y, et al. Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study. Mult Scler J. 2017;24:963–73.CrossRef
12.
go back to reference Graf J, Leussink VI, Soncin G, Lepka K, Meinl I, Kümpfel T, et al. Relapse-independent multiple sclerosis progression under natalizumab. Brain Commun. 2021;3:fcab229.PubMedPubMedCentralCrossRef Graf J, Leussink VI, Soncin G, Lepka K, Meinl I, Kümpfel T, et al. Relapse-independent multiple sclerosis progression under natalizumab. Brain Commun. 2021;3:fcab229.PubMedPubMedCentralCrossRef
13.
go back to reference Hartkamp LM, Fine JS, van Es IE, Tang MW, Smith M, Woods J, et al. Btk inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants. Ann Rheum Dis. 2015;74:1603.PubMedCrossRef Hartkamp LM, Fine JS, van Es IE, Tang MW, Smith M, Woods J, et al. Btk inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants. Ann Rheum Dis. 2015;74:1603.PubMedCrossRef
14.
go back to reference Corneth OBJ, Verstappen GMP, Paulissen SMJ, de Bruijn MJW, Rip J, Lukkes M, et al. Enhanced Bruton’s Tyrosine Kinase Activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheumatol. 2017;69:1313–24.PubMedCrossRef Corneth OBJ, Verstappen GMP, Paulissen SMJ, de Bruijn MJW, Rip J, Lukkes M, et al. Enhanced Bruton’s Tyrosine Kinase Activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheumatol. 2017;69:1313–24.PubMedCrossRef
15.
go back to reference Torke S, Pretzsch R, Häusler D, Haselmayer P, Grenningloh R, Boschert U, et al. Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol. 2020;140:535–48.PubMedPubMedCentralCrossRef Torke S, Pretzsch R, Häusler D, Haselmayer P, Grenningloh R, Boschert U, et al. Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol. 2020;140:535–48.PubMedPubMedCentralCrossRef
16.
go back to reference Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14:219–32.PubMedCrossRef Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14:219–32.PubMedCrossRef
17.
go back to reference Cohen S, Tuckwell K, Katsumoto TR, Zhao R, Galanter J, Lee C, et al. Fenebrutinib versus Placebo or Adalimumab in Rheumatoid Arthritis: A Randomized, Double-Blind, Phase II Trial (ANDES Study). Arthritis Rheumatol Hoboken N J. 2020;72(9):1435–46.CrossRef Cohen S, Tuckwell K, Katsumoto TR, Zhao R, Galanter J, Lee C, et al. Fenebrutinib versus Placebo or Adalimumab in Rheumatoid Arthritis: A Randomized, Double-Blind, Phase II Trial (ANDES Study). Arthritis Rheumatol Hoboken N J. 2020;72(9):1435–46.CrossRef
18.
go back to reference Isenberg D, Furie R, Jones NS, Guibord P, Galanter J, Lee C, et al. Efficacy, Safety, and Pharmacodynamic Effects of the Bruton’s Tyrosine Kinase Inhibitor Fenebrutinib (GDC-0853) in Systemic Lupus Erythematosus: Results of a Phase II, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol Hoboken N J. 2021;73:1835–46.CrossRef Isenberg D, Furie R, Jones NS, Guibord P, Galanter J, Lee C, et al. Efficacy, Safety, and Pharmacodynamic Effects of the Bruton’s Tyrosine Kinase Inhibitor Fenebrutinib (GDC-0853) in Systemic Lupus Erythematosus: Results of a Phase II, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol Hoboken N J. 2021;73:1835–46.CrossRef
20.
go back to reference Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 2016;15:198–209.PubMedCrossRef Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 2016;15:198–209.PubMedCrossRef
21.
go back to reference Consortium*† IMSG. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365:7188.CrossRef Consortium*† IMSG. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365:7188.CrossRef
22.
go back to reference Lucchinetti CF, Brück W, Rodriguez M, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol. 1996;6:259–74.PubMedCrossRef Lucchinetti CF, Brück W, Rodriguez M, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol. 1996;6:259–74.PubMedCrossRef
23.
go back to reference Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. New Engl J Med. 1998;338:278–85.PubMedCrossRef Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. New Engl J Med. 1998;338:278–85.PubMedCrossRef
24.
go back to reference Zhang Y, Zhang Y, Gu W, Sun B. Advances in experimental medicine and biology. Adv Exp Med Biol. 2014;841:15–44.PubMedCrossRef Zhang Y, Zhang Y, Gu W, Sun B. Advances in experimental medicine and biology. Adv Exp Med Biol. 2014;841:15–44.PubMedCrossRef
25.
go back to reference Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.PubMedCrossRef Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.PubMedCrossRef
26.
go back to reference Choi SR, Howell OW, Carassiti D, Magliozzi R, Gveric D, Muraro PA, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 2012;135:2925–37.PubMedCrossRef Choi SR, Howell OW, Carassiti D, Magliozzi R, Gveric D, Muraro PA, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 2012;135:2925–37.PubMedCrossRef
27.
go back to reference Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2006;130:1089–104.CrossRef Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2006;130:1089–104.CrossRef
28.
go back to reference Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134:2755–71.PubMedCrossRef Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134:2755–71.PubMedCrossRef
29.
go back to reference Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, et al. Abnormal B-cell cytokine responses a trigger of T-cell–mediated disease in MS? Ann Neurol. 2010;67:452–61.PubMedCrossRef Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, et al. Abnormal B-cell cytokine responses a trigger of T-cell–mediated disease in MS? Ann Neurol. 2010;67:452–61.PubMedCrossRef
30.
go back to reference Schneider R, Mohebiany AN, Ifergan I, Beauseigle D, Duquette P, Prat A, et al. B cell-derived IL-15 enhances CD8 T cell cytotoxicity and is increased in multiple sclerosis patients. J Immunol Baltim Md. 1950;2011(187):4119–28. Schneider R, Mohebiany AN, Ifergan I, Beauseigle D, Duquette P, Prat A, et al. B cell-derived IL-15 enhances CD8 T cell cytotoxicity and is increased in multiple sclerosis patients. J Immunol Baltim Md. 1950;2011(187):4119–28.
31.
go back to reference Fraussen J, Claes N, Wijmeersch BV, van Horssen J, Stinissen P, Hupperts R, et al. B cells of multiple sclerosis patients induce autoreactive proinflammatory T cell responses. Clin Immunol Orlando Fla. 2016;173:124–32.CrossRef Fraussen J, Claes N, Wijmeersch BV, van Horssen J, Stinissen P, Hupperts R, et al. B cells of multiple sclerosis patients induce autoreactive proinflammatory T cell responses. Clin Immunol Orlando Fla. 2016;173:124–32.CrossRef
32.
go back to reference Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378:1779–87.PubMedCrossRef Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378:1779–87.PubMedCrossRef
33.
go back to reference Salzer J, Svenningsson R, Alping P, Novakova L, Björck A, Fink K, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87:2074–81.PubMedPubMedCentralCrossRef Salzer J, Svenningsson R, Alping P, Novakova L, Björck A, Fink K, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87:2074–81.PubMedPubMedCentralCrossRef
34.
go back to reference Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. New Engl J Medicine. 2017;376:209–20.CrossRef Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. New Engl J Medicine. 2017;376:209–20.CrossRef
35.
go back to reference Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung H-P, Hemmer B, et al. Ocrelizumab versus interferon Beta-1a in relapsing multiple sclerosis. New Engl J Medicine. 2017;376:221–34.CrossRef Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung H-P, Hemmer B, et al. Ocrelizumab versus interferon Beta-1a in relapsing multiple sclerosis. New Engl J Medicine. 2017;376:221–34.CrossRef
36.
go back to reference Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine. 2017;16:41–50.PubMedPubMedCentralCrossRef Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine. 2017;16:41–50.PubMedPubMedCentralCrossRef
37.
go back to reference Caldito NG, Shirani A, Salter A, Stuve O. Adverse event profile differences between rituximab and ocrelizumab: Findings from the FDA Adverse Event Reporting Database. Mult Scler J. 2020;27:1066–76.CrossRef Caldito NG, Shirani A, Salter A, Stuve O. Adverse event profile differences between rituximab and ocrelizumab: Findings from the FDA Adverse Event Reporting Database. Mult Scler J. 2020;27:1066–76.CrossRef
38.
go back to reference Simpson-Yap S, Brouwer ED, Kalincik T, Rijke N, Hillert JA, Walton C, et al. Associations of disease-modifying therapies with COVID-19 severity in multiple sclerosis. Neurology. 2021;97:e1870–85.PubMedPubMedCentralCrossRef Simpson-Yap S, Brouwer ED, Kalincik T, Rijke N, Hillert JA, Walton C, et al. Associations of disease-modifying therapies with COVID-19 severity in multiple sclerosis. Neurology. 2021;97:e1870–85.PubMedPubMedCentralCrossRef
39.
go back to reference Jäckle K, Zeis T, Schaeren-Wiemers N, Junker A, van der Meer F, Kramann N, et al. Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain. 2020;143:2073–88.PubMedCrossRef Jäckle K, Zeis T, Schaeren-Wiemers N, Junker A, van der Meer F, Kramann N, et al. Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain. 2020;143:2073–88.PubMedCrossRef
40.
go back to reference Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature. 2021;597:709–14.PubMedPubMedCentralCrossRef Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature. 2021;597:709–14.PubMedPubMedCentralCrossRef
41.
go back to reference Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest. 2016;126:2597–609.PubMedPubMedCentralCrossRef Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest. 2016;126:2597–609.PubMedPubMedCentralCrossRef
42.
go back to reference Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of chronic active multiple sclerosis lesions with disability in vivo. Jama Neurol. 2019;76:1474–83.PubMedPubMedCentralCrossRef Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of chronic active multiple sclerosis lesions with disability in vivo. Jama Neurol. 2019;76:1474–83.PubMedPubMedCentralCrossRef
43.
go back to reference Elliott C, Belachew S, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain. 2019;142:2787–99.PubMedPubMedCentralCrossRef Elliott C, Belachew S, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain. 2019;142:2787–99.PubMedPubMedCentralCrossRef
44.
go back to reference Maggi P, Sati P, Nair G, Cortese ICM, Jacobson S, Smith BR, et al. Paramagnetic Rim Lesions are Specific to Multiple Sclerosis: An International Multicenter 3T MRI Study. Ann Neurol. 2020;88:1034–42.PubMedCrossRef Maggi P, Sati P, Nair G, Cortese ICM, Jacobson S, Smith BR, et al. Paramagnetic Rim Lesions are Specific to Multiple Sclerosis: An International Multicenter 3T MRI Study. Ann Neurol. 2020;88:1034–42.PubMedCrossRef
45.
go back to reference Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol-Neuroimmunol Neuroinflamm. 2022;9: e1139.PubMedPubMedCentralCrossRef Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol-Neuroimmunol Neuroinflamm. 2022;9: e1139.PubMedPubMedCentralCrossRef
46.
go back to reference Suthiphosuwan S, Sati P, Absinta M, Guenette M, Reich DS, Bharatha A, et al. Paramagnetic rim sign in radiologically isolated syndrome. Jama Neurol. 2020;77:653.PubMedPubMedCentralCrossRef Suthiphosuwan S, Sati P, Absinta M, Guenette M, Reich DS, Bharatha A, et al. Paramagnetic rim sign in radiologically isolated syndrome. Jama Neurol. 2020;77:653.PubMedPubMedCentralCrossRef
47.
go back to reference Oh J, Suthiphosuwan S, Sati P, Absinta M, Dewey B, Guenette M, et al. Cognitive impairment, the central vein sign, and paramagnetic rim lesions in RIS. Mult Scler J. 2021;27(14):2199–208.CrossRef Oh J, Suthiphosuwan S, Sati P, Absinta M, Dewey B, Guenette M, et al. Cognitive impairment, the central vein sign, and paramagnetic rim lesions in RIS. Mult Scler J. 2021;27(14):2199–208.CrossRef
48.
go back to reference Marcille M, Rúa SH, Tyshkov C, Jaywant A, Comunale J, Kaunzner UW, et al. Disease correlates of rim lesions on quantitative susceptibility mapping in multiple sclerosis. Sci Rep-uk. 2022;12:4411.CrossRef Marcille M, Rúa SH, Tyshkov C, Jaywant A, Comunale J, Kaunzner UW, et al. Disease correlates of rim lesions on quantitative susceptibility mapping in multiple sclerosis. Sci Rep-uk. 2022;12:4411.CrossRef
50.
go back to reference •• Reich DS, Arnold DL, Vermersch P, Bar-Or A, Fox RJ, Matta A, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021;20:729–38. Phase II clinical trial with unique study design that met the primary endpoint of reduction in gadolinium-enhancing lesions in the brain of pwMS receiving Tolebrutinib at 60 mg daily.PubMedPubMedCentralCrossRef •• Reich DS, Arnold DL, Vermersch P, Bar-Or A, Fox RJ, Matta A, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021;20:729–38. Phase II clinical trial with unique study design that met the primary endpoint of reduction in gadolinium-enhancing lesions in the brain of pwMS receiving Tolebrutinib at 60 mg daily.PubMedPubMedCentralCrossRef
51.
go back to reference • Li R, Tang H, Burns JC, Hopkins BT, Coz CL, Zhang B, et al. BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathol. 2022;143:505–21. Study showing that Evobrutinib impairs the capacity of B-cells to act as antigen-presenting cells for the development of encephalitogenic T cells.PubMedPubMedCentralCrossRef • Li R, Tang H, Burns JC, Hopkins BT, Coz CL, Zhang B, et al. BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathol. 2022;143:505–21. Study showing that Evobrutinib impairs the capacity of B-cells to act as antigen-presenting cells for the development of encephalitogenic T cells.PubMedPubMedCentralCrossRef
52.
go back to reference Contentti EC, Correale J. Bruton’s tyrosine kinase inhibitors: a promising emerging treatment option for multiple sclerosis. Expert Opin Emerg Dr. 2020;25:1–5. Contentti EC, Correale J. Bruton’s tyrosine kinase inhibitors: a promising emerging treatment option for multiple sclerosis. Expert Opin Emerg Dr. 2020;25:1–5.
54.
go back to reference Chen S-S, Chang BY, Chang S, Tong T, Ham S, Sherry B, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30:833–43.PubMedCrossRef Chen S-S, Chang BY, Chang S, Tong T, Ham S, Sherry B, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30:833–43.PubMedCrossRef
55.
go back to reference Taneichi H, Kanegane H, Sira MM, Futatani T, Agematsu K, Sako M, et al. Toll-like receptor signaling is impaired in dendritic cells from patients with X-linked agammaglobulinemia. Clin Immunol. 2008;126:148–54.PubMedCrossRef Taneichi H, Kanegane H, Sira MM, Futatani T, Agematsu K, Sako M, et al. Toll-like receptor signaling is impaired in dendritic cells from patients with X-linked agammaglobulinemia. Clin Immunol. 2008;126:148–54.PubMedCrossRef
56.
go back to reference Weber ANR, Bittner Z, Liu X, Dang T-M, Radsak MP, Brunner C. Bruton’s Tyrosine Kinase: an emerging key player in innate immunity. Front Immunol. 2017;8:1454.PubMedPubMedCentralCrossRef Weber ANR, Bittner Z, Liu X, Dang T-M, Radsak MP, Brunner C. Bruton’s Tyrosine Kinase: an emerging key player in innate immunity. Front Immunol. 2017;8:1454.PubMedPubMedCentralCrossRef
57.
go back to reference Neys SFH, Hendriks RW, Corneth OBJ. Targeting Bruton’s Tyrosine kinase in inflammatory and autoimmune pathologies. Front Cell Dev Biol. 2021;9: 668131.PubMedPubMedCentralCrossRef Neys SFH, Hendriks RW, Corneth OBJ. Targeting Bruton’s Tyrosine kinase in inflammatory and autoimmune pathologies. Front Cell Dev Biol. 2021;9: 668131.PubMedPubMedCentralCrossRef
58.
go back to reference Alankus YB, Grenningloh R, Haselmayer P, Bender A, Bruttger J. Inhibition of Bruton’s Tyrosine Kinase prevents inflammatory macrophage differentiation: a potential role in multiple sclerosis (P2. 2–077). AAN Enterprises. Lupus Science Medicine. 2019; 6. https://doi.org/10.1136/lupus-2019-lsm.216. Alankus YB, Grenningloh R, Haselmayer P, Bender A, Bruttger J. Inhibition of Bruton’s Tyrosine Kinase prevents inflammatory macrophage differentiation: a potential role in multiple sclerosis (P2. 2–077). AAN Enterprises. Lupus Science Medicine. 2019; 6. https://​doi.​org/​10.​1136/​lupus-2019-lsm.​216.
59.
go back to reference Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med. 2019;25:112–23.PubMedCrossRef Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med. 2019;25:112–23.PubMedCrossRef
60.
go back to reference Nam HY, Nam JH, Yoon G, Lee J-Y, Nam Y, Kang H-J, et al. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J Neuroinflamm. 2018;15:271.CrossRef Nam HY, Nam JH, Yoon G, Lee J-Y, Nam Y, Kang H-J, et al. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J Neuroinflamm. 2018;15:271.CrossRef
61.
go back to reference Martin E, Aigrot M-S, Grenningloh R, Stankoff B, Lubetzki C, Boschert U, et al. Bruton’s Tyrosine Kinase inhibition promotes myelin repair. Brain Plasticity Amsterdam Neth. 2020;5:123–33.CrossRef Martin E, Aigrot M-S, Grenningloh R, Stankoff B, Lubetzki C, Boschert U, et al. Bruton’s Tyrosine Kinase inhibition promotes myelin repair. Brain Plasticity Amsterdam Neth. 2020;5:123–33.CrossRef
62.
go back to reference Gruber R, Blazier A, Lee L, Ryan S, Cheong A, Havari E, et al. Evaluating the effect of BTK inhibitor tolebrutinib in human tri-culture (P1–1. Virtual). AAN Enterprises. Neurology. 2022;98(18 Supplement):2594. Gruber R, Blazier A, Lee L, Ryan S, Cheong A, Havari E, et al. Evaluating the effect of BTK inhibitor tolebrutinib in human tri-culture (P1–1. Virtual). AAN Enterprises. Neurology. 2022;98(18 Supplement):2594.
63.
go back to reference Caldwell RD, Qiu H, Askew BC, Bender AT, Brugger N, Camps M, et al. Discovery of evobrutinib: an oral, potent, and highly selective, Covalent Bruton’s Tyrosine Kinase (BTK) inhibitor for the treatment of immunological diseases. J Med Chem. 2019;62:7643–55.PubMedCrossRef Caldwell RD, Qiu H, Askew BC, Bender AT, Brugger N, Camps M, et al. Discovery of evobrutinib: an oral, potent, and highly selective, Covalent Bruton’s Tyrosine Kinase (BTK) inhibitor for the treatment of immunological diseases. J Med Chem. 2019;62:7643–55.PubMedCrossRef
64.
go back to reference Becker A, Martin EC, Mitchell DY, Grenningloh R, Bender AT, Laurent J, et al. Safety, Tolerability, pharmacokinetics, target occupancy, and concentration-QT analysis of the Novel BTK inhibitor evobrutinib in healthy volunteers. Clin Transl Sci. 2018;13:325–36.CrossRef Becker A, Martin EC, Mitchell DY, Grenningloh R, Bender AT, Laurent J, et al. Safety, Tolerability, pharmacokinetics, target occupancy, and concentration-QT analysis of the Novel BTK inhibitor evobrutinib in healthy volunteers. Clin Transl Sci. 2018;13:325–36.CrossRef
66.
go back to reference Owens TD, Smith PF, Redfern A, Xing Y, Shu J, Karr DE, et al. Phase 1 clinical trial evaluating safety, exposure and pharmacodynamics of BTK inhibitor tolebrutinib (PRN2246, SAR442168). Clin Transl Sci. 2021;15:442–50.PubMedPubMedCentralCrossRef Owens TD, Smith PF, Redfern A, Xing Y, Shu J, Karr DE, et al. Phase 1 clinical trial evaluating safety, exposure and pharmacodynamics of BTK inhibitor tolebrutinib (PRN2246, SAR442168). Clin Transl Sci. 2021;15:442–50.PubMedPubMedCentralCrossRef
67.
go back to reference Metz M, Sussman G, Gagnon R, Staubach P, Tanus T, Yang WH, et al. Fenebrutinib in H1 antihistamine-refractory chronic spontaneous urticaria: a randomized phase 2 trial. Nat Med. 2021;27:1961–9.PubMedPubMedCentralCrossRef Metz M, Sussman G, Gagnon R, Staubach P, Tanus T, Yang WH, et al. Fenebrutinib in H1 antihistamine-refractory chronic spontaneous urticaria: a randomized phase 2 trial. Nat Med. 2021;27:1961–9.PubMedPubMedCentralCrossRef
68.
go back to reference Crawford JJ, Johnson AR, Misner DL, Belmont LD, Castanedo G, Choy R, et al. Discovery of GDC-0853: a potent, selective, and noncovalent Bruton’s Tyrosine Kinase Inhibitor in early clinical development. J Med Chem. 2018;61:2227–45.PubMedCrossRef Crawford JJ, Johnson AR, Misner DL, Belmont LD, Castanedo G, Choy R, et al. Discovery of GDC-0853: a potent, selective, and noncovalent Bruton’s Tyrosine Kinase Inhibitor in early clinical development. J Med Chem. 2018;61:2227–45.PubMedCrossRef
69.
go back to reference Herman AE, Chinn LW, Kotwal SG, Murray ER, Zhao R, Florero M, et al. Safety, pharmacokinetics, and pharmacodynamics in healthy volunteers treated with GDC-0853, a selective reversible Bruton’s Tyrosine Kinase Inhibitor. Clin Pharmacol Ther. 2018;103:1020–8.PubMedCrossRef Herman AE, Chinn LW, Kotwal SG, Murray ER, Zhao R, Florero M, et al. Safety, pharmacokinetics, and pharmacodynamics in healthy volunteers treated with GDC-0853, a selective reversible Bruton’s Tyrosine Kinase Inhibitor. Clin Pharmacol Ther. 2018;103:1020–8.PubMedCrossRef
70.
go back to reference Angst D, Gessier F, Janser P, Vulpetti A, Wälchli R, Beerli C, et al. Discovery of LOU064 (Remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s Tyrosine Kinase. J Med Chem. 2020;63:5102–18.PubMedCrossRef Angst D, Gessier F, Janser P, Vulpetti A, Wälchli R, Beerli C, et al. Discovery of LOU064 (Remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s Tyrosine Kinase. J Med Chem. 2020;63:5102–18.PubMedCrossRef
71.
go back to reference Kaul M, End P, Cabanski M, Schuhler C, Jakab A, Kistowska M, et al. Remibrutinib (LOU064): A selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin Transl Sci. 2021;14:1756–68.PubMedPubMedCentralCrossRef Kaul M, End P, Cabanski M, Schuhler C, Jakab A, Kistowska M, et al. Remibrutinib (LOU064): A selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin Transl Sci. 2021;14:1756–68.PubMedPubMedCentralCrossRef
73.
75.
go back to reference Fox EJ, Buckle GJ, Singer B, Singh V, Boster A. Lymphopenia and DMTs for relapsing forms of MS: considerations for the treating neurologist. Neurology Clin Pract. 2019;9:53–63.CrossRef Fox EJ, Buckle GJ, Singer B, Singh V, Boster A. Lymphopenia and DMTs for relapsing forms of MS: considerations for the treating neurologist. Neurology Clin Pract. 2019;9:53–63.CrossRef
76.
go back to reference Tsao L, Otani IM, Bove R. Hypogammaglobulinemia in multiple sclerosis patients receiving disease-modifying immunomodulatory agents. J Allergy Clin Immun. 2019;143:AB16.CrossRef Tsao L, Otani IM, Bove R. Hypogammaglobulinemia in multiple sclerosis patients receiving disease-modifying immunomodulatory agents. J Allergy Clin Immun. 2019;143:AB16.CrossRef
77.
go back to reference Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. New Engl J Medicine. 2012;366:1870–80.CrossRef Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. New Engl J Medicine. 2012;366:1870–80.CrossRef
78.
go back to reference Estupiñán HY, Berglöf A, Zain R, Smith CIE. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front Cell Dev Biol. 2021;9: 630942.PubMedPubMedCentralCrossRef Estupiñán HY, Berglöf A, Zain R, Smith CIE. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front Cell Dev Biol. 2021;9: 630942.PubMedPubMedCentralCrossRef
79.
go back to reference •• Montalban X, Arnold DL, Weber MS, Staikov I, Piasecka-Stryczynska K, Willmer J, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. New Engl J Med. 2019;380:2406–17. First phase II clinical trial that demonstrated efficacy of a BTKI in MS. This study met the primary endpoint of reduction in gadolinium-enhancing lesions in the brain of pwMS receiving Evobrutinib at 75 mg daily.PubMedCrossRef •• Montalban X, Arnold DL, Weber MS, Staikov I, Piasecka-Stryczynska K, Willmer J, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. New Engl J Med. 2019;380:2406–17. First phase II clinical trial that demonstrated efficacy of a BTKI in MS. This study met the primary endpoint of reduction in gadolinium-enhancing lesions in the brain of pwMS receiving Evobrutinib at 75 mg daily.PubMedCrossRef
80.
go back to reference Oh J, Fox RJ, Arnold DL, Syed S, Orogun L, Dukovic D, et al. MRI, safety, and efficacy outcomes in patients with relapsing MS: 18-month results from the long-term extension study of tolebrutinib. Headache. 2022;16:13. Oh J, Fox RJ, Arnold DL, Syed S, Orogun L, Dukovic D, et al. MRI, safety, and efficacy outcomes in patients with relapsing MS: 18-month results from the long-term extension study of tolebrutinib. Headache. 2022;16:13.
81.
go back to reference Estupiñán HY, Bouderlique T, He C, Berglöf A, Gupta D, Saher O, et al. Novel mouse model resistant to irreversible BTK inhibitors: a tool identifying new therapeutic targets and side effects. Blood Adv. 2020;4:2439–50.PubMedPubMedCentralCrossRef Estupiñán HY, Bouderlique T, He C, Berglöf A, Gupta D, Saher O, et al. Novel mouse model resistant to irreversible BTK inhibitors: a tool identifying new therapeutic targets and side effects. Blood Adv. 2020;4:2439–50.PubMedPubMedCentralCrossRef
82.
go back to reference ECTRIMS. – ePoster. Mult Scler J. 2021;2021(27):134–740. ECTRIMS. – ePoster. Mult Scler J. 2021;2021(27):134–740.
84.
go back to reference Oh J, Cohen S, Isenberg D, Maurer M, Galanter J, Chu T, et al. The safety of fenebrutinib in a large population of patients with diverse autoimmune indications supports investigation in multiple sclerosis (MS)(4564). AAN Enterprises. Neurology. 2021;96(15 Supplement):4564. Oh J, Cohen S, Isenberg D, Maurer M, Galanter J, Chu T, et al. The safety of fenebrutinib in a large population of patients with diverse autoimmune indications supports investigation in multiple sclerosis (MS)(4564). AAN Enterprises. Neurology. 2021;96(15 Supplement):4564.
85.
go back to reference Abdel-Qadir H, Sabrie N, Leong D, Pang A, Austin PC, Prica A, et al. Cardiovascular risk associated with ibrutinib use in chronic lymphocytic leukemia: a population-based cohort study. J Clin Oncol Official J Am Soc Clin Oncol. 2021;39:3453–62.CrossRef Abdel-Qadir H, Sabrie N, Leong D, Pang A, Austin PC, Prica A, et al. Cardiovascular risk associated with ibrutinib use in chronic lymphocytic leukemia: a population-based cohort study. J Clin Oncol Official J Am Soc Clin Oncol. 2021;39:3453–62.CrossRef
Metadata
Title
Bruton’s Tyrosine Kinase Inhibition in Multiple Sclerosis
Authors
Raphael Schneider
Jiwon Oh
Publication date
27-10-2022
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 11/2022
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-022-01229-z

Other articles of this Issue 11/2022

Current Neurology and Neuroscience Reports 11/2022 Go to the issue

Dementia (K.S. Marder, Section Editor)

Vascular Considerations for Amyloid Immunotherapy