Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2020

Open Access 01-12-2020 | Multiple Sclerosis | Research

Molecular patterns from a human gut-derived Lactobacillus strain suppress pathogenic infiltration of leukocytes into the central nervous system

Authors: John Michael S. Sanchez, Daniel J. Doty, Ana Beatriz DePaula-Silva, D. Garrett Brown, Rickesha Bell, Kendra A. Klag, Amanda Truong, Jane E. Libbey, June L. Round, Robert S. Fujinami

Published in: Journal of Neuroinflammation | Issue 1/2020

Login to get access

Abstract

Background

Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects 2.5 million people worldwide. Growing evidence suggests that perturbation of the gut microbiota, the dense collection of microorganisms that colonize the gastrointestinal tract, plays a functional role in MS. Indeed, specific gut-resident bacteria are altered in patients with MS compared to healthy individuals, and colonization of gnotobiotic mice with MS-associated microbiota exacerbates preclinical models of MS. However, defining the molecular mechanisms by which gut commensals can remotely affect the neuroinflammatory process remains a critical gap in the field.

Methods

We utilized monophasic experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice and relapse-remitting EAE in SJL/J mice to test the effects of the products from a human gut-derived commensal strain of Lactobacillus paracasei (Lb).

Results

We report that Lb can ameliorate preclinical murine models of MS with both prophylactic and therapeutic administrations. Lb ameliorates disease through a Toll-like receptor 2-dependent mechanism via its microbe-associated molecular patterns that can be detected in the systemic circulation, are sufficient to downregulate chemokine production, and can reduce immune cell infiltration into the central nervous system (CNS). In addition, alterations in the gut microbiota mediated by Lb-associated molecular patterns are sufficient to provide partial protection against neuroinflammatory diseases.

Conclusions

Local Lb modulation of the gut microbiota and the shedding of Lb-associated molecular patterns into the circulation may be important physiological signals to prevent aberrant peripheral immune cell infiltration into the CNS and have relevance to the development of new therapeutic strategies for MS.
Literature
1.
go back to reference Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. Longo DL, editor. N. Engl. J. Med. 2018;378:169–80.CrossRef Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. Longo DL, editor. N. Engl. J. Med. 2018;378:169–80.CrossRef
2.
go back to reference Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Nature Publishing Group. 2016:1–10. Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Nature Publishing Group. 2016:1–10.
3.
go back to reference Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. U.S.A. 2017;114:10713–8.CrossRef Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. U.S.A. 2017;114:10713–8.CrossRef
4.
go back to reference Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl. Acad. Sci. U.S.A. 2017;114:10719–24.CrossRef Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl. Acad. Sci. U.S.A. 2017;114:10719–24.CrossRef
5.
go back to reference van den Hoogen WJ, Laman JD. ‘t Hart BA. Modulation of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis by food and gut microbiota. Front Immunol. Frontiers. 2017;8:1081. van den Hoogen WJ, Laman JD. ‘t Hart BA. Modulation of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis by food and gut microbiota. Front Immunol. Frontiers. 2017;8:1081.
6.
go back to reference Sanchez JMS, DePaula-Silva AB, Libbey JE, Fujinami RS. Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol. 2020:108379. Sanchez JMS, DePaula-Silva AB, Libbey JE, Fujinami RS. Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol. 2020:108379.
7.
go back to reference Libbey JE, Sanchez JM, Doty DJ, Sim JT, Cusick MF, Cox JE, et al. Variations in diet cause alterations in microbiota and metabolites that follow changes in disease severity in a multiple sclerosis model. Benef Microbes. 2018;9:495–513.CrossRef Libbey JE, Sanchez JM, Doty DJ, Sim JT, Cusick MF, Cox JE, et al. Variations in diet cause alterations in microbiota and metabolites that follow changes in disease severity in a multiple sclerosis model. Benef Microbes. 2018;9:495–513.CrossRef
8.
go back to reference Lavasani S, Dzhambazov B, Nouri M, Fåk F, Buske S, Molin G, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE. 2010;5:e9009.CrossRef Lavasani S, Dzhambazov B, Nouri M, Fåk F, Buske S, Molin G, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE. 2010;5:e9009.CrossRef
9.
go back to reference Chapot-Chartier M-P, Kulakauskas S. Cell wall structure and function in lactic acid bacteria. Microb. Cell Fact. BioMed Central. 2014;13(Suppl 1):S9–23.CrossRef Chapot-Chartier M-P, Kulakauskas S. Cell wall structure and function in lactic acid bacteria. Microb. Cell Fact. BioMed Central. 2014;13(Suppl 1):S9–23.CrossRef
10.
go back to reference Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2011;108(Suppl 1):4615–22.CrossRef Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2011;108(Suppl 1):4615–22.CrossRef
11.
go back to reference Duc D, Vigne S, Bernier-Latmani J, Yersin Y, Ruiz F, Gaïa N, et al. Disrupting myelin-specific Th17 cell gut homing confers protection in an adoptive transfer experimental autoimmune encephalomyelitis. CellReports. 2019;29:378–390.e4. Duc D, Vigne S, Bernier-Latmani J, Yersin Y, Ruiz F, Gaïa N, et al. Disrupting myelin-specific Th17 cell gut homing confers protection in an adoptive transfer experimental autoimmune encephalomyelitis. CellReports. 2019;29:378–390.e4.
12.
go back to reference Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. Nature Publishing Group. 2017;551:585–9. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. Nature Publishing Group. 2017;551:585–9.
13.
go back to reference He B, Hoang TK, Tian X, Taylor CM, Blanchard E, Luo M, et al. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota. Front Immunol. Frontiers. 2019;10:385. He B, Hoang TK, Tian X, Taylor CM, Blanchard E, Luo M, et al. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota. Front Immunol. Frontiers. 2019;10:385.
14.
go back to reference Yamashita M, Ukibe K, Matsubara Y, Hosoya T, Sakai F, Kon S, et al. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice. Front Microbiol. Frontiers. 2017;8:2596. Yamashita M, Ukibe K, Matsubara Y, Hosoya T, Sakai F, Kon S, et al. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice. Front Microbiol. Frontiers. 2017;8:2596.
15.
go back to reference Secher T, Kassem S, Benamar M, Bernard I, Boury M, Barreau F, et al. Oral administration of the probiotic strain Escherichia coli Nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Front Immunol. 2017;8:1096.CrossRef Secher T, Kassem S, Benamar M, Bernard I, Boury M, Barreau F, et al. Oral administration of the probiotic strain Escherichia coli Nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Front Immunol. 2017;8:1096.CrossRef
16.
go back to reference Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KHG. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clinical & Experimental Immunology. John Wiley & Sons, Ltd (10.1111). 2010;162:1–11.CrossRef Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KHG. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clinical & Experimental Immunology. John Wiley & Sons, Ltd (10.1111). 2010;162:1–11.CrossRef
17.
go back to reference Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim. Biophys. Acta. 1812;2011:220–30. Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim. Biophys. Acta. 1812;2011:220–30.
18.
go back to reference Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 2010;107:12204–9.CrossRef Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 2010;107:12204–9.CrossRef
19.
go back to reference Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. Nature Publishing Group. 2010;16:228–31.CrossRef Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. Nature Publishing Group. 2010;16:228–31.CrossRef
20.
go back to reference Troha K, Nagy P, Pivovar A, Lazzaro BP, Hartley PS, Buchon N. Nephrocytes remove microbiota-derived peptidoglycan from systemic circulation to maintain immune homeostasis. Immunity. 2019;51:625–637.e3.CrossRef Troha K, Nagy P, Pivovar A, Lazzaro BP, Hartley PS, Buchon N. Nephrocytes remove microbiota-derived peptidoglycan from systemic circulation to maintain immune homeostasis. Immunity. 2019;51:625–637.e3.CrossRef
21.
go back to reference Balmer ML, Schürch CM, Saito Y, Geuking MB, Li H, Cuenca M, et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J. Immunol. 2014;193:5273–83.CrossRef Balmer ML, Schürch CM, Saito Y, Geuking MB, Li H, Cuenca M, et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J. Immunol. 2014;193:5273–83.CrossRef
22.
go back to reference Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87.CrossRef Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87.CrossRef
23.
go back to reference Xie C, Alcaide P, Geisbrecht BV, Schneider D, Herrmann M, Preissner KT, et al. Suppression of experimental autoimmune encephalomyelitis by extracellular adherence protein of Staphylococcus aureus. J Exp Med. Rockefeller University Press. 2006;203:985–94.CrossRef Xie C, Alcaide P, Geisbrecht BV, Schneider D, Herrmann M, Preissner KT, et al. Suppression of experimental autoimmune encephalomyelitis by extracellular adherence protein of Staphylococcus aureus. J Exp Med. Rockefeller University Press. 2006;203:985–94.CrossRef
24.
go back to reference Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 9 ed. 2017;41:S27–48.CrossRef Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 9 ed. 2017;41:S27–48.CrossRef
25.
go back to reference Deerhake ME, Biswas DD, Barclay WE, Shinohara ML. Pattern recognition receptors in multiple sclerosis and its animal models. Front Immunol. Frontiers. 2019;10:2644.CrossRef Deerhake ME, Biswas DD, Barclay WE, Shinohara ML. Pattern recognition receptors in multiple sclerosis and its animal models. Front Immunol. Frontiers. 2019;10:2644.CrossRef
26.
go back to reference Farrokhi V, Nemati R, Nichols FC, Yao X, Anstadt E, Fujiwara M, et al. Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis. Clin Transl Immunology. John Wiley & Sons, Ltd. 2013;2:e8.CrossRef Farrokhi V, Nemati R, Nichols FC, Yao X, Anstadt E, Fujiwara M, et al. Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis. Clin Transl Immunology. John Wiley & Sons, Ltd. 2013;2:e8.CrossRef
27.
go back to reference Schrijver IA, van Meurs M, Melief MJ, Wim Ang C, Buljevac D, Ravid R, et al. Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. Brain. 2001;124:1544–54.CrossRef Schrijver IA, van Meurs M, Melief MJ, Wim Ang C, Buljevac D, Ravid R, et al. Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. Brain. 2001;124:1544–54.CrossRef
28.
go back to reference Kriesel JD, Bhetariya P, Wang Z-M, Renner D, Palmer C, Fischer KF. Spectrum of microbial sequences and a bacterial cell wall antigen in primary demyelination brain specimens obtained from living patients. Sci Rep. Nature Publishing Group. 2019;9:1387.CrossRef Kriesel JD, Bhetariya P, Wang Z-M, Renner D, Palmer C, Fischer KF. Spectrum of microbial sequences and a bacterial cell wall antigen in primary demyelination brain specimens obtained from living patients. Sci Rep. Nature Publishing Group. 2019;9:1387.CrossRef
29.
go back to reference Miranda-Hernandez S, Gerlach N, Fletcher JM, Biros E, Mack M, Körner H, et al. Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis. J. Immunol. American Association of Immunologists. 2011;187:791–804.CrossRef Miranda-Hernandez S, Gerlach N, Fletcher JM, Biros E, Mack M, Körner H, et al. Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis. J. Immunol. American Association of Immunologists. 2011;187:791–804.CrossRef
30.
go back to reference Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. American Society for Clinical Investigation. 2006;116:456–64.CrossRef Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. American Society for Clinical Investigation. 2006;116:456–64.CrossRef
31.
go back to reference Kellermayer R, Dowd SE, Harris RA, Balasa A, Schaible TD, Wolcott RD, et al. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J. Federation of American Societies for Experimental Biology Bethesda, MD, USA. 2011;25:1449–60.CrossRef Kellermayer R, Dowd SE, Harris RA, Balasa A, Schaible TD, Wolcott RD, et al. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J. Federation of American Societies for Experimental Biology Bethesda, MD, USA. 2011;25:1449–60.CrossRef
32.
go back to reference Dziarski R, Gupta D. Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect. Immun. 2005;73:5212–6.CrossRef Dziarski R, Gupta D. Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect. Immun. 2005;73:5212–6.CrossRef
33.
go back to reference Visser L, Jan de Heer H, Boven LA, van Riel D, van Meurs M, Melief M-J, et al. Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. Journal of Immunology. 2005;174:808–16.CrossRef Visser L, Jan de Heer H, Boven LA, van Riel D, van Meurs M, Melief M-J, et al. Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. Journal of Immunology. 2005;174:808–16.CrossRef
34.
go back to reference Anstadt EJ, Fujiwara M, Wasko N, Nichols F, Clark RB. TLR tolerance as a treatment for central nervous system autoimmunity. J. Immunol. American Association of Immunologists. 2016;197:2110–8.CrossRef Anstadt EJ, Fujiwara M, Wasko N, Nichols F, Clark RB. TLR tolerance as a treatment for central nervous system autoimmunity. J. Immunol. American Association of Immunologists. 2016;197:2110–8.CrossRef
35.
go back to reference Szczuciński A, Losy J. Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol. Scand. Wiley/Blackwell (10.1111). 2007;115:137–46.CrossRef Szczuciński A, Losy J. Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol. Scand. Wiley/Blackwell (10.1111). 2007;115:137–46.CrossRef
36.
go back to reference Tankou SK, Regev K, Healy BC, Cox LM, Tjon E, Kivisäkk P, et al. Investigation of probiotics in multiple sclerosis. Mult Scler. SAGE PublicationsSage UK: London, England. 2018;24:58–63.CrossRef Tankou SK, Regev K, Healy BC, Cox LM, Tjon E, Kivisäkk P, et al. Investigation of probiotics in multiple sclerosis. Mult Scler. SAGE PublicationsSage UK: London, England. 2018;24:58–63.CrossRef
Metadata
Title
Molecular patterns from a human gut-derived Lactobacillus strain suppress pathogenic infiltration of leukocytes into the central nervous system
Authors
John Michael S. Sanchez
Daniel J. Doty
Ana Beatriz DePaula-Silva
D. Garrett Brown
Rickesha Bell
Kendra A. Klag
Amanda Truong
Jane E. Libbey
June L. Round
Robert S. Fujinami
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2020
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-020-01959-2

Other articles of this Issue 1/2020

Journal of Neuroinflammation 1/2020 Go to the issue