Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2020

01-02-2020 | Multiple Sclerosis | Original Article

Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB

Authors: Sylvain Auvity, Matteo Tonietto, Fabien Caillé, Benedetta Bodini, Michel Bottlaender, Nicolas Tournier, Bertrand Kuhnast, Bruno Stankoff

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 2/2020

Login to get access

Abstract

Purpose

Drugs promoting myelin repair represent a promising therapeutic approach in multiple sclerosis and several candidate molecules are currently being evaluated, fostering the need of a quantitative method to specifically measure myelin content in vivo. PET using the benzothiazole derivative 11C-PiB has been successfully used to quantify myelin content changes in humans. Stilbene derivatives, such as 11C-MeDAS, have also been shown to bind to myelin in animals and are considered a promising radiopharmaceutical class for myelin imaging. Fluorinated compounds from both classes are now commercially available and thus should constitute clinically useful myelin radiotracers. The aim of this study is to provide a head-to-head comparison of 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB with regard to brain kinetics and binding in white matter (WM).

Methods

Four baboons underwent a 90-min dynamic PET scan for each radioligand. Arterial blood samples were collected during the exam for each radiotracer, except for 18F-florbetapir, to obtain a radiometabolite-corrected input function. Standardized uptake value ratio between 75 at 90 min (SUVR75–90), binding potential (BP) estimated with Logan method with input function, and distribution volume ratio (DVR) estimated with Logan reference method (using cerebellar gray matter as reference region) were calculated in WM and compared between tracers using mixed effect models.

Results

In WM, 18F-florbetapir had the highest SUVR75–90 (1.38 ± 0.03), followed by 18F-flutemetamol (1.34 ± 0.02), 18F-florbetaben (1.32 ± 0.07), 11C-MeDAS (1.27 ± 0.04), and 11C-PiB (1.25 ± 0.07). With regard to BP, 18F-florbetaben had the highest value (0.32 ± 0.06) compared with 18F-flutemetamol (0.20 ± 0.03), 11C-MeDAS (0.17 ± 0.03), and 11C-PiB (0.16 ± 0.03). No difference in DVR was detected between 18F-florbetaben (1.26 ± 0.06) and 18F-florbetapir (1.27 ± 0.03), but both were significantly higher in DVR than 18F-flutemetamol (1.17 ± 0.02), 11C-MeDAS (1.16 ± 0.03), and 11C-PiB (1.14 ± 0.02).

Conclusions

Given their higher binding and longer half-life, our study indicates that 18F-florbetapir and 18F-florbetaben are promising tracers for myelin imaging which are readily available for clinical application in demyelinating diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Compston A, Coles A. Multiple sclerosis. Lancet (London, England). 2002;359:1221–31.CrossRef Compston A, Coles A. Multiple sclerosis. Lancet (London, England). 2002;359:1221–31.CrossRef
2.
go back to reference Stankoff B, Jadasz JJ, Hartung H-P, Küry P, Zalc B, Lubetzki C. Repair strategies for multiple sclerosis. Curr Opin Neurol. 2016;29:286–92.CrossRef Stankoff B, Jadasz JJ, Hartung H-P, Küry P, Zalc B, Lubetzki C. Repair strategies for multiple sclerosis. Curr Opin Neurol. 2016;29:286–92.CrossRef
3.
go back to reference Stankoff B, Freeman L, Aigrot MS, Chardain A, Dollé F, Williams A, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol. 2011;69:673–80.CrossRef Stankoff B, Freeman L, Aigrot MS, Chardain A, Dollé F, Williams A, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol. 2011;69:673–80.CrossRef
5.
go back to reference Petiet A, Adanyeguh I, Aigrot M-S, Poirion E, Nait-Oumesmar B, Santin M, et al. Ultrahigh field imaging of myelin disease models: toward specific markers of myelin integrity? J Comp Neurol [Internet]. John Wiley & Sons, Ltd; 2019 [cited 2019 Mar 11]; Available from: http://doi.wiley.com/10.1002/cne.24598. Petiet A, Adanyeguh I, Aigrot M-S, Poirion E, Nait-Oumesmar B, Santin M, et al. Ultrahigh field imaging of myelin disease models: toward specific markers of myelin integrity? J Comp Neurol [Internet]. John Wiley & Sons, Ltd; 2019 [cited 2019 Mar 11]; Available from: http://​doi.​wiley.​com/​10.​1002/​cne.​24598.
6.
11.
go back to reference Cotero VE, Siclovan T, Zhang R, Carter RL, Bajaj A, LaPlante NE, et al. Intraoperative fluorescence imaging of peripheral and central nerves through a myelin-selective contrast agent. Mol Imaging Biol [Internet]. Springer-Verlag; 2012 [cited 2018 Jun 19];14:708–17. Available from: http://link.springer.com/10.1007/s11307-012-0555-1. Cotero VE, Siclovan T, Zhang R, Carter RL, Bajaj A, LaPlante NE, et al. Intraoperative fluorescence imaging of peripheral and central nerves through a myelin-selective contrast agent. Mol Imaging Biol [Internet]. Springer-Verlag; 2012 [cited 2018 Jun 19];14:708–17. Available from: http://​link.​springer.​com/​10.​1007/​s11307-012-0555-1.
13.
go back to reference Wu C, Zhu J, Baeslack J, Zaremba A, Hecker J, Kraso J, et al. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord. Ann Neurol [Internet]. Wiley-Blackwell; 2013 [cited 2018 Jun 19];74:688–98. Available from: http://doi.wiley.com/10.1002/ana.23965. Wu C, Zhu J, Baeslack J, Zaremba A, Hecker J, Kraso J, et al. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord. Ann Neurol [Internet]. Wiley-Blackwell; 2013 [cited 2018 Jun 19];74:688–98. Available from: http://​doi.​wiley.​com/​10.​1002/​ana.​23965.
15.
go back to reference Klunk WE, Pettegrew JW, Abraham DJ. Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem [Internet]. SAGE PublicationsSage CA: Los Angeles, CA; 1989 [cited 2018 Jun 19];37:1273–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2666510. Klunk WE, Pettegrew JW, Abraham DJ. Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem [Internet]. SAGE PublicationsSage CA: Los Angeles, CA; 1989 [cited 2018 Jun 19];37:1273–81. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​2666510.
16.
go back to reference Ridsdale RA, Beniac DR, Tompkins TA, Moscarello MA, Harauz G. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J Biol Chem [Internet]. American Society for Biochemistry and Molecular Biology; 1997 [cited 2018 Jun 19];272:4269–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9020143. Ridsdale RA, Beniac DR, Tompkins TA, Moscarello MA, Harauz G. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J Biol Chem [Internet]. American Society for Biochemistry and Molecular Biology; 1997 [cited 2018 Jun 19];272:4269–75. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9020143.
17.
go back to reference Bajaj A, LaPlante NE, Cotero VE, Fish KM, Bjerke RM, Siclovan T, et al. Identification of the protein target of myelin-binding ligands by immunohistochemistry and biochemical analyses. J Histochem Cytochem [Internet]. Histochemical Society; 2013 [cited 2018 Jun 19];61:19–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23092790.CrossRef Bajaj A, LaPlante NE, Cotero VE, Fish KM, Bjerke RM, Siclovan T, et al. Identification of the protein target of myelin-binding ligands by immunohistochemistry and biochemical analyses. J Histochem Cytochem [Internet]. Histochemical Society; 2013 [cited 2018 Jun 19];61:19–30. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23092790.CrossRef
18.
go back to reference Matías-Guiu JA, Cabrera-Martín MN, Matías-Guiu J, Oreja-Guevara C, Riola-Parada C, Moreno-Ramos T, et al. Amyloid PET imaging in multiple sclerosis: an (18)F-florbetaben study. BMC Neurol. 2015;15:243.CrossRef Matías-Guiu JA, Cabrera-Martín MN, Matías-Guiu J, Oreja-Guevara C, Riola-Parada C, Moreno-Ramos T, et al. Amyloid PET imaging in multiple sclerosis: an (18)F-florbetaben study. BMC Neurol. 2015;15:243.CrossRef
19.
go back to reference Pietroboni AM, Carandini T, Colombi A, Mercurio M, Ghezzi L, Giulietti G, et al. Amyloid PET as a marker of normal-appearing white matter early damage in multiple sclerosis: correlation with CSF β-amyloid levels and brain volumes. Eur J Nucl Med Mol Imaging [Internet]. European Journal of Nuclear Medicine and Molecular Imaging; 2019;46:280–7. Available from: http://link.springer.com/10.1007/s00259-018-4182-1.CrossRef Pietroboni AM, Carandini T, Colombi A, Mercurio M, Ghezzi L, Giulietti G, et al. Amyloid PET as a marker of normal-appearing white matter early damage in multiple sclerosis: correlation with CSF β-amyloid levels and brain volumes. Eur J Nucl Med Mol Imaging [Internet]. European Journal of Nuclear Medicine and Molecular Imaging; 2019;46:280–7. Available from: http://​link.​springer.​com/​10.​1007/​s00259-018-4182-1.CrossRef
20.
go back to reference Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T, et al. Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study. Ann Neurol. 2006;60:145–7.CrossRef Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T, et al. Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study. Ann Neurol. 2006;60:145–7.CrossRef
21.
go back to reference Scheinin NM, Tolvanen TK, Wilson IA, Arponen EM, Någren KA, Rinne JO. Biodistribution and radiation dosimetry of the amyloid imaging agent 11C-PIB in humans. J Nucl Med. 2007;48:128–33.PubMed Scheinin NM, Tolvanen TK, Wilson IA, Arponen EM, Någren KA, Rinne JO. Biodistribution and radiation dosimetry of the amyloid imaging agent 11C-PIB in humans. J Nucl Med. 2007;48:128–33.PubMed
22.
go back to reference Veronese M, Bodini B, García-Lorenzo D, Battaglini M, Bongarzone S, Comtat C, et al. Quantification of [11C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography. J Cereb Blood Flow Metab. 2015;35:1771–82.CrossRef Veronese M, Bodini B, García-Lorenzo D, Battaglini M, Bongarzone S, Comtat C, et al. Quantification of [11C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography. J Cereb Blood Flow Metab. 2015;35:1771–82.CrossRef
24.
go back to reference Nelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med Off Publ Soc Nucl Med. 2009;50:1251–9. Nelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med Off Publ Soc Nucl Med. 2009;50:1251–9.
25.
go back to reference Verdurand M, Bort G, Tadino V, Bonnefoi F, Le Bars D, Zimmer L. Automated radiosynthesis of the Pittsburg compound-B using a commercial synthesizer. Nucl Med Commun. 2008;29:920–6.CrossRef Verdurand M, Bort G, Tadino V, Bonnefoi F, Le Bars D, Zimmer L. Automated radiosynthesis of the Pittsburg compound-B using a commercial synthesizer. Nucl Med Commun. 2008;29:920–6.CrossRef
27.
go back to reference Auvity S, Caillé F, Marie S, Wimberley C, Bauer M, Langer O, et al. P-glycoprotein (ABCB1) inhibits the influx and increases the efflux of 11C-metoclopramide across the blood-brain barrier: a PET study on nonhuman primates. J Nucl Med Off Publ Soc Nucl Med. 2018;59:1609–15. Auvity S, Caillé F, Marie S, Wimberley C, Bauer M, Langer O, et al. P-glycoprotein (ABCB1) inhibits the influx and increases the efflux of 11C-metoclopramide across the blood-brain barrier: a PET study on nonhuman primates. J Nucl Med Off Publ Soc Nucl Med. 2018;59:1609–15.
28.
go back to reference Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, et al. Plasma radiometabolite correction in dynamic PET studies: insights on the available modeling approaches. J Cereb Blood Flow Metab [Internet]. SAGE Publications; 2016 [cited 2016 Feb 15];36:326–39. Available from: http://jcb.sagepub.com/content/36/2/326.full. Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, et al. Plasma radiometabolite correction in dynamic PET studies: insights on the available modeling approaches. J Cereb Blood Flow Metab [Internet]. SAGE Publications; 2016 [cited 2016 Feb 15];36:326–39. Available from: http://​jcb.​sagepub.​com/​content/​36/​2/​326.​full.
31.
go back to reference Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–44.CrossRef Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–44.CrossRef
32.
35.
go back to reference Ganzetti M, Wenderoth N, Mantini D. Whole brain myelin mapping using T1- and T2-weighted MR imaging data. Front Hum Neurosci. 2014;8:671.CrossRef Ganzetti M, Wenderoth N, Mantini D. Whole brain myelin mapping using T1- and T2-weighted MR imaging data. Front Hum Neurosci. 2014;8:671.CrossRef
Metadata
Title
Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB
Authors
Sylvain Auvity
Matteo Tonietto
Fabien Caillé
Benedetta Bodini
Michel Bottlaender
Nicolas Tournier
Bertrand Kuhnast
Bruno Stankoff
Publication date
01-02-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 2/2020
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-019-04516-z

Other articles of this Issue 2/2020

European Journal of Nuclear Medicine and Molecular Imaging 2/2020 Go to the issue