Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2021

01-01-2021 | Multiple Sclerosis | Neurophthalmology

Ocular fixation and macular integrity by microperimetry in multiple sclerosis

Authors: Amparo Gil-Casas, David P. Piñero Llorens, Ainhoa Molina-Martin

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2021

Login to get access

Abstract

Purpose

To characterize the fixation and macular integrity of subjects with multiple sclerosis (MS) with and without previous optic neuritis (ON) using microperimetry (MP).

Methods

Fifty-five eyes of MS patients, subdivided into three groups (28 eyes without ON, 16 with previous ON, and 11 eyes with previous ON in the contralateral eye), and 43 healthy eyes were enrolled (January–November 2018). All cases were evaluated using the MAIA microperimeter (Centervue), analyzing the following parameters: average macular threshold (AT), fixation indexes (P1 and P2), bivariate contour ellipse area (BCEA) for 95% and 63% of points, and horizontal (H) and vertical (V) axes of the ellipse of fixation.

Results

All MS groups showed a significant reduced AT compared with the control group (p < 0.001). This reduction was more representative (p < 0.001) in eyes with previous ON. No statistically significant differences were found between MS patients with and without previous ON (p > 0.05). Mean AT was correlated with the examination time in all three groups (between ρ = − 0.798 p < 0.001 and ρ = − 0.49 p < 0.001). Significant differences in fixation parameters were only found between control and MS with ON groups (p < 0.02). The ratio of the disease showed a significant correlation with fixation parameters in MS groups (p < 0.02), but not with AT.

Conclusions

In MS patients, macular sensitivity is altered, especially in eyes with previous ON. Likewise, a fixational instability is present in MS patients with ON, with more increase of the V axis of the fixation area than of the H. The ratio of the disease also affects the patient fixation pattern.
Literature
1.
go back to reference Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis. Am Acad Neurol 83:278–286 Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis. Am Acad Neurol 83:278–286
2.
go back to reference Serra A, Chisari CG, Matta M (2018) Eye movement abnormalities in multiple sclerosis: pathogenesis, modeling, and treatment. Front Neurol 9:31CrossRef Serra A, Chisari CG, Matta M (2018) Eye movement abnormalities in multiple sclerosis: pathogenesis, modeling, and treatment. Front Neurol 9:31CrossRef
3.
go back to reference Pozzilli C, Tomassini V, Marinelli F, Paolillo A, Gasperini C, Bastianello S (2003) “Gender gap” in multiple sclerosis: magnetic resonance imaging evidence. Eur J Neurol 10:95–97CrossRef Pozzilli C, Tomassini V, Marinelli F, Paolillo A, Gasperini C, Bastianello S (2003) “Gender gap” in multiple sclerosis: magnetic resonance imaging evidence. Eur J Neurol 10:95–97CrossRef
4.
go back to reference Galetta KM, Balcer LJ (2013) Measures of visual pathway structure and function in MS: clinical usefulness and role for MS trials. Mult Scler Relat Disord 2:172–182CrossRef Galetta KM, Balcer LJ (2013) Measures of visual pathway structure and function in MS: clinical usefulness and role for MS trials. Mult Scler Relat Disord 2:172–182CrossRef
5.
go back to reference Villoslada P, Cuneo A, Gelfand J, Hauser SL, Green A (2012) Color vision is strongly associated with retinal thinning in multiple sclerosis. Mult Scler 18:991–999CrossRef Villoslada P, Cuneo A, Gelfand J, Hauser SL, Green A (2012) Color vision is strongly associated with retinal thinning in multiple sclerosis. Mult Scler 18:991–999CrossRef
6.
go back to reference Cheng H, Laron M, Schiffman JS, Tang RA, Frishman LJ (2007) The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. Invest Ophthalmol Vis Sci 48:5798–5805CrossRef Cheng H, Laron M, Schiffman JS, Tang RA, Frishman LJ (2007) The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. Invest Ophthalmol Vis Sci 48:5798–5805CrossRef
7.
go back to reference Cerovski B, Vidović T, Petricek I et al (2005) Multiple sclerosis and neuro-ophthalmologic manifestations. Coll Antropol 29(Suppl 1):153–158PubMed Cerovski B, Vidović T, Petricek I et al (2005) Multiple sclerosis and neuro-ophthalmologic manifestations. Coll Antropol 29(Suppl 1):153–158PubMed
8.
go back to reference Bhatia I, Lukhmana S, Singh D, Menon V, Sharma P, Saxena R (2016) Microperimetry in optic neuritis. Ophthalmol Open J 1:21–28CrossRef Bhatia I, Lukhmana S, Singh D, Menon V, Sharma P, Saxena R (2016) Microperimetry in optic neuritis. Ophthalmol Open J 1:21–28CrossRef
9.
go back to reference Chan JW (2002) Optic neuritis in multiple sclerosis. Ocul Immunol Inflamm 10:161–186CrossRef Chan JW (2002) Optic neuritis in multiple sclerosis. Ocul Immunol Inflamm 10:161–186CrossRef
10.
go back to reference Molina-Martín A, Pérez-Cambrodí RJ, Piñero DP (2018) Current clinical application of Microperimetry: a review. Semin Ophthalmol 33:620–628CrossRef Molina-Martín A, Pérez-Cambrodí RJ, Piñero DP (2018) Current clinical application of Microperimetry: a review. Semin Ophthalmol 33:620–628CrossRef
11.
go back to reference Markowitz SN, Reyes SV (2013) Microperimetry and clinical practice: an evidence-based review. Can J Ophthalmol 48:350–357CrossRef Markowitz SN, Reyes SV (2013) Microperimetry and clinical practice: an evidence-based review. Can J Ophthalmol 48:350–357CrossRef
12.
go back to reference Molina-Martín A, Piñero DP, Pérez-Cambrodí RJ (2015) Decreased perifoveal sensitivity detected by microperimetry in patients using hydroxychloroquine and without visual field and fundoscopic anomalies. J Ophthalmol 2015:10–13CrossRef Molina-Martín A, Piñero DP, Pérez-Cambrodí RJ (2015) Decreased perifoveal sensitivity detected by microperimetry in patients using hydroxychloroquine and without visual field and fundoscopic anomalies. J Ophthalmol 2015:10–13CrossRef
13.
go back to reference Tarita-Nistor L, González EG, Markowitz SN, Steinbach SM (2008) Fixation characteristics of patients with macular degeneration recorded with the mp-1 microperimeter. Retina 28:125–133CrossRef Tarita-Nistor L, González EG, Markowitz SN, Steinbach SM (2008) Fixation characteristics of patients with macular degeneration recorded with the mp-1 microperimeter. Retina 28:125–133CrossRef
14.
go back to reference Montesano G, Gervasoni A, Ferri P et al (2017) Structure-function relationship in early diabetic retinopathy: a spatial correlation analysis with OCT and microperimetry. Eye 31:931–939CrossRef Montesano G, Gervasoni A, Ferri P et al (2017) Structure-function relationship in early diabetic retinopathy: a spatial correlation analysis with OCT and microperimetry. Eye 31:931–939CrossRef
15.
go back to reference Sanchez-Dalmau B, Martinez-Lapiscina EH, Torres-Torres R et al (2018) Early retinal atrophy predicts long-term visual impairment after acute optic neuritis. Mult Scler J 24:1196–1204CrossRef Sanchez-Dalmau B, Martinez-Lapiscina EH, Torres-Torres R et al (2018) Early retinal atrophy predicts long-term visual impairment after acute optic neuritis. Mult Scler J 24:1196–1204CrossRef
16.
go back to reference Molina A, Pérez-Cambrodí RJ, Ruiz-Fortes P, Laria C, Piñero DP (2013) Utility of microperimetry in nystagmus: a case report. Can J Ophthalmol 48:103–105CrossRef Molina A, Pérez-Cambrodí RJ, Ruiz-Fortes P, Laria C, Piñero DP (2013) Utility of microperimetry in nystagmus: a case report. Can J Ophthalmol 48:103–105CrossRef
17.
go back to reference Molina-Martín A, Piñero DP, Pérez-Cambrodí RJ (2015) Fixation pattern analysis with microperimetry in nystagmus patients. Can J Ophthalmol 50:413–421CrossRef Molina-Martín A, Piñero DP, Pérez-Cambrodí RJ (2015) Fixation pattern analysis with microperimetry in nystagmus patients. Can J Ophthalmol 50:413–421CrossRef
18.
go back to reference Martín AM, Piñero DP, Pérez-Cambrodí RJ (2017) Normal values for microperimetry with the MAIA microperimeter: sensitivity and fixation analysis in healthy adults and children. Eur J Ophthalmol 27:607–613CrossRef Martín AM, Piñero DP, Pérez-Cambrodí RJ (2017) Normal values for microperimetry with the MAIA microperimeter: sensitivity and fixation analysis in healthy adults and children. Eur J Ophthalmol 27:607–613CrossRef
19.
go back to reference Ioyleva E, Krivosheeva M (2015) Microperimetry in the diagnosis of the first manifestation of optic neuritis in multiple sclerosis. J Neurol Sci 357(2015):e47CrossRef Ioyleva E, Krivosheeva M (2015) Microperimetry in the diagnosis of the first manifestation of optic neuritis in multiple sclerosis. J Neurol Sci 357(2015):e47CrossRef
20.
go back to reference Romano MR, Angi M, Romano F (2007) Macular sensitivity change in multiple sclerosis followed with microperimetry. Eur J Ophthalmol 17:441–444CrossRef Romano MR, Angi M, Romano F (2007) Macular sensitivity change in multiple sclerosis followed with microperimetry. Eur J Ophthalmol 17:441–444CrossRef
21.
go back to reference Mañago MM, Schenkman M, Berliner J, Hebert JR (2017) Gaze stabilization and dynamic visual acuity in people with multiple sclerosis. J Vestib Res 26(5–6):469–477CrossRef Mañago MM, Schenkman M, Berliner J, Hebert JR (2017) Gaze stabilization and dynamic visual acuity in people with multiple sclerosis. J Vestib Res 26(5–6):469–477CrossRef
22.
go back to reference Subramanian PS (2018) Fixation instability: a new measure of neurologic dysfunction in multiple sclerosis. Invest Opthalmol Vis Sci 59:202CrossRef Subramanian PS (2018) Fixation instability: a new measure of neurologic dysfunction in multiple sclerosis. Invest Opthalmol Vis Sci 59:202CrossRef
23.
go back to reference Mallery RM, Poolman P, Thurtell MJ et al (2018) Visual fixation instability in multiple sclerosis measured using SLO-OCT. Invest Opthalmol Vis Sci 59:196CrossRef Mallery RM, Poolman P, Thurtell MJ et al (2018) Visual fixation instability in multiple sclerosis measured using SLO-OCT. Invest Opthalmol Vis Sci 59:196CrossRef
24.
go back to reference Nij Bijvank JA, Petzold A, Coric D et al (2019) Quantification of visual fixation in multiple sclerosis. Invest Opthalmol Vis Sci 60:1372CrossRef Nij Bijvank JA, Petzold A, Coric D et al (2019) Quantification of visual fixation in multiple sclerosis. Invest Opthalmol Vis Sci 60:1372CrossRef
25.
go back to reference Krupp LB, Alvarez LA, LaRocca NG, Scheinberg LC (1988) Fatigue in multiple sclerosis. Arch Neurol 45:435–437CrossRef Krupp LB, Alvarez LA, LaRocca NG, Scheinberg LC (1988) Fatigue in multiple sclerosis. Arch Neurol 45:435–437CrossRef
26.
go back to reference Lima VC, Prata TS, De Moraes CGV et al (2010) A comparison between microperimetry and standard achromatic perimetry of the central visual field in eyes with glaucomatous paracentral visual-field defects. Br J Ophthalmol 94:64–67CrossRef Lima VC, Prata TS, De Moraes CGV et al (2010) A comparison between microperimetry and standard achromatic perimetry of the central visual field in eyes with glaucomatous paracentral visual-field defects. Br J Ophthalmol 94:64–67CrossRef
27.
go back to reference Cennamo G, Romano MR, Vecchio EC et al (2016) Anatomical and functional retinal changes in multiple sclerosis. Eye (Lond) 30:456–462CrossRef Cennamo G, Romano MR, Vecchio EC et al (2016) Anatomical and functional retinal changes in multiple sclerosis. Eye (Lond) 30:456–462CrossRef
28.
go back to reference Bsteh G, Hegen H, Altmann P et al (2020) Validation of inter-eye difference thresholds in optical coherence tomography for identification of optic neuritis in multiple sclerosis. Mult Scler Relat Disord 45:102403CrossRef Bsteh G, Hegen H, Altmann P et al (2020) Validation of inter-eye difference thresholds in optical coherence tomography for identification of optic neuritis in multiple sclerosis. Mult Scler Relat Disord 45:102403CrossRef
29.
go back to reference Davion JB, Lopes R, Drumez É et al (2020) Asymptomatic optic nerve lesions: an underestimated cause of silent retinal atrophy in MS. Neurology 94:2468–2478CrossRef Davion JB, Lopes R, Drumez É et al (2020) Asymptomatic optic nerve lesions: an underestimated cause of silent retinal atrophy in MS. Neurology 94:2468–2478CrossRef
30.
go back to reference Khalil DH, Said MM, Abdelhakim MASE, Labeeb DM (2017) OCT and visual field changes as useful markers for follow-up of axonal loss in multiple sclerosis in Egyptian patients. Ocul Immunol Inflamm 25:315–322CrossRef Khalil DH, Said MM, Abdelhakim MASE, Labeeb DM (2017) OCT and visual field changes as useful markers for follow-up of axonal loss in multiple sclerosis in Egyptian patients. Ocul Immunol Inflamm 25:315–322CrossRef
31.
go back to reference Raz N, Chokron S, Ben-Hur T, Levin N (2013) Temporal reorganization to overcome monocular demyelination. Neurology 81:702–709CrossRef Raz N, Chokron S, Ben-Hur T, Levin N (2013) Temporal reorganization to overcome monocular demyelination. Neurology 81:702–709CrossRef
Metadata
Title
Ocular fixation and macular integrity by microperimetry in multiple sclerosis
Authors
Amparo Gil-Casas
David P. Piñero Llorens
Ainhoa Molina-Martin
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2021
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-020-04948-6

Other articles of this Issue 1/2021

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2021 Go to the issue