Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Multiple Sclerosis | Research

Circulating levels of GDF15 in patients with myalgic encephalomyelitis/chronic fatigue syndrome

Authors: A. Melvin, E. Lacerda, H. M. Dockrell, S. O’Rahilly, L. Nacul

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterised by fatigue and post-exertional malaise. Its pathogenesis is poorly understood. GDF15 is a circulating protein secreted by cells in response to a variety of stressors. The receptor for GDF15 is expressed in the brain, where its activation results in a range of responses. Among the conditions in which circulating GDF15 levels are highly elevated are mitochondrial disorders, where early skeletal muscle fatigue is a key symptom. We hypothesised that GDF15 may represent a marker of cellular stress in ME/CFS.

Methods

GDF15 was measured in serum from patients with ME/CFS (n = 150; 100 with mild/moderate and 50 with severe symptoms), “healthy volunteers” (n = 150) and a cohort of patients with multiple sclerosis (n = 50).

Results

Circulating GDF15 remained stable in a subset of ME/CFS patients when sampled on two occasions ~ 7 months (IQR 6.7–8.8) apart, 720 pg/ml (95% CI 625–816) vs 670 pg/ml (95% CI 598–796), P = 0.5. GDF15 levels were 491 pg/ml in controls (95% CI 429–553), 546 pg/ml (95% CI 478–614) in MS patients, 560 pg/ml (95% CI 502–617) in mild/moderate ME/CFS patients and 602 pg/ml (95% CI 531–674) in severely affected ME/CFS patients. Accounting for potential confounders, severely affected ME/CFS patients had GDF15 concentrations that were significantly increased compared to healthy controls (P = 0.01). GDF15 levels were positively correlated (P = 0.026) with fatigue scores in ME/CFS.

Conclusions

Severe ME/CFS is associated with increased levels of GDF15, a circulating biomarker of cellular stress that appears which stable over several months.
Literature
1.
go back to reference Nacul LC, Lacerda EM, Pheby D, Campion P, Molokhia M, Fayyaz S, Leite JC, Poland F, Howe A, Drachler ML. Prevalence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in three regions of England: a repeated cross-sectional study in primary care. BMC Med. 2011;9(1):91.CrossRef Nacul LC, Lacerda EM, Pheby D, Campion P, Molokhia M, Fayyaz S, Leite JC, Poland F, Howe A, Drachler ML. Prevalence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in three regions of England: a repeated cross-sectional study in primary care. BMC Med. 2011;9(1):91.CrossRef
2.
go back to reference Johnston S, Brenu EW, Staines D, Marshall-Gradisnik S. The prevalence of chronic fatigue syndrome/myalgic encephalomyelitis: a meta-analysis. Clin Epidemiol. 2013;5:105.CrossRef Johnston S, Brenu EW, Staines D, Marshall-Gradisnik S. The prevalence of chronic fatigue syndrome/myalgic encephalomyelitis: a meta-analysis. Clin Epidemiol. 2013;5:105.CrossRef
3.
go back to reference Bakken IJ, Tveito K, Gunnes N, Ghaderi S, Stoltenberg C, Trogstad L, Magnus P. Two age peaks in the incidence of chronic fatigue syndrome/myalgic encephalomyelitis: a population-based registry study from Norway 2008–2012. BMC Med. 2014;12(1):167.PubMedPubMedCentral Bakken IJ, Tveito K, Gunnes N, Ghaderi S, Stoltenberg C, Trogstad L, Magnus P. Two age peaks in the incidence of chronic fatigue syndrome/myalgic encephalomyelitis: a population-based registry study from Norway 2008–2012. BMC Med. 2014;12(1):167.PubMedPubMedCentral
4.
go back to reference Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med. 1994;121(12):953–9.CrossRef Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med. 1994;121(12):953–9.CrossRef
5.
go back to reference Carruthers BM, Jain AK, De Meirleir KL, Peterson DL, Klimas NG, Lerner AM, Bested AC, Flor-Henry P, Joshi P, Powles AP, Sherkey JA. Myalgic encephalomyelitis/chronic fatigue syndrome: clinical working case definition, diagnostic and treatment protocols. J Chronic Fatigue Syndr. 2003;11(1):7–115.CrossRef Carruthers BM, Jain AK, De Meirleir KL, Peterson DL, Klimas NG, Lerner AM, Bested AC, Flor-Henry P, Joshi P, Powles AP, Sherkey JA. Myalgic encephalomyelitis/chronic fatigue syndrome: clinical working case definition, diagnostic and treatment protocols. J Chronic Fatigue Syndr. 2003;11(1):7–115.CrossRef
6.
go back to reference Clayton EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. JAMA. 2015;313(11):1101–2.CrossRef Clayton EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. JAMA. 2015;313(11):1101–2.CrossRef
7.
go back to reference Shepherd DC, Chaudhuri A. ME/CFS/PVFS: an exploration of the key clinical issues. Gawcott: ME Association; 2018. Shepherd DC, Chaudhuri A. ME/CFS/PVFS: an exploration of the key clinical issues. Gawcott: ME Association; 2018.
8.
go back to reference Mensah FK, Bansal AS, Ford B, Cambridge G. Chronic fatigue syndrome and the immune system: where are we now? Clin Neurophysiol. 2017;47(2):131–8.CrossRef Mensah FK, Bansal AS, Ford B, Cambridge G. Chronic fatigue syndrome and the immune system: where are we now? Clin Neurophysiol. 2017;47(2):131–8.CrossRef
9.
go back to reference Cliff JM, King EC, Lee JS, Sepúlveda N, Wolf AS, Kingdon C, Bowman E, Dockrell HM, Nacul LC, Lacerda E, Riley E. Cellular immune function in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Front Immunol. 2019;10:796.CrossRef Cliff JM, King EC, Lee JS, Sepúlveda N, Wolf AS, Kingdon C, Bowman E, Dockrell HM, Nacul LC, Lacerda E, Riley E. Cellular immune function in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Front Immunol. 2019;10:796.CrossRef
11.
go back to reference Nacul L, de Barros B, Kingdon CC, Cliff JM, Clark TG, Mudie K, Dockrell HM, Lacerda EM. Evidence of clinical pathology abnormalities in people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) from an analytic cross-sectional study. Diagnostics. 2019;9(2):41.CrossRef Nacul L, de Barros B, Kingdon CC, Cliff JM, Clark TG, Mudie K, Dockrell HM, Lacerda EM. Evidence of clinical pathology abnormalities in people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) from an analytic cross-sectional study. Diagnostics. 2019;9(2):41.CrossRef
12.
go back to reference Tomas C, Newton J. Metabolic abnormalities in chronic fatigue syndrome/myalgic encephalomyelitis: a mini-review. Biochem Soc Trans. 2018;46(3):547–53.CrossRef Tomas C, Newton J. Metabolic abnormalities in chronic fatigue syndrome/myalgic encephalomyelitis: a mini-review. Biochem Soc Trans. 2018;46(3):547–53.CrossRef
13.
go back to reference Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, Coskun T, Hamang MJ, Sindelar DK, Ballman KK, Foltz LA. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23(10):1215.CrossRef Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, Coskun T, Hamang MJ, Sindelar DK, Ballman KK, Foltz LA. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23(10):1215.CrossRef
14.
go back to reference Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, Beck SC, South VJ, Dinh TQ, Cash-Mason TD, Cavanaugh CR. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 2017;23(10):1150.CrossRef Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, Beck SC, South VJ, Dinh TQ, Cash-Mason TD, Cavanaugh CR. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 2017;23(10):1150.CrossRef
15.
go back to reference Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, Wu X, Huang T, Hultman K, Paulsen SJ, Wang J. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158.CrossRef Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, Wu X, Huang T, Hultman K, Paulsen SJ, Wang J. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158.CrossRef
16.
go back to reference O’Rahilly S. GDF15—from biomarker to allostatic hormone. Cell Metab. 2017;26(6):807–8.CrossRef O’Rahilly S. GDF15—from biomarker to allostatic hormone. Cell Metab. 2017;26(6):807–8.CrossRef
17.
go back to reference Tsai VW, Husaini Y, Sainsbury A, Brown DA, Breit SN. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 2018;28(3):353–68.CrossRef Tsai VW, Husaini Y, Sainsbury A, Brown DA, Breit SN. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 2018;28(3):353–68.CrossRef
18.
go back to reference Kleinert M, Clemmensen C, Sjøberg KA, Carl CS, Jeppesen JF, Wojtaszewski JF, Kiens B, Richter EA. Exercise increases circulating GDF15 in humans. Mol Metab. 2018;1(9):187–91.CrossRef Kleinert M, Clemmensen C, Sjøberg KA, Carl CS, Jeppesen JF, Wojtaszewski JF, Kiens B, Richter EA. Exercise increases circulating GDF15 in humans. Mol Metab. 2018;1(9):187–91.CrossRef
19.
go back to reference Macia L, Tsai VW, Nguyen AD, Johnen H, Kuffner T, Shi YC, Lin S, Herzog H, Brown DA, Breit SN, Sainsbury A. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS ONE. 2012;7(4):e34868.CrossRef Macia L, Tsai VW, Nguyen AD, Johnen H, Kuffner T, Shi YC, Lin S, Herzog H, Brown DA, Breit SN, Sainsbury A. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS ONE. 2012;7(4):e34868.CrossRef
20.
go back to reference Tsai VW, Macia L, Johnen H, Kuffner T, Manadhar R, Jørgensen SB, Lee-Ng KK, Zhang HP, Wu L, Marquis CP, Jiang L. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS ONE. 2013;8(2):e55174.CrossRef Tsai VW, Macia L, Johnen H, Kuffner T, Manadhar R, Jørgensen SB, Lee-Ng KK, Zhang HP, Wu L, Marquis CP, Jiang L. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS ONE. 2013;8(2):e55174.CrossRef
21.
go back to reference Lacerda EM, Mudie K, Kingdon CC, Butterworth JD, O’Boyle S, Nacul L. The UK ME/CFS Biobank: a disease-specific biobank for advancing clinical research into myalgic encephalomyelitis/chronic fatigue syndrome. Front Neurol. 2018;9:1026.CrossRef Lacerda EM, Mudie K, Kingdon CC, Butterworth JD, O’Boyle S, Nacul L. The UK ME/CFS Biobank: a disease-specific biobank for advancing clinical research into myalgic encephalomyelitis/chronic fatigue syndrome. Front Neurol. 2018;9:1026.CrossRef
23.
go back to reference UK NCGC. Modifiable risk factors for relapse or progression of MS. In Multiple sclerosis: management of multiple sclerosis in primary and secondary care 2014 Oct. National Institute for Health and Care Excellence (UK). UK NCGC. Modifiable risk factors for relapse or progression of MS. In Multiple sclerosis: management of multiple sclerosis in primary and secondary care 2014 Oct. National Institute for Health and Care Excellence (UK).
24.
go back to reference Ware JE. User’s manual for the SF-36v2 health survey. Quality Metric: Lincoln; 2007. Ware JE. User’s manual for the SF-36v2 health survey. Quality Metric: Lincoln; 2007.
25.
26.
go back to reference Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3.CrossRef Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3.CrossRef
27.
go back to reference Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc Natl Acad Sci. 1997;94(21):11514–9.CrossRef Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc Natl Acad Sci. 1997;94(21):11514–9.CrossRef
28.
go back to reference Moore AG, Brown DA, Fairlie WD, Bauskin AR, Brown PK, Munier ML, Russell PK, Salamonsen LA, Wallace EM, Breit SN. The transforming growth factor-β superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. J Clin Endocrinol Metab. 2000;85(12):4781–8.PubMed Moore AG, Brown DA, Fairlie WD, Bauskin AR, Brown PK, Munier ML, Russell PK, Salamonsen LA, Wallace EM, Breit SN. The transforming growth factor-β superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. J Clin Endocrinol Metab. 2000;85(12):4781–8.PubMed
29.
go back to reference Patel S, Alvarez-Guaita A, Melvin A, Rimmington D, Dattilo A, Miedzybrodzka EL, Cimino I, Maurin AC, Roberts GP, Meek CL, Virtue S. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab. 2019;29(3):707–18.CrossRef Patel S, Alvarez-Guaita A, Melvin A, Rimmington D, Dattilo A, Miedzybrodzka EL, Cimino I, Maurin AC, Roberts GP, Meek CL, Virtue S. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab. 2019;29(3):707–18.CrossRef
30.
go back to reference Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, Kang SG, Choi MJ, Lee SE, Jung SB, Ryu MJ. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol. 2017;216(1):149–65.CrossRef Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, Kang SG, Choi MJ, Lee SE, Jung SB, Ryu MJ. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol. 2017;216(1):149–65.CrossRef
31.
go back to reference Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17(10):1374–95.CrossRef Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17(10):1374–95.CrossRef
32.
go back to reference Kalko SG, Paco S, Jou C, Rodríguez MA, Meznaric M, Rogac M, Jekovec-Vrhovsek M, Sciacco M, Moggio M, Fagiolari G, De Paepe B. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics. 2014;15(1):91.CrossRef Kalko SG, Paco S, Jou C, Rodríguez MA, Meznaric M, Rogac M, Jekovec-Vrhovsek M, Sciacco M, Moggio M, Fagiolari G, De Paepe B. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics. 2014;15(1):91.CrossRef
33.
go back to reference Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion. 2015;1(20):34–42.CrossRef Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion. 2015;1(20):34–42.CrossRef
34.
go back to reference Yatsuga S, Fujita Y, Ishii A, Fukumoto Y, Arahata H, Kakuma T, Kojima T, Ito M, Tanaka M, Saiki R, Koga Y. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann Neurol. 2015;78(5):814–23.CrossRef Yatsuga S, Fujita Y, Ishii A, Fukumoto Y, Arahata H, Kakuma T, Kojima T, Ito M, Tanaka M, Saiki R, Koga Y. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann Neurol. 2015;78(5):814–23.CrossRef
35.
go back to reference Montero R, Yubero D, Villarroya J, Henares D, Jou C, Rodríguez MA, Ramos F, Nascimento A, Ortez CI, Campistol J, Perez-Dueñas B. GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS ONE. 2016;11(2):e0148709.CrossRef Montero R, Yubero D, Villarroya J, Henares D, Jou C, Rodríguez MA, Ramos F, Nascimento A, Ortez CI, Campistol J, Perez-Dueñas B. GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS ONE. 2016;11(2):e0148709.CrossRef
36.
go back to reference Fulle S, Pietrangelo T, Mancinelli R, Saggini R, Fano G. Specific correlations between muscle oxidative stress and chronic fatigue syndrome: a working hypothesis. J Muscle Res Cell Motil. 2007;28(6):355–62.CrossRef Fulle S, Pietrangelo T, Mancinelli R, Saggini R, Fano G. Specific correlations between muscle oxidative stress and chronic fatigue syndrome: a working hypothesis. J Muscle Res Cell Motil. 2007;28(6):355–62.CrossRef
37.
go back to reference Ji X, Zhao L, Ji K, Zhao Y, Li W, Zhang R, Hou Y, Lu J, Yan C. Growth differentiation factor 15 is a novel diagnostic biomarker of mitochondrial diseases. Mol Neurobiol. 2017;54(10):8110–6.CrossRef Ji X, Zhao L, Ji K, Zhao Y, Li W, Zhang R, Hou Y, Lu J, Yan C. Growth differentiation factor 15 is a novel diagnostic biomarker of mitochondrial diseases. Mol Neurobiol. 2017;54(10):8110–6.CrossRef
38.
go back to reference Schoeman EM, Van Der Westhuizen FH, Erasmus E, Van Dyk E, Knowles CV, Al-Ali S, Ng WF, Taylor RW, Newton JL, Elson JL. Clinically proven mtDNA mutations are not common in those with chronic fatigue syndrome. BMC Med Genet. 2017;18(1):29.CrossRef Schoeman EM, Van Der Westhuizen FH, Erasmus E, Van Dyk E, Knowles CV, Al-Ali S, Ng WF, Taylor RW, Newton JL, Elson JL. Clinically proven mtDNA mutations are not common in those with chronic fatigue syndrome. BMC Med Genet. 2017;18(1):29.CrossRef
40.
go back to reference Sweetman E, Ryan M, Edgar C, MacKay A, Vallings R, Tate W. Changes in the transcriptome of circulating immune cells of a New Zealand cohort with myalgic encephalomyelitis/chronic fatigue syndrome. Int J Immunopathol Pharmacol. 2019;33:2058738418820402.CrossRef Sweetman E, Ryan M, Edgar C, MacKay A, Vallings R, Tate W. Changes in the transcriptome of circulating immune cells of a New Zealand cohort with myalgic encephalomyelitis/chronic fatigue syndrome. Int J Immunopathol Pharmacol. 2019;33:2058738418820402.CrossRef
Metadata
Title
Circulating levels of GDF15 in patients with myalgic encephalomyelitis/chronic fatigue syndrome
Authors
A. Melvin
E. Lacerda
H. M. Dockrell
S. O’Rahilly
L. Nacul
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-02153-6

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.