Skip to main content
Top
Published in: BMC Neurology 1/2022

Open Access 01-12-2022 | Multiple Sclerosis | Case report

Familial multiple sclerosis in patients with Von Hippel-Lindau disease

Authors: Samir R. Nath, Prabhjot Grewal, Thomas Cho, Yang Mao-Draayer

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

Multiple sclerosis (MS) is a progressive autoimmune demyelinating disorder. Recent studies suggest that a combination of genetic susceptibility and environmental insult contributes to its pathogenesis. Many candidate genes have been discovered to modulate susceptibility for developing MS by genome wide association studies (GWAS); these include major histocompatibility complex (MHC) genes and non-MHC genes. MS cases in the context of genetic diseases may provide different approaches and clues towards identifying novel genes and pathways involved in MS pathogenesis. Here, we present a case series of two related patients with concomitant Von Hippel-Lindau disease (VHLD) and MS.

Case presentation

We present two patients, a mother (case 1) and daughter (case 2), who developed superimposed relapsing-remitting multiple sclerosis in the background of the autosomal dominant genetic disorder VHLD. Several tumors characteristic of VHLD developed in both cases with pancreatic and renal neoplasms and cerebellar hemangioblastomas. In addition, both patients developed clinical symptoms consistent with multiple sclerosis, supported by radiologic lesions disseminating in time and space.

Conclusion

Though non-MHC susceptibility genes remain elusive in MS, we present the striking finding of superimposed multiple sclerosis in a mother and daughter with VHLD. The VHL gene is known to be the primary regulator of Nrf2, the well-established target of the FDA-approved therapeutic dimethyl fumarate. These cases provide support for further studies to determine whether VHLD pathway related genes represent a novel genetic link in multiple sclerosis.
Literature
1.
go back to reference Aronow ME, et al. VON HIPPEL-LINDAU DISEASE: update on pathogenesis and systemic aspects. Retina. 2019;39(12):2243–53.CrossRef Aronow ME, et al. VON HIPPEL-LINDAU DISEASE: update on pathogenesis and systemic aspects. Retina. 2019;39(12):2243–53.CrossRef
2.
go back to reference Glasker S, et al. Von Hippel-Lindau disease: current challenges and future prospects. Onco Targets Ther. 2020;13:5669–90.CrossRef Glasker S, et al. Von Hippel-Lindau disease: current challenges and future prospects. Onco Targets Ther. 2020;13:5669–90.CrossRef
3.
go back to reference Maher ER, et al. Von Hippel-Lindau disease: a genetic study. J Med Genet. 1991;28(7):443–7.CrossRef Maher ER, et al. Von Hippel-Lindau disease: a genetic study. J Med Genet. 1991;28(7):443–7.CrossRef
4.
go back to reference Neumann HP, Wiestler OD. Clustering of features and genetics of von Hippel-Lindau syndrome. Lancet. 1991;338(8761):258.CrossRef Neumann HP, Wiestler OD. Clustering of features and genetics of von Hippel-Lindau syndrome. Lancet. 1991;338(8761):258.CrossRef
5.
go back to reference van Leeuwaarde RS, Ahmad S, Links TP, et al. Von Hippel-Lindau Syndrome. 2000 May 17 [Updated 2018 Sep 6]. In: Adam MP, Ardinger HH, Pagon RA, et al., editor. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022. van Leeuwaarde RS, Ahmad S, Links TP, et al. Von Hippel-Lindau Syndrome. 2000 May 17 [Updated 2018 Sep 6]. In: Adam MP, Ardinger HH, Pagon RA, et al., editor. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022.
6.
go back to reference Hacker KE, Lee CM, Rathmell WK. VHL type 2B mutations retain VBC complex form and function. PLoS One. 2008;3(11):e3801.CrossRef Hacker KE, Lee CM, Rathmell WK. VHL type 2B mutations retain VBC complex form and function. PLoS One. 2008;3(11):e3801.CrossRef
7.
go back to reference Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169(5):792–806.CrossRef Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169(5):792–806.CrossRef
8.
go back to reference Ivan M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.CrossRef Ivan M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.CrossRef
9.
go back to reference Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22.CrossRef Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22.CrossRef
10.
go back to reference Canto E, Oksenberg JR. Multiple sclerosis genetics. Mult Scler. 2018;24(1):75–9.CrossRef Canto E, Oksenberg JR. Multiple sclerosis genetics. Mult Scler. 2018;24(1):75–9.CrossRef
11.
go back to reference Dyment DA, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet. 2005;14(14):2019–26.CrossRef Dyment DA, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet. 2005;14(14):2019–26.CrossRef
12.
go back to reference Alcina A, et al. Multiple sclerosis risk variant HLA-DRB1*1501 associates with high expression of DRB1 gene in different human populations. PLoS One. 2012;7(1):e29819.CrossRef Alcina A, et al. Multiple sclerosis risk variant HLA-DRB1*1501 associates with high expression of DRB1 gene in different human populations. PLoS One. 2012;7(1):e29819.CrossRef
13.
go back to reference Caillier SJ, et al. Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. J Immunol. 2008;181(8):5473–80.CrossRef Caillier SJ, et al. Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. J Immunol. 2008;181(8):5473–80.CrossRef
14.
go back to reference Prat E, et al. HLA-DRB5*0101 and -DRB1*1501 expression in the multiple sclerosis-associated HLA-DR15 haplotype. J Neuroimmunol. 2005;167(1–2):108–19.CrossRef Prat E, et al. HLA-DRB5*0101 and -DRB1*1501 expression in the multiple sclerosis-associated HLA-DR15 haplotype. J Neuroimmunol. 2005;167(1–2):108–19.CrossRef
15.
go back to reference International Multiple Sclerosis Genetics, Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460):eaav7188.CrossRef International Multiple Sclerosis Genetics, Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460):eaav7188.CrossRef
16.
go back to reference Ding X, et al. The Daam2-VHL-Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes Dev. 2020;34(17–18):1177–89.CrossRef Ding X, et al. The Daam2-VHL-Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes Dev. 2020;34(17–18):1177–89.CrossRef
17.
go back to reference Lucchinetti C, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.CrossRef Lucchinetti C, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.CrossRef
18.
go back to reference Wheeler MA, et al. MAFG-driven astrocytes promote CNS inflammation. Nature. 2020;578(7796):593–9.CrossRef Wheeler MA, et al. MAFG-driven astrocytes promote CNS inflammation. Nature. 2020;578(7796):593–9.CrossRef
19.
go back to reference Thompson JW, Narayanan SV, Perez-Pinzon MA. Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol. 2012;10(4):354–69.CrossRef Thompson JW, Narayanan SV, Perez-Pinzon MA. Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol. 2012;10(4):354–69.CrossRef
20.
go back to reference Wang Q, et al. Dimethyl fumarate protects neural stem/progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. Int J Mol Sci. 2015;16(6):13885–907.CrossRef Wang Q, et al. Dimethyl fumarate protects neural stem/progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. Int J Mol Sci. 2015;16(6):13885–907.CrossRef
Metadata
Title
Familial multiple sclerosis in patients with Von Hippel-Lindau disease
Authors
Samir R. Nath
Prabhjot Grewal
Thomas Cho
Yang Mao-Draayer
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02604-6

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue