Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Multiple Sclerosis | Research

Cerebrospinal fluid cells immune landscape in multiple sclerosis

Authors: Zijian Li, Yongchao Liu, Aili Jia, Yueran Cui, Juan Feng

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Multiple Sclerosis (MS) is a potentially devastating autoimmune neurological disorder, which characteristically induces demyelination of white matter in the brain and spinal cord.

Methods

In this study, three characteristics of the central nervous system (CNS) immune microenvironment occurring during MS onset were explored; immune cell proportion alteration, differential gene expression profile, and related pathways. The raw data of two independent datasets were obtained from the ArrayExpress database; E-MTAB-69, which was used as a derivation cohort, and E-MTAB-2374 which was used as a validation cohort. Differentially expressed genes (DEGs) were identified by the false discovery rate (FDR) value of < 0.05 and |log2 (Fold Change)|> 1, for further analysis. Then, functional enrichment analyses were performed to explore the pathways associated with MS onset. The gene expression profiles were analyzed using CIBERSORT to identify the immune type alterations involved in MS disease.

Results

After verification, the proportion of five types of immune cells (plasma cells, monocytes, macrophage M2, neutrophils and eosinophils) in cerebrospinal fluid (CSF) were revealed to be significantly altered in MS cases compared to the control group. Thus, the complement and coagulation cascades and the systemic lupus erythematosus (SLE) pathways may play critical roles in MS. We identified NLRP3, LILRB2, C1QB, CD86, C1QA, CSF1R, IL1B and TLR2 as eight core genes correlated with MS.

Conclusions

Our study identified the change in the CNS immune microenvironment of MS cases by analysis of the in silico data using CIBERSORT. Our data may assist in providing directions for further research as to the molecular mechanisms of MS and provide future potential therapeutic targets in treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fabis MJ, Scott GS, Kean RB, Koprowski H, Hooper DC. Loss of blood-brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. Proc Natl Acad Sci USA. 2007;104:5656–61.PubMedCrossRef Fabis MJ, Scott GS, Kean RB, Koprowski H, Hooper DC. Loss of blood-brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. Proc Natl Acad Sci USA. 2007;104:5656–61.PubMedCrossRef
2.
go back to reference Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, et al. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;318:1–7.PubMedCrossRef Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, et al. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;318:1–7.PubMedCrossRef
3.
go back to reference Jackle K, Zeis T, Schaeren-Wiemers N, Junker A, van der Meer F, Kramann N, et al. Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain. 2020;143:2073–88.PubMedCrossRef Jackle K, Zeis T, Schaeren-Wiemers N, Junker A, van der Meer F, Kramann N, et al. Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain. 2020;143:2073–88.PubMedCrossRef
4.
go back to reference Guan H, Singh UP, Rao R, Mrelashvili D, Sen S, Hao H, et al. Inverse correlation of expression of microRNA-140-5p with progression of multiple sclerosis and differentiation of encephalitogenic T helper type 1 cells. Immunology. 2016;147:488–98.PubMedPubMedCentralCrossRef Guan H, Singh UP, Rao R, Mrelashvili D, Sen S, Hao H, et al. Inverse correlation of expression of microRNA-140-5p with progression of multiple sclerosis and differentiation of encephalitogenic T helper type 1 cells. Immunology. 2016;147:488–98.PubMedPubMedCentralCrossRef
5.
go back to reference Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;266:56–63.PubMedCrossRef Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;266:56–63.PubMedCrossRef
6.
go back to reference Moser T, Akgun K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev. 2020;19:102647.PubMedCrossRef Moser T, Akgun K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev. 2020;19:102647.PubMedCrossRef
7.
go back to reference Batchu S. Progressive multiple sclerosis transcriptome deconvolution indicates increased M2 macrophages in inactive lesions. Eur Neurol. 2020;83:433–5.PubMedCrossRef Batchu S. Progressive multiple sclerosis transcriptome deconvolution indicates increased M2 macrophages in inactive lesions. Eur Neurol. 2020;83:433–5.PubMedCrossRef
8.
go back to reference Andalib A, Doulabi H, Najafi M, Tazhibi M, Rezaie A. Expression of chemokine receptors on Th1/Th2 CD4+ lymphocytes in patients with multiple sclerosis. Iran J Immunol. 2011;8:1–10.PubMed Andalib A, Doulabi H, Najafi M, Tazhibi M, Rezaie A. Expression of chemokine receptors on Th1/Th2 CD4+ lymphocytes in patients with multiple sclerosis. Iran J Immunol. 2011;8:1–10.PubMed
10.
go back to reference Ramesh A, Schubert RD, Greenfield AL, Dandekar R, Loudermilk R, Sabatino JJ Jr, et al. A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc Natl Acad Sci USA. 2020;117:22932–43.PubMedCrossRef Ramesh A, Schubert RD, Greenfield AL, Dandekar R, Loudermilk R, Sabatino JJ Jr, et al. A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc Natl Acad Sci USA. 2020;117:22932–43.PubMedCrossRef
11.
go back to reference Jelcic I, Sospedra M, Martin R. When a T cell engages a B cell: novel insights in multiple sclerosis. Swiss Med Wkly. 2020;150:w20330.PubMedCrossRef Jelcic I, Sospedra M, Martin R. When a T cell engages a B cell: novel insights in multiple sclerosis. Swiss Med Wkly. 2020;150:w20330.PubMedCrossRef
12.
go back to reference Bondt M, Hellings N, Opdenakker G, Struyf S. Neutrophils: underestimated players in the pathogenesis of multiple sclerosis (MS). Int J Mol Sci. 2020;21: 1. Bondt M, Hellings N, Opdenakker G, Struyf S. Neutrophils: underestimated players in the pathogenesis of multiple sclerosis (MS). Int J Mol Sci. 2020;21: 1.
13.
go back to reference Link H, Huang YM, Xiao BG. Dendritic cells in experimental allergic encephalomyelitis and multiple sclerosis. J Neuroimmunol. 1999;100:102–10.PubMedCrossRef Link H, Huang YM, Xiao BG. Dendritic cells in experimental allergic encephalomyelitis and multiple sclerosis. J Neuroimmunol. 1999;100:102–10.PubMedCrossRef
14.
go back to reference Elieh-Ali-Komi D, Cao Y. Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Clin Rev Allergy Immunol. 2017;52:436–45.PubMedCrossRef Elieh-Ali-Komi D, Cao Y. Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Clin Rev Allergy Immunol. 2017;52:436–45.PubMedCrossRef
15.
go back to reference Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.PubMedPubMedCentralCrossRef Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.PubMedPubMedCentralCrossRef
16.
go back to reference Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.PubMedPubMedCentralCrossRef Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.PubMedPubMedCentralCrossRef
18.
19.
go back to reference Wang P, Zhang J, He S, Xiao B, Peng X. SLC39A1 contribute to malignant progression and have clinical prognostic impact in gliomas. Cancer Cell Int. 2020;20:573.PubMedPubMedCentralCrossRef Wang P, Zhang J, He S, Xiao B, Peng X. SLC39A1 contribute to malignant progression and have clinical prognostic impact in gliomas. Cancer Cell Int. 2020;20:573.PubMedPubMedCentralCrossRef
20.
go back to reference Chen H, Chen C, Yuan X, Xu W, Yang MQ, Li Q, et al. Identification of immune cell landscape and construction of a novel diagnostic nomogram for Crohn’s Disease. Front Genet. 2020;11:423.PubMedPubMedCentralCrossRef Chen H, Chen C, Yuan X, Xu W, Yang MQ, Li Q, et al. Identification of immune cell landscape and construction of a novel diagnostic nomogram for Crohn’s Disease. Front Genet. 2020;11:423.PubMedPubMedCentralCrossRef
21.
go back to reference Xin Y, Zhang S, Deng Z, Zeng D, Li J, Zhang Y. Identification and verification immune-related regulatory network in acne. Int Immunopharmacol. 2020;89:107083.PubMedCrossRef Xin Y, Zhang S, Deng Z, Zeng D, Li J, Zhang Y. Identification and verification immune-related regulatory network in acne. Int Immunopharmacol. 2020;89:107083.PubMedCrossRef
22.
go back to reference Brynedal B, Khademi M, Wallstrom E, Hillert J, Olsson T, Duvefelt K. Gene expression profiling in multiple sclerosis: a disease of the central nervous system, but with relapses triggered in the periphery? Neurobiol Dis. 2010;37:613–21.PubMedCrossRef Brynedal B, Khademi M, Wallstrom E, Hillert J, Olsson T, Duvefelt K. Gene expression profiling in multiple sclerosis: a disease of the central nervous system, but with relapses triggered in the periphery? Neurobiol Dis. 2010;37:613–21.PubMedCrossRef
23.
go back to reference Muller AM, Jun E, Conlon H, Sadiq SA. Cerebrospinal hepatocyte growth factor levels correlate negatively with disease activity in multiple sclerosis. J Neuroimmunol. 2012;251:80–6.PubMedCrossRef Muller AM, Jun E, Conlon H, Sadiq SA. Cerebrospinal hepatocyte growth factor levels correlate negatively with disease activity in multiple sclerosis. J Neuroimmunol. 2012;251:80–6.PubMedCrossRef
25.
go back to reference Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, et al. ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci. 2020;7:1902880.CrossRef Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, et al. ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci. 2020;7:1902880.CrossRef
26.
go back to reference Hammond JW, Bellizzi MJ, Ware C, Qiu WQ, Saminathan P, Li H, et al. Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav Immun. 2020;87:739–50.PubMedCrossRef Hammond JW, Bellizzi MJ, Ware C, Qiu WQ, Saminathan P, Li H, et al. Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav Immun. 2020;87:739–50.PubMedCrossRef
27.
go back to reference Liu F, Li Z, He X, Yu H, Feng J. Ghrelin Attenuates Neuroinflammation and demyelination in experimental autoimmune encephalomyelitis involving NLRP3 inflammasome signaling pathway and pyroptosis. Front Pharmacol. 2019;10:1320.PubMedPubMedCentralCrossRef Liu F, Li Z, He X, Yu H, Feng J. Ghrelin Attenuates Neuroinflammation and demyelination in experimental autoimmune encephalomyelitis involving NLRP3 inflammasome signaling pathway and pyroptosis. Front Pharmacol. 2019;10:1320.PubMedPubMedCentralCrossRef
28.
go back to reference Wang X, Li B, Liu L, Zhang L, Ma T, Guo L. Nicotinamide adenine dinucleotide treatment alleviates the symptoms of experimental autoimmune encephalomyelitis by activating autophagy and inhibiting the NLRP3 inflammasome. Int Immunopharmacol. 2020;90:107092.PubMedCrossRef Wang X, Li B, Liu L, Zhang L, Ma T, Guo L. Nicotinamide adenine dinucleotide treatment alleviates the symptoms of experimental autoimmune encephalomyelitis by activating autophagy and inhibiting the NLRP3 inflammasome. Int Immunopharmacol. 2020;90:107092.PubMedCrossRef
29.
go back to reference Gutierrez-Miranda B, Gallardo I, Melliou E, Cabero I, Alvarez Y, Magiatis P, et al. Oleacein attenuates the pathogenesis of experimental autoimmune encephalomyelitis through both antioxidant and anti-inflammatory effects. Antioxidants (Basel). 2020;9:1. Gutierrez-Miranda B, Gallardo I, Melliou E, Cabero I, Alvarez Y, Magiatis P, et al. Oleacein attenuates the pathogenesis of experimental autoimmune encephalomyelitis through both antioxidant and anti-inflammatory effects. Antioxidants (Basel). 2020;9:1.
30.
go back to reference Hagan N, Kane JL, Grover D, Woodworth L, Madore C, Saleh J, et al. CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis. 2020;11:904.PubMedPubMedCentralCrossRef Hagan N, Kane JL, Grover D, Woodworth L, Madore C, Saleh J, et al. CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis. 2020;11:904.PubMedPubMedCentralCrossRef
31.
go back to reference Kwilasz AJ, Todd LS, Duran-Malle JC, Schrama AEW, Mitten EH, Larson TA, et al. Experimental autoimmune encephalopathy (EAE)-induced hippocampal neuroinflammation and memory deficits are prevented with the non-opioid TLR2/TLR4 antagonist (+)-naltrexone. Behav Brain Res. 2021;396:112896.PubMedCrossRef Kwilasz AJ, Todd LS, Duran-Malle JC, Schrama AEW, Mitten EH, Larson TA, et al. Experimental autoimmune encephalopathy (EAE)-induced hippocampal neuroinflammation and memory deficits are prevented with the non-opioid TLR2/TLR4 antagonist (+)-naltrexone. Behav Brain Res. 2021;396:112896.PubMedCrossRef
32.
go back to reference Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, Cuzner ML, et al. Expression of costimulatory molecules B7–1 (CD80), B7–2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med. 1995;182:1985–96.PubMedCrossRef Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, Cuzner ML, et al. Expression of costimulatory molecules B7–1 (CD80), B7–2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med. 1995;182:1985–96.PubMedCrossRef
33.
go back to reference Watkins LM, Neal JW, Loveless S, Michailidou I, Ramaglia V, Rees MI, et al. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J Neuroinflammation. 2016;13:161.PubMedPubMedCentralCrossRef Watkins LM, Neal JW, Loveless S, Michailidou I, Ramaglia V, Rees MI, et al. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J Neuroinflammation. 2016;13:161.PubMedPubMedCentralCrossRef
34.
go back to reference Fitzgerald KC, Kim K, Smith MD, Aston SA, Fioravante N, Rothman AM, et al. Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain. 2019;142:2722–36.PubMedPubMedCentralCrossRef Fitzgerald KC, Kim K, Smith MD, Aston SA, Fioravante N, Rothman AM, et al. Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain. 2019;142:2722–36.PubMedPubMedCentralCrossRef
35.
go back to reference Pasinetti GM, Johnson SA, Rozovsky I, Lampert-Etchells M, Morgan DG, Gordon MN, et al. Complement C1qB and C4 mRNAs responses to lesioning in rat brain. Exp Neurol. 1992;118:117–25.PubMedCrossRef Pasinetti GM, Johnson SA, Rozovsky I, Lampert-Etchells M, Morgan DG, Gordon MN, et al. Complement C1qB and C4 mRNAs responses to lesioning in rat brain. Exp Neurol. 1992;118:117–25.PubMedCrossRef
36.
go back to reference Grewal RP, Morgan TE, Finch CE. C1qB and clusterin mRNA increase in association with neurodegeneration in sporadic amyotrophic lateral sclerosis. Neurosci Lett. 1999;271:65–7.PubMedCrossRef Grewal RP, Morgan TE, Finch CE. C1qB and clusterin mRNA increase in association with neurodegeneration in sporadic amyotrophic lateral sclerosis. Neurosci Lett. 1999;271:65–7.PubMedCrossRef
37.
go back to reference Higuchi Y, Shimizu J, Hatanaka M, Kitano E, Kitamura H, Takada H, et al. The identification of a novel splicing mutation in C1qB in a Japanese family with C1q deficiency: a case report. Pediatr Rheumatol Online J. 2013;11:41.PubMedPubMedCentralCrossRef Higuchi Y, Shimizu J, Hatanaka M, Kitano E, Kitamura H, Takada H, et al. The identification of a novel splicing mutation in C1qB in a Japanese family with C1q deficiency: a case report. Pediatr Rheumatol Online J. 2013;11:41.PubMedPubMedCentralCrossRef
38.
go back to reference Radanova M, Vasilev V, Deliyska B, Kishore U, Ikonomov V, Ivanova D. Anti-C1q autoantibodies specific against the globular domain of the C1qB-chain from patient with lupus nephritis inhibit C1q binding to IgG and CRP. Immunobiology. 2012;217:684–91.PubMedCrossRef Radanova M, Vasilev V, Deliyska B, Kishore U, Ikonomov V, Ivanova D. Anti-C1q autoantibodies specific against the globular domain of the C1qB-chain from patient with lupus nephritis inhibit C1q binding to IgG and CRP. Immunobiology. 2012;217:684–91.PubMedCrossRef
39.
go back to reference Peng Y, Chen J, Dai Y, Jiang Y, Qiu W, Gu Y, et al. NLRP3 level in cerebrospinal fluid of patients with neuromyelitis optica spectrum disorders: Increased levels and association with disease severity. Mult Scler Relat Disord. 2019;39:101888.PubMedCrossRef Peng Y, Chen J, Dai Y, Jiang Y, Qiu W, Gu Y, et al. NLRP3 level in cerebrospinal fluid of patients with neuromyelitis optica spectrum disorders: Increased levels and association with disease severity. Mult Scler Relat Disord. 2019;39:101888.PubMedCrossRef
40.
go back to reference Boghozian R, McKenzie BA, Saito LB, Mehta N, Branton WG, Lu J, et al. Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Glia. 2017;65:1590–606.PubMedCrossRef Boghozian R, McKenzie BA, Saito LB, Mehta N, Branton WG, Lu J, et al. Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Glia. 2017;65:1590–606.PubMedCrossRef
41.
go back to reference Malhotra S, Costa C, Eixarch H, Keller CW, Amman L, Martinez-Banaclocha H, et al. NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain. 2020;143:1414–30.PubMedCrossRef Malhotra S, Costa C, Eixarch H, Keller CW, Amman L, Martinez-Banaclocha H, et al. NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain. 2020;143:1414–30.PubMedCrossRef
42.
go back to reference Waschbisch A, Sanderson N, Krumbholz M, Vlad G, Theil D, Schwab S, et al. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. PLoS ONE. 2014;9:e115488.PubMedPubMedCentralCrossRef Waschbisch A, Sanderson N, Krumbholz M, Vlad G, Theil D, Schwab S, et al. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. PLoS ONE. 2014;9:e115488.PubMedPubMedCentralCrossRef
43.
go back to reference Inui T, Kawarai T, Fujita K, Kawamura K, Mitsui T, Orlacchio A, et al. A new CSF1R mutation presenting with an extensive white matter lesion mimicking primary progressive multiple sclerosis. J Neurol Sci. 2013;334:192–5.PubMedCrossRef Inui T, Kawarai T, Fujita K, Kawamura K, Mitsui T, Orlacchio A, et al. A new CSF1R mutation presenting with an extensive white matter lesion mimicking primary progressive multiple sclerosis. J Neurol Sci. 2013;334:192–5.PubMedCrossRef
44.
go back to reference Sundal C, Baker M, Karrenbauer V, Gustavsen M, Bedri S, Glaser A, et al. Hereditary diffuse leukoencephalopathy with spheroids with phenotype of primary progressive multiple sclerosis. Eur J Neurol. 2015;22:328–33.PubMedCrossRef Sundal C, Baker M, Karrenbauer V, Gustavsen M, Bedri S, Glaser A, et al. Hereditary diffuse leukoencephalopathy with spheroids with phenotype of primary progressive multiple sclerosis. Eur J Neurol. 2015;22:328–33.PubMedCrossRef
45.
go back to reference Jafarzadeh A, Nemati M, Khorramdelazad H, Mirshafiey A. The Toll-like Receptor 2 (TLR2)-related immunopathological responses in the multiple sclerosis and experimental autoimmune encephalomyelitis. Iran J Allergy Asthma Immunol. 2019;18:230–50.PubMed Jafarzadeh A, Nemati M, Khorramdelazad H, Mirshafiey A. The Toll-like Receptor 2 (TLR2)-related immunopathological responses in the multiple sclerosis and experimental autoimmune encephalomyelitis. Iran J Allergy Asthma Immunol. 2019;18:230–50.PubMed
46.
go back to reference Noorbakhsh SM, Razavi A, Moghadam NB, Saadat P, Hoseini M, Aghazadeh Z, et al. Effects of guluronic acid (G2013) on gene expression of TLR2, TLR4, MyD88, TNF-alpha and CD52 in multiple sclerosis under in vitro conditions. Immunopharmacol Immunotoxicol. 2019;41:586–90.PubMedCrossRef Noorbakhsh SM, Razavi A, Moghadam NB, Saadat P, Hoseini M, Aghazadeh Z, et al. Effects of guluronic acid (G2013) on gene expression of TLR2, TLR4, MyD88, TNF-alpha and CD52 in multiple sclerosis under in vitro conditions. Immunopharmacol Immunotoxicol. 2019;41:586–90.PubMedCrossRef
47.
go back to reference Fujiwara M, Anstadt EJ, Flynn B, Morse K, Ng C, Paczkowski P, et al. Enhanced TLR2 responses in multiple sclerosis. Clin Exp Immunol. 2018;193:313–26.PubMedPubMedCentralCrossRef Fujiwara M, Anstadt EJ, Flynn B, Morse K, Ng C, Paczkowski P, et al. Enhanced TLR2 responses in multiple sclerosis. Clin Exp Immunol. 2018;193:313–26.PubMedPubMedCentralCrossRef
48.
go back to reference Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci USA. 2010;107:11555–60.PubMedCrossRef Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci USA. 2010;107:11555–60.PubMedCrossRef
49.
go back to reference Wasko NJ, Kulak MH, Paul D, Nicaise AM, Yeung ST, Nichols FC, et al. Systemic TLR2 tolerance enhances central nervous system remyelination. J Neuroinflammation. 2019;16:158.PubMedPubMedCentralCrossRef Wasko NJ, Kulak MH, Paul D, Nicaise AM, Yeung ST, Nichols FC, et al. Systemic TLR2 tolerance enhances central nervous system remyelination. J Neuroinflammation. 2019;16:158.PubMedPubMedCentralCrossRef
50.
go back to reference Monteyne P, Guillaume B, Sindic CJ. B7–1 (CD80), B7–2 (CD86), interleukin-12 and transforming growth factor-beta mRNA expression in CSF and peripheral blood mononuclear cells from multiple sclerosis patients. J Neuroimmunol. 1998;91:198–203.PubMedCrossRef Monteyne P, Guillaume B, Sindic CJ. B7–1 (CD80), B7–2 (CD86), interleukin-12 and transforming growth factor-beta mRNA expression in CSF and peripheral blood mononuclear cells from multiple sclerosis patients. J Neuroimmunol. 1998;91:198–203.PubMedCrossRef
51.
go back to reference Sellebjerg F, Jensen J, Ryder LP. Costimulatory CD80 (B7–1) and CD86 (B7–2) on cerebrospinal fluid cells in multiple sclerosis. J Neuroimmunol. 1998;84:179–87.PubMedCrossRef Sellebjerg F, Jensen J, Ryder LP. Costimulatory CD80 (B7–1) and CD86 (B7–2) on cerebrospinal fluid cells in multiple sclerosis. J Neuroimmunol. 1998;84:179–87.PubMedCrossRef
52.
go back to reference Zhao C, Inoue J, Imoto I, Otsuki T, Iida S, Ueda R, et al. POU2AF1, an amplification target at 11q23, promotes growth of multiple myeloma cells by directly regulating expression of a B-cell maturation factor, TNFRSF17. Oncogene. 2008;27:63–75.PubMedCrossRef Zhao C, Inoue J, Imoto I, Otsuki T, Iida S, Ueda R, et al. POU2AF1, an amplification target at 11q23, promotes growth of multiple myeloma cells by directly regulating expression of a B-cell maturation factor, TNFRSF17. Oncogene. 2008;27:63–75.PubMedCrossRef
53.
go back to reference Cai H, Zhu XD, Ao JY, Ye BG, Zhang YY, Chai ZT, et al. Colony-stimulating factor-1-induced AIF1 expression in tumor-associated macrophages enhances the progression of hepatocellular carcinoma. Oncoimmunology. 2017;6:e1333213.PubMedPubMedCentralCrossRef Cai H, Zhu XD, Ao JY, Ye BG, Zhang YY, Chai ZT, et al. Colony-stimulating factor-1-induced AIF1 expression in tumor-associated macrophages enhances the progression of hepatocellular carcinoma. Oncoimmunology. 2017;6:e1333213.PubMedPubMedCentralCrossRef
54.
55.
go back to reference Magliozzi R, Hametner S, Facchiano F, Marastoni D, Rossi S, Castellaro M, et al. Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Ann Clin Transl Neurol. 2019;6:2150–63.PubMedPubMedCentralCrossRef Magliozzi R, Hametner S, Facchiano F, Marastoni D, Rossi S, Castellaro M, et al. Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Ann Clin Transl Neurol. 2019;6:2150–63.PubMedPubMedCentralCrossRef
56.
go back to reference Koudriavtseva T, Stefanile A, Fiorelli M, Lapucci C, Lorenzano S, Zannino S, et al. Coagulation/complement activation and cerebral hypoperfusion in relapsing-remitting multiple sclerosis. Front Immunol. 2020;11:548604.PubMedPubMedCentralCrossRef Koudriavtseva T, Stefanile A, Fiorelli M, Lapucci C, Lorenzano S, Zannino S, et al. Coagulation/complement activation and cerebral hypoperfusion in relapsing-remitting multiple sclerosis. Front Immunol. 2020;11:548604.PubMedPubMedCentralCrossRef
Metadata
Title
Cerebrospinal fluid cells immune landscape in multiple sclerosis
Authors
Zijian Li
Yongchao Liu
Aili Jia
Yueran Cui
Juan Feng
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02804-7

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.