Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Multiple Sclerosis | Review

Optical coherence tomography angiography measurements in multiple sclerosis: a systematic review and meta-analysis

Authors: Soheil Mohammadi, Mahdi Gouravani, Mohammad Amin Salehi, J. Fernando Arevalo, Steven L. Galetta, Hamid Harandi, Elliot M. Frohman, Teresa C. Frohman, Shiv Saidha, Neda Sattarnezhad, Friedemann Paul

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Background and objectives

Recent literature on multiple sclerosis (MS) demonstrates the growing implementation of optical coherence tomography–angiography (OCT-A) to discover potential qualitative and quantitative changes in the retina and optic nerve. In this review, we analyze OCT-A studies in patients with MS and examine its utility as a surrogate or precursor to changes in central nervous system tissue.

Methods

PubMed and EMBASE were systematically searched to identify articles that applied OCT-A to evaluate the retinal microvasculature measurements in patients with MS. Quantitative data synthesis was performed on all measurements which were evaluated in at least two unique studies with the same OCT-A devices, software, and study population compared to controls. A fixed-effects or random-effects model was applied for the meta-analysis based on the heterogeneity level.

Results

The study selection process yielded the inclusion of 18 studies with a total of 1552 evaluated eyes in 673 MS-associated optic neuritis (MSON) eyes, 741 MS without optic neuritis (MSNON eyes), and 138 eyes without specification for the presence of optic neuritis (ON) in addition to 1107 healthy control (HC) eyes. Results indicated that MS cases had significantly decreased whole image superficial capillary plexus (SCP) vessel density when compared to healthy control subjects in the analyses conducted on Optovue and Topcon studies (both P < 0.0001). Likewise, the whole image vessel densities of deep capillary plexus (DCP) and radial peripapillary capillary (RPC) were significantly lower in MS cases compared to HC (all P < 0.05). Regarding optic disc area quadrants, MSON eyes had significantly decreased mean RPC vessel density compared to MSNON eyes in all quadrants except for the inferior (all P < 0.05). Results of the analysis of studies that used prototype Axsun machine revealed that MSON and MSNON eyes both had significantly lower ONH flow index compared to HC (both P < 0.0001).

Conclusions

This systematic review and meta-analysis of the studies reporting OCT-A measurements of people with MS confirmed the tendency of MS eyes to exhibit reduced vessel density in the macular and optic disc areas, mainly in SCP, DCP, and RPC vessel densities.
Appendix
Available only for authorised users
Literature
1.
go back to reference Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Prim. 2018;4:43.PubMedCrossRef Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Prim. 2018;4:43.PubMedCrossRef
2.
go back to reference Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. Handb Clin Neurol. 2014;122:231–66.PubMedCrossRef Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. Handb Clin Neurol. 2014;122:231–66.PubMedCrossRef
3.
go back to reference Weiner HL. Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. Arch Neurol. 2004;61:1613–5.PubMedCrossRef Weiner HL. Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. Arch Neurol. 2004;61:1613–5.PubMedCrossRef
4.
go back to reference Martinez Sosa S, Smith KJ. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci (Lond). 2017;131:2503–24.PubMedCrossRef Martinez Sosa S, Smith KJ. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci (Lond). 2017;131:2503–24.PubMedCrossRef
6.
go back to reference Papp V, Magyari M, Aktas O, Berger T, Broadley SA, Cabre P, et al. Worldwide incidence and prevalence of neuromyelitis optica. Neurology. 2021;96:59–77.PubMedPubMedCentral Papp V, Magyari M, Aktas O, Berger T, Broadley SA, Cabre P, et al. Worldwide incidence and prevalence of neuromyelitis optica. Neurology. 2021;96:59–77.PubMedPubMedCentral
7.
go back to reference London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53.PubMedCrossRef London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53.PubMedCrossRef
8.
go back to reference Kleerekooper I, Houston S, Dubis AM, Trip SA, Petzold A. Optical coherence tomography angiography (OCTA) in multiple sclerosis and neuromyelitis optica spectrum disorder. Front Neurol. 2020;11: 604049.PubMedPubMedCentralCrossRef Kleerekooper I, Houston S, Dubis AM, Trip SA, Petzold A. Optical coherence tomography angiography (OCTA) in multiple sclerosis and neuromyelitis optica spectrum disorder. Front Neurol. 2020;11: 604049.PubMedPubMedCentralCrossRef
9.
go back to reference Rifai OM, McGrory S, Robbins CB, Grewal DS, Liu A, Fekrat S, et al. The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review. Alzheimer’s Dement (Amsterdam, Netherlands). 2021;13: e12149. Rifai OM, McGrory S, Robbins CB, Grewal DS, Liu A, Fekrat S, et al. The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review. Alzheimer’s Dement (Amsterdam, Netherlands). 2021;13: e12149.
10.
go back to reference Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017;16:797–812.PubMedCrossRef Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017;16:797–812.PubMedCrossRef
11.
go back to reference Oertel FC, Specovius S, Zimmermann HG, Chien C, Motamedi S, Bereuter C, et al. Retinal optical coherence tomography in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1068.PubMedPubMedCentralCrossRef Oertel FC, Specovius S, Zimmermann HG, Chien C, Motamedi S, Bereuter C, et al. Retinal optical coherence tomography in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1068.PubMedPubMedCentralCrossRef
12.
go back to reference Oertel FC, Sotirchos ES, Zimmermann HG, Motamedi S, Specovius S, Asseyer ES, et al. Longitudinal retinal changes in MOGAD. Ann Neurol. 2022;92:476–85.PubMedCrossRef Oertel FC, Sotirchos ES, Zimmermann HG, Motamedi S, Specovius S, Asseyer ES, et al. Longitudinal retinal changes in MOGAD. Ann Neurol. 2022;92:476–85.PubMedCrossRef
14.
go back to reference Soelberg K, Jarius S, Skejoe H, Engberg H, Mehlsen JJ, Nilsson AC, et al. A population-based prospective study of optic neuritis. Mult Scler. 2017;23:1893–901.PubMedCrossRef Soelberg K, Jarius S, Skejoe H, Engberg H, Mehlsen JJ, Nilsson AC, et al. A population-based prospective study of optic neuritis. Mult Scler. 2017;23:1893–901.PubMedCrossRef
17.
go back to reference Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12:154–69.PubMedCrossRef Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12:154–69.PubMedCrossRef
18.
go back to reference Kleerekooper I, Petzold A, Trip SA. Anterior visual system imaging to investigate energy failure in multiple sclerosis. Brain. 2020;143:1999–2008.PubMedCrossRef Kleerekooper I, Petzold A, Trip SA. Anterior visual system imaging to investigate energy failure in multiple sclerosis. Brain. 2020;143:1999–2008.PubMedCrossRef
19.
go back to reference Jiang H, Delgado S, Tan J, Liu C, Rammohan KW, DeBuc DC, et al. Impaired retinal microcirculation in multiple sclerosis. Mult Scler. 2016;22:1812–20.PubMedPubMedCentralCrossRef Jiang H, Delgado S, Tan J, Liu C, Rammohan KW, DeBuc DC, et al. Impaired retinal microcirculation in multiple sclerosis. Mult Scler. 2016;22:1812–20.PubMedPubMedCentralCrossRef
20.
go back to reference Chen T-C, Yeh C-Y, Lin C-W, Yang C-M, Yang C-H, Lin I-H, et al. Vascular hypoperfusion in acute optic neuritis is a potentially new neurovascular model for demyelinating diseases. PLoS ONE. 2017;12: e0184927.PubMedPubMedCentralCrossRef Chen T-C, Yeh C-Y, Lin C-W, Yang C-M, Yang C-H, Lin I-H, et al. Vascular hypoperfusion in acute optic neuritis is a potentially new neurovascular model for demyelinating diseases. PLoS ONE. 2017;12: e0184927.PubMedPubMedCentralCrossRef
21.
go back to reference Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.PubMedCrossRef Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.PubMedCrossRef
22.
go back to reference Murphy OC, Kwakyi O, Iftikhar M, Zafar S, Lambe J, Pellegrini N, et al. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler. 2020;26:815–28.PubMedCrossRef Murphy OC, Kwakyi O, Iftikhar M, Zafar S, Lambe J, Pellegrini N, et al. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler. 2020;26:815–28.PubMedCrossRef
23.
go back to reference Marignier R, Hacohen Y, Cobo-Calvo A, Pröbstel A-K, Aktas O, Alexopoulos H, et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 2021;20:762–72.PubMedCrossRef Marignier R, Hacohen Y, Cobo-Calvo A, Pröbstel A-K, Aktas O, Alexopoulos H, et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 2021;20:762–72.PubMedCrossRef
24.
go back to reference Denis M, Woillez J-P, Smirnov VM, Drumez E, Lannoy J, Boucher J, et al. Optic nerve lesion length at the acute phase of optic neuritis is predictive of retinal neuronal loss. Neurol Neuroimmunol Neuroinflamm. 2022;9: e1135.PubMedPubMedCentralCrossRef Denis M, Woillez J-P, Smirnov VM, Drumez E, Lannoy J, Boucher J, et al. Optic nerve lesion length at the acute phase of optic neuritis is predictive of retinal neuronal loss. Neurol Neuroimmunol Neuroinflamm. 2022;9: e1135.PubMedPubMedCentralCrossRef
25.
go back to reference Akaishi T, Takahashi T, Misu T, Abe M, Ishii T, Fujimori J, et al. Progressive patterns of neurological disability in multiple sclerosis and neuromyelitis optica spectrum disorders. Sci Rep. 2020;10:13890.PubMedPubMedCentralCrossRef Akaishi T, Takahashi T, Misu T, Abe M, Ishii T, Fujimori J, et al. Progressive patterns of neurological disability in multiple sclerosis and neuromyelitis optica spectrum disorders. Sci Rep. 2020;10:13890.PubMedPubMedCentralCrossRef
26.
go back to reference Chen JJ, AbouChehade JE, Iezzi RJ, Leavitt JA, Kardon RH. Optical coherence angiographic demonstration of retinal changes from chronic optic neuropathies. Neuroophthalmology. 2017;41:76–83.PubMedPubMedCentralCrossRef Chen JJ, AbouChehade JE, Iezzi RJ, Leavitt JA, Kardon RH. Optical coherence angiographic demonstration of retinal changes from chronic optic neuropathies. Neuroophthalmology. 2017;41:76–83.PubMedPubMedCentralCrossRef
27.
go back to reference Graves JS, Oertel FC, Van der Walt A, Collorone S, Sotirchos ES, Pihl-Jensen G, et al. Leveraging visual outcome measures to advance therapy development in neuroimmunologic disorders. Neurol Neuroimmunol Neuroinflamm. 2022;9: e1126.PubMedCrossRef Graves JS, Oertel FC, Van der Walt A, Collorone S, Sotirchos ES, Pihl-Jensen G, et al. Leveraging visual outcome measures to advance therapy development in neuroimmunologic disorders. Neurol Neuroimmunol Neuroinflamm. 2022;9: e1126.PubMedCrossRef
28.
go back to reference Oertel FC, Zimmermann H, Paul F, Brandt AU. Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J. 2018;9:21–33.PubMedCrossRef Oertel FC, Zimmermann H, Paul F, Brandt AU. Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J. 2018;9:21–33.PubMedCrossRef
29.
go back to reference Liu C, Xiao H, Zhang X, Zhao Y, Li R, Zhong X, et al. Optical coherence tomography angiography helps distinguish multiple sclerosis from AQP4-IgG-seropositive neuromyelitis optica spectrum disorder. Brain Behav. 2021;11: e02125.PubMedPubMedCentralCrossRef Liu C, Xiao H, Zhang X, Zhao Y, Li R, Zhong X, et al. Optical coherence tomography angiography helps distinguish multiple sclerosis from AQP4-IgG-seropositive neuromyelitis optica spectrum disorder. Brain Behav. 2021;11: e02125.PubMedPubMedCentralCrossRef
30.
go back to reference Pache F, Zimmermann H, Mikolajczak J, Schumacher S, Lacheta A, Oertel FC, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflamm. 2016;13:1–10.CrossRef Pache F, Zimmermann H, Mikolajczak J, Schumacher S, Lacheta A, Oertel FC, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflamm. 2016;13:1–10.CrossRef
31.
go back to reference Lanzillo R, Cennamo G, Criscuolo C, Carotenuto A, Velotti N, Sparnelli F, et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler. 2018;24:1706–14.PubMedCrossRef Lanzillo R, Cennamo G, Criscuolo C, Carotenuto A, Velotti N, Sparnelli F, et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler. 2018;24:1706–14.PubMedCrossRef
32.
go back to reference Tewarie P, Balk L, Costello F, Green A, Martin R, Schippling S, et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE. 2012;7: e34823.PubMedPubMedCentralCrossRef Tewarie P, Balk L, Costello F, Green A, Martin R, Schippling S, et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE. 2012;7: e34823.PubMedPubMedCentralCrossRef
33.
go back to reference Petzold A, Albrecht P, Balcer L, Bekkers E, Brandt AU, Calabresi PA, et al. Artificial intelligence extension of the OSCAR-IB criteria. Ann Clin Transl Neurol. 2021;8:1528–42.PubMedPubMedCentralCrossRef Petzold A, Albrecht P, Balcer L, Bekkers E, Brandt AU, Calabresi PA, et al. Artificial intelligence extension of the OSCAR-IB criteria. Ann Clin Transl Neurol. 2021;8:1528–42.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.PubMedCrossRef Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.PubMedCrossRef
36.
go back to reference Khader SA, Nawar AE, Ghali AA, Ghoneim AM. Evaluation of optical coherence tomography angiography findings in patients with multiple sclerosis. Indian J Ophthalmol. 2021;69:1457–63.PubMedPubMedCentralCrossRef Khader SA, Nawar AE, Ghali AA, Ghoneim AM. Evaluation of optical coherence tomography angiography findings in patients with multiple sclerosis. Indian J Ophthalmol. 2021;69:1457–63.PubMedPubMedCentralCrossRef
37.
go back to reference Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135:370–6.PubMedPubMedCentralCrossRef Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135:370–6.PubMedPubMedCentralCrossRef
38.
go back to reference Lin Y, Jiang H, Liu Y, Rosa Gameiro G, Gregori G, Dong C, et al. Age-related alterations in retinal tissue perfusion and volumetric vessel density. Invest Ophthalmol Vis Sci. 2019;60:685–93.PubMedPubMedCentralCrossRef Lin Y, Jiang H, Liu Y, Rosa Gameiro G, Gregori G, Dong C, et al. Age-related alterations in retinal tissue perfusion and volumetric vessel density. Invest Ophthalmol Vis Sci. 2019;60:685–93.PubMedPubMedCentralCrossRef
39.
go back to reference Camino A, Jia Y, Guo Y, Huang D. Compensation of OCTA flow index dependence on OCT signal strength. Invest Ophthalmol Vis Sci. 2021;62:1774. Camino A, Jia Y, Guo Y, Huang D. Compensation of OCTA flow index dependence on OCT signal strength. Invest Ophthalmol Vis Sci. 2021;62:1774.
40.
go back to reference Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early treatment diabetic retinopathy study research group. Ophthalmology. 1991;98:786–806. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early treatment diabetic retinopathy study research group. Ophthalmology. 1991;98:786–806.
41.
go back to reference Rogaczewska M, Michalak S, Stopa M. Macular vessel density differs in multiple sclerosis and neuromyelitis optica spectrum disorder: an optical coherence tomography angiography study. PLoS ONE. 2021;16: e0253417.PubMedPubMedCentralCrossRef Rogaczewska M, Michalak S, Stopa M. Macular vessel density differs in multiple sclerosis and neuromyelitis optica spectrum disorder: an optical coherence tomography angiography study. PLoS ONE. 2021;16: e0253417.PubMedPubMedCentralCrossRef
42.
go back to reference Rogaczewska M, Michalak S, Stopa M. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using optical coherence tomography angiography. Sci Rep. 2021;11:10697.PubMedPubMedCentralCrossRef Rogaczewska M, Michalak S, Stopa M. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using optical coherence tomography angiography. Sci Rep. 2021;11:10697.PubMedPubMedCentralCrossRef
43.
go back to reference Rogaczewska M, Michalak S, Stopa M. Optical coherence tomography angiography of peripapillary vessel density in multiple sclerosis and neuromyelitis optica spectrum disorder: a comparative study. J Clin Med. 2021;10:609.PubMedPubMedCentralCrossRef Rogaczewska M, Michalak S, Stopa M. Optical coherence tomography angiography of peripapillary vessel density in multiple sclerosis and neuromyelitis optica spectrum disorder: a comparative study. J Clin Med. 2021;10:609.PubMedPubMedCentralCrossRef
44.
go back to reference Lanzillo R, Cennamo G, Moccia M, Criscuolo C, Carotenuto A, Frattaruolo N, et al. Retinal vascular density in multiple sclerosis: a 1-year follow-up. Eur J Neurol. 2019;26:198–201.PubMedCrossRef Lanzillo R, Cennamo G, Moccia M, Criscuolo C, Carotenuto A, Frattaruolo N, et al. Retinal vascular density in multiple sclerosis: a 1-year follow-up. Eur J Neurol. 2019;26:198–201.PubMedCrossRef
45.
go back to reference Yilmaz H, Ersoy A, Icel E. Assessments of vessel density and foveal avascular zone metrics in multiple sclerosis: an optical coherence tomography angiography study. Eye (Lond). 2020;34:771–8.PubMedCrossRef Yilmaz H, Ersoy A, Icel E. Assessments of vessel density and foveal avascular zone metrics in multiple sclerosis: an optical coherence tomography angiography study. Eye (Lond). 2020;34:771–8.PubMedCrossRef
46.
go back to reference Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014;98:1368–73.PubMedCrossRef Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014;98:1368–73.PubMedCrossRef
47.
go back to reference Ulusoy MO, Horasanlı B, Işık-Ulusoy S. Optical coherence tomography angiography findings of multiple sclerosis with or without optic neuritis. Neurol Res. 2020;42:319–26.PubMedCrossRef Ulusoy MO, Horasanlı B, Işık-Ulusoy S. Optical coherence tomography angiography findings of multiple sclerosis with or without optic neuritis. Neurol Res. 2020;42:319–26.PubMedCrossRef
48.
go back to reference Spain RI, Liu L, Zhang X, Jia Y, Tan O, Bourdette D, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol. 2018;102:520–4.PubMedCrossRef Spain RI, Liu L, Zhang X, Jia Y, Tan O, Bourdette D, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol. 2018;102:520–4.PubMedCrossRef
49.
go back to reference Murphy OC, Kalaitzidis G, Vasileiou E, Filippatou AG, Lambe J, Ehrhardt H, et al. Optical coherence tomography and optical coherence tomography angiography findings after optic neuritis in multiple sclerosis. Front Neurol. 2020;11: 618879.PubMedPubMedCentralCrossRef Murphy OC, Kalaitzidis G, Vasileiou E, Filippatou AG, Lambe J, Ehrhardt H, et al. Optical coherence tomography and optical coherence tomography angiography findings after optic neuritis in multiple sclerosis. Front Neurol. 2020;11: 618879.PubMedPubMedCentralCrossRef
50.
go back to reference Lee G-I, Park K-A, Oh SY, Min J-H, Kim BJ. Differential patterns of parafoveal and peripapillary vessel density in multiple sclerosis and neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2021;49: 102780.PubMedCrossRef Lee G-I, Park K-A, Oh SY, Min J-H, Kim BJ. Differential patterns of parafoveal and peripapillary vessel density in multiple sclerosis and neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2021;49: 102780.PubMedCrossRef
51.
go back to reference Jesus J, Soares R, Geraldes R, Matias M, Chibante J. Analysis of choroidal vessel density in patients with multiple sclerosis. Biomark Neuropsychiatry. 2021;5: 100040.CrossRef Jesus J, Soares R, Geraldes R, Matias M, Chibante J. Analysis of choroidal vessel density in patients with multiple sclerosis. Biomark Neuropsychiatry. 2021;5: 100040.CrossRef
52.
go back to reference Farci R, Carta A, Cocco E, Frau J, Fossarello M, Diaz G. Optical coherence tomography angiography in multiple sclerosis: a cross-sectional study. PLoS ONE. 2020;15: e0236090.PubMedPubMedCentralCrossRef Farci R, Carta A, Cocco E, Frau J, Fossarello M, Diaz G. Optical coherence tomography angiography in multiple sclerosis: a cross-sectional study. PLoS ONE. 2020;15: e0236090.PubMedPubMedCentralCrossRef
53.
go back to reference Cordon B, Vilades E, Orduna E, Satue M, Perez-Velilla J, Sebastian B, et al. Angiography with optical coherence tomography as a biomarker in multiple sclerosis. PLoS ONE. 2020;15: e0243236.PubMedPubMedCentralCrossRef Cordon B, Vilades E, Orduna E, Satue M, Perez-Velilla J, Sebastian B, et al. Angiography with optical coherence tomography as a biomarker in multiple sclerosis. PLoS ONE. 2020;15: e0243236.PubMedPubMedCentralCrossRef
54.
go back to reference Cennamo G, Carotenuto A, Montorio D, Petracca M, Moccia M, Melenzane A, et al. Peripapillary vessel density as early biomarker in multiple sclerosis. Front Neurol. 2020;11:542.PubMedPubMedCentralCrossRef Cennamo G, Carotenuto A, Montorio D, Petracca M, Moccia M, Melenzane A, et al. Peripapillary vessel density as early biomarker in multiple sclerosis. Front Neurol. 2020;11:542.PubMedPubMedCentralCrossRef
55.
go back to reference Ava S, Tamam Y, Hazar L, Karahan M, Erdem S, Dursun ME, et al. Relationship between optical coherence tomography angiography and visual evoked potential in patients with multiple sclerosis. Indian J Ophthalmol. 2022;70:873–8.PubMedPubMedCentralCrossRef Ava S, Tamam Y, Hazar L, Karahan M, Erdem S, Dursun ME, et al. Relationship between optical coherence tomography angiography and visual evoked potential in patients with multiple sclerosis. Indian J Ophthalmol. 2022;70:873–8.PubMedPubMedCentralCrossRef
56.
go back to reference Aly L, Strauß E-M, Feucht N, Weiß I, Berthele A, Mitsdoerffer M, et al. Optical coherence tomography angiography indicates subclinical retinal disease in neuromyelitis optica spectrum disorders. Mult Scler. 2022;28:522–31.PubMedCrossRef Aly L, Strauß E-M, Feucht N, Weiß I, Berthele A, Mitsdoerffer M, et al. Optical coherence tomography angiography indicates subclinical retinal disease in neuromyelitis optica spectrum disorders. Mult Scler. 2022;28:522–31.PubMedCrossRef
57.
go back to reference Jiang H, Gameiro GR, Liu Y, Lin Y, Hernandez J, Deng Y, et al. Visual function and disability are associated with increased retinal volumetric vessel density in patients with multiple sclerosis. Am J Ophthalmol. 2020;213:34–45.PubMedPubMedCentralCrossRef Jiang H, Gameiro GR, Liu Y, Lin Y, Hernandez J, Deng Y, et al. Visual function and disability are associated with increased retinal volumetric vessel density in patients with multiple sclerosis. Am J Ophthalmol. 2020;213:34–45.PubMedPubMedCentralCrossRef
58.
go back to reference Koustenis AJ, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101:16–20.PubMedCrossRef Koustenis AJ, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101:16–20.PubMedCrossRef
59.
go back to reference Sinnecker T, Bozin I, Dörr J, Pfueller CF, Harms L, Niendorf T, et al. Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Mult Scler. 2013;19:316–25.PubMedCrossRef Sinnecker T, Bozin I, Dörr J, Pfueller CF, Harms L, Niendorf T, et al. Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Mult Scler. 2013;19:316–25.PubMedCrossRef
60.
go back to reference Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina. 2016;36:2039–50.PubMedPubMedCentralCrossRef Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina. 2016;36:2039–50.PubMedPubMedCentralCrossRef
61.
go back to reference Paul F, Calabresi PA, Barkhof F, Green AJ, Kardon R, Sastre-Garriga J, et al. Optical coherence tomography in multiple sclerosis: a 3-year prospective multicenter study. Ann Clin Transl Neurol. 2021;8:2235–51.PubMedPubMedCentralCrossRef Paul F, Calabresi PA, Barkhof F, Green AJ, Kardon R, Sastre-Garriga J, et al. Optical coherence tomography in multiple sclerosis: a 3-year prospective multicenter study. Ann Clin Transl Neurol. 2021;8:2235–51.PubMedPubMedCentralCrossRef
62.
go back to reference Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133:1591–601.PubMedPubMedCentralCrossRef Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133:1591–601.PubMedPubMedCentralCrossRef
63.
go back to reference D’haeseleer M, Cambron M, Vanopdenbosch L, De Keyser J. Vascular aspects of multiple sclerosis. Lancet Neurol. 2011;10:657–66.PubMedCrossRef D’haeseleer M, Cambron M, Vanopdenbosch L, De Keyser J. Vascular aspects of multiple sclerosis. Lancet Neurol. 2011;10:657–66.PubMedCrossRef
64.
go back to reference Zhang X, Guo X, Zhang N, Cai H, Sun J, Wang Q, et al. Cerebral blood flow changes in multiple sclerosis and neuromyelitis optica and their correlations with clinical disability. Front Neurol. 2018;9:305.PubMedPubMedCentralCrossRef Zhang X, Guo X, Zhang N, Cai H, Sun J, Wang Q, et al. Cerebral blood flow changes in multiple sclerosis and neuromyelitis optica and their correlations with clinical disability. Front Neurol. 2018;9:305.PubMedPubMedCentralCrossRef
65.
go back to reference Paling D, Thade Petersen E, Tozer DJ, Altmann DR, Wheeler-Kingshott CAM, Kapoor R, et al. Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability. J Cereb Blood Flow Metab. 2014;34:34–42.PubMedCrossRef Paling D, Thade Petersen E, Tozer DJ, Altmann DR, Wheeler-Kingshott CAM, Kapoor R, et al. Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability. J Cereb Blood Flow Metab. 2014;34:34–42.PubMedCrossRef
66.
go back to reference Inglese M, Adhya S, Johnson G, Babb JS, Miles L, Jaggi H, et al. Perfusion magnetic resonance imaging correlates of neuropsychological impairment in multiple sclerosis. J Cereb Blood Flow Metab. 2008;28:164–71.PubMedCrossRef Inglese M, Adhya S, Johnson G, Babb JS, Miles L, Jaggi H, et al. Perfusion magnetic resonance imaging correlates of neuropsychological impairment in multiple sclerosis. J Cereb Blood Flow Metab. 2008;28:164–71.PubMedCrossRef
67.
go back to reference Holland CM, Charil A, Csapo I, Liptak Z, Ichise M, Khoury SJ, et al. The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1,249 patients with multiple sclerosis. J Neuroimaging. 2012;22:129–36.PubMedCrossRef Holland CM, Charil A, Csapo I, Liptak Z, Ichise M, Khoury SJ, et al. The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1,249 patients with multiple sclerosis. J Neuroimaging. 2012;22:129–36.PubMedCrossRef
68.
go back to reference Bambo MP, Garcia-Martin E, Perez-Olivan S, Sigut J, Fumero F, Fuentes JL, et al. Diagnostic ability of a new method for measuring haemoglobin levels in the optic nerve head in multiple sclerosis patients. Br J Ophthalmol. 2013;97:1543–8.PubMedCrossRef Bambo MP, Garcia-Martin E, Perez-Olivan S, Sigut J, Fumero F, Fuentes JL, et al. Diagnostic ability of a new method for measuring haemoglobin levels in the optic nerve head in multiple sclerosis patients. Br J Ophthalmol. 2013;97:1543–8.PubMedCrossRef
69.
go back to reference Spaide RF, Klancnik JMJ, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.PubMedCrossRef Spaide RF, Klancnik JMJ, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.PubMedCrossRef
70.
go back to reference Hao H, Sasongko MB, Wong TY, Che Azemin MZ, Aliahmad B, Hodgson L, et al. Does retinal vascular geometry vary with cardiac cycle? Invest Ophthalmol Vis Sci. 2012;53:5799–805.PubMedCrossRef Hao H, Sasongko MB, Wong TY, Che Azemin MZ, Aliahmad B, Hodgson L, et al. Does retinal vascular geometry vary with cardiac cycle? Invest Ophthalmol Vis Sci. 2012;53:5799–805.PubMedCrossRef
71.
go back to reference Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N. Short-term effects of exercise on optic nerve and macular perfusion measured by optical coherence tomography angiography. Retina. 2017;37:1642–6.PubMedCrossRef Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N. Short-term effects of exercise on optic nerve and macular perfusion measured by optical coherence tomography angiography. Retina. 2017;37:1642–6.PubMedCrossRef
Metadata
Title
Optical coherence tomography angiography measurements in multiple sclerosis: a systematic review and meta-analysis
Authors
Soheil Mohammadi
Mahdi Gouravani
Mohammad Amin Salehi
J. Fernando Arevalo
Steven L. Galetta
Hamid Harandi
Elliot M. Frohman
Teresa C. Frohman
Shiv Saidha
Neda Sattarnezhad
Friedemann Paul
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02763-4

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue