Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Multiple Myeloma | Primary research

Knockdown of lncRNA SNHG16 suppresses multiple myeloma cell proliferation by sponging miR-342-3p

Authors: Xi Yang, Hongming Huang, Xinfeng Wang, Haiyan Liu, Hong Liu, Zenghua Lin

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Aberrant expression of long non-coding RNAs (lncRNAs) is closely associated with development and prognosis of human cancers. LncRNA SNHG16 is reportedly involved in human cancer; however, its roles in multiple myeloma (MM) remain unclear.

Methods

In this study, we investigated the function and molecular mechanisms of SNHG16 in MM. MM cells were transfected with si-SNHG16 or si-NC. SNHG16 expression levels was measured by qRT-PCR. Cell proliferation was monitored using the MTS. Flow cytometry assay was performed to measure the cell cycle and apoptosis. Luciferase reporter assay were performed to confirm the sponged miRNAs of SNHG16.

Results

SNHG16 expression was up-regulated in MM tissues. SNHG16 knockdown suppressed cell proliferation, arrested cell cycle transition from G1 to S phase, and promoted the apoptosis of MM cells. Moreover, SNHG16 knockdown promoted cleaved-Caspase-3, cleaved-Caspase-9, Foxa3a, and Bax expression, while markedly inhibiting CCND1, Bcl-2, Cyclin D1, PI3K, and p-AKT expression in MM cells. miR-342-3p was a direct target of SNHG16. SNHG16 knockdown significantly increased miR-342-3p expression in MM cells. Overexpression miR-342-3p markedly suppressed cell proliferation, arrested cell cycle transition from G1 to S phase, and promoted apoptosis of MM cells. Overexpression of miR-342-3p markedly promoted cleaved-Caspase-3/-9, Foxa3a, and Bax expression, and inhibited CCND1, Bcl-2, Cyclin D1, PI3K, and p-AKT expression in MM cells. Additionally, repression of miR-342-3p could rescue the effect of SNHG16 knockdown on MM cell proliferation, cycle arrest, apoptosis, and related protein expression.

Conclusion

Knockdown of lncRNA SNHG16 suppresses MM cell proliferation by sponging miR-342-3p, implicating SNHG16 as a novel therapeutic target for MM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Spitzer TR, Sachs DH, Cosimi B. Multiple myeloma. N Engl J Med. 2011;364(24):2364 (author reply 2364).CrossRef Spitzer TR, Sachs DH, Cosimi B. Multiple myeloma. N Engl J Med. 2011;364(24):2364 (author reply 2364).CrossRef
2.
go back to reference Fu J. Cx43 expressed on bone marrow stromal cells plays an essential role in multiple myeloma cell survival and drug resistance. Arch Med Sci. 2017;13(1):236–45.CrossRef Fu J. Cx43 expressed on bone marrow stromal cells plays an essential role in multiple myeloma cell survival and drug resistance. Arch Med Sci. 2017;13(1):236–45.CrossRef
3.
go back to reference McCullough KB, Hobbs MA, Abeykoon JP, Kapoor P. Common adverse effects of novel therapies for multiple myeloma (mm) and their management strategies. Curr Hematol Malignancy Rep. 2018;13(2):114–24.CrossRef McCullough KB, Hobbs MA, Abeykoon JP, Kapoor P. Common adverse effects of novel therapies for multiple myeloma (mm) and their management strategies. Curr Hematol Malignancy Rep. 2018;13(2):114–24.CrossRef
4.
go back to reference Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol. 2016;9(1):52.CrossRef Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol. 2016;9(1):52.CrossRef
5.
go back to reference Meng H, Han L, Hong C, Ding J, Huang Q. Aberrant lncRNA expression in multiple myeloma. Oncol Res. 2018;26(5):809–16.CrossRef Meng H, Han L, Hong C, Ding J, Huang Q. Aberrant lncRNA expression in multiple myeloma. Oncol Res. 2018;26(5):809–16.CrossRef
6.
go back to reference Liu D, Wang J, Liu M. Long noncoding RNA TUG1 promotes proliferation and inhibits apoptosis in multiple myeloma by inhibiting miR-29b-3p. Biosci Rep. 2019;39(3):BSR20182489.CrossRef Liu D, Wang J, Liu M. Long noncoding RNA TUG1 promotes proliferation and inhibits apoptosis in multiple myeloma by inhibiting miR-29b-3p. Biosci Rep. 2019;39(3):BSR20182489.CrossRef
7.
go back to reference Liu S, Zhang W, Liu K, Liu Y. LncRNA SNHG16 promotes tumor growth of pancreatic cancer by targeting miR-218-5p. Biomed Pharmacother. 2019;114:108862.CrossRef Liu S, Zhang W, Liu K, Liu Y. LncRNA SNHG16 promotes tumor growth of pancreatic cancer by targeting miR-218-5p. Biomed Pharmacother. 2019;114:108862.CrossRef
8.
go back to reference Wang X, Kan J, Han J, Zhang W, Bai L, Wu H. LncRNA SNHG16 functions as an oncogene by sponging MiR-135a and promotes JAK2/STAT3 signal pathway in gastric cancer. J Cancer. 2019;10(4):1013–22.CrossRef Wang X, Kan J, Han J, Zhang W, Bai L, Wu H. LncRNA SNHG16 functions as an oncogene by sponging MiR-135a and promotes JAK2/STAT3 signal pathway in gastric cancer. J Cancer. 2019;10(4):1013–22.CrossRef
9.
go back to reference Liu N, Yang J, Yuan R, Peng J, Liu L, Guo X. Effects of miR181a on the biological function of multiple myeloma. Oncol Rep. 2019;42(1):291–300.PubMed Liu N, Yang J, Yuan R, Peng J, Liu L, Guo X. Effects of miR181a on the biological function of multiple myeloma. Oncol Rep. 2019;42(1):291–300.PubMed
10.
go back to reference Xue X, Fei X, Hou W, Zhang Y, Liu L, Hu R. MiR-342-3p suppresses cell proliferation and migration by targeting AGR2 in non-small cell lung cancer. Cancer Lett. 2018;412:170–8.CrossRef Xue X, Fei X, Hou W, Zhang Y, Liu L, Hu R. MiR-342-3p suppresses cell proliferation and migration by targeting AGR2 in non-small cell lung cancer. Cancer Lett. 2018;412:170–8.CrossRef
11.
go back to reference Zhang S, Liu L, Lv Z, Li Q, Gong W, Wu H. MicroRNA-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells by targeting astrocyte-elevated gene-1 (AEG-1). Oncol Res. 2017;25(9):1505–15.CrossRef Zhang S, Liu L, Lv Z, Li Q, Gong W, Wu H. MicroRNA-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells by targeting astrocyte-elevated gene-1 (AEG-1). Oncol Res. 2017;25(9):1505–15.CrossRef
12.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−∆∆C(T)) method. Methods. 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−∆∆C(T)) method. Methods. 2001;25(4):402–8.CrossRef
13.
go back to reference Chen L, Hu N, Wang C, Zhao H, Gu Y. Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle. 2018;17(3):319–29.CrossRef Chen L, Hu N, Wang C, Zhao H, Gu Y. Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle. 2018;17(3):319–29.CrossRef
14.
go back to reference Pu J, Huang H, Su J, Yuan J, Cong H, Wang X, Ju S. Decreased expression of long noncoding RNA XLOC_013703 promotes cell growth via NF-κB pathway in multiple myeloma. IUBMB Life. 2019;71(9):1240.CrossRef Pu J, Huang H, Su J, Yuan J, Cong H, Wang X, Ju S. Decreased expression of long noncoding RNA XLOC_013703 promotes cell growth via NF-κB pathway in multiple myeloma. IUBMB Life. 2019;71(9):1240.CrossRef
15.
go back to reference Xie X, Xu X, Sun C, Yu Z. Long intergenic noncoding RNA SNHG16 interacts with miR-195 to promote proliferation, invasion and tumorigenesis in hepatocellular carcinoma. Exp Cell Res. 2019;383:111501.CrossRef Xie X, Xu X, Sun C, Yu Z. Long intergenic noncoding RNA SNHG16 interacts with miR-195 to promote proliferation, invasion and tumorigenesis in hepatocellular carcinoma. Exp Cell Res. 2019;383:111501.CrossRef
16.
go back to reference Pavlidou A, Vlahos NF. Molecular alterations of PI3K/Akt/mTOR pathway: a therapeutic target in endometrial cancer. Sci World J. 2014;2014:709736.CrossRef Pavlidou A, Vlahos NF. Molecular alterations of PI3K/Akt/mTOR pathway: a therapeutic target in endometrial cancer. Sci World J. 2014;2014:709736.CrossRef
17.
go back to reference Chan JJ, Tay Y. Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci. 2018;19(5):1310.CrossRef Chan JJ, Tay Y. Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci. 2018;19(5):1310.CrossRef
18.
go back to reference Liao S, Xing S, Ma Y. LncRNA SNHG16 sponges miR-98-5p to regulate cellular processes in osteosarcoma. Cancer Chemother Pharmacol. 2019;83(6):1065–74.CrossRef Liao S, Xing S, Ma Y. LncRNA SNHG16 sponges miR-98-5p to regulate cellular processes in osteosarcoma. Cancer Chemother Pharmacol. 2019;83(6):1065–74.CrossRef
19.
go back to reference Zhou XY, Liu H, Ding ZB, Xi HP, Wang GW. LncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics. 2019;112:1021.CrossRef Zhou XY, Liu H, Ding ZB, Xi HP, Wang GW. LncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics. 2019;112:1021.CrossRef
20.
go back to reference Liu W, Kang L, Han J, Wang Y, Shen C, Yan Z, Tai Y, Zhao C. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect. Onco Targets Ther. 2018;11:1643–53.CrossRef Liu W, Kang L, Han J, Wang Y, Shen C, Yan Z, Tai Y, Zhao C. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect. Onco Targets Ther. 2018;11:1643–53.CrossRef
Metadata
Title
Knockdown of lncRNA SNHG16 suppresses multiple myeloma cell proliferation by sponging miR-342-3p
Authors
Xi Yang
Hongming Huang
Xinfeng Wang
Haiyan Liu
Hong Liu
Zenghua Lin
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-1118-1

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine