Skip to main content
Top
Published in: Cancer Cell International 1/2020

01-12-2020 | Hepatocellular Carcinoma | Primary research

Effect of nicastrin on hepatocellular carcinoma proliferation and apoptosis through PI3K/AKT signalling pathway modulation

Authors: Xicheng Wang, Xining Wang, Yunxiuxiu Xu, Maolin Yan, Wenxin Li, Jie Chen, Tao Chen

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Increasing evidence has proven that the γ-secretase complex plays significant roles in the carcinogenesis of malignancies. However, the independent effect of nicastrin (NCSTN), the largest constituent of the γ-secretase complex, on the progression of hepatocellular carcinoma (HCC) remains to be discovered.

Methods

In our study, we used open online databases, including the Oncomine database, GEPIA and KMPlotter, to analyse the expression of 4 genes and their correlation with prognosis in HCC. NCSTN expression in 60 HCC patients from our centre was determined by immunohistochemical staining and qRT-PCR. The clinical and prognostic significance of NCSTN expression were analysed statistically. Stable Sk-hep1 cell lines with NCSTN overexpression were established using lentivirus-based vectors, and RNAi technology was used to transiently downregulate NCSTN expression in HepG2 cell lines. Cell growth and apoptosis were assessed by using EdU, clone formation, flow cytometry and Western blotting assays.

Results

Bioinformatics analysis showed that NCSTN mRNA expression was generally higher in HCC tissues than in normal tissues according to a meta-analysis of 9 HCC datasets, excluding PS-1, PEN-2 and APH-1. Moreover, NCSTN was associated with a poor prognosis in HCC patients from The Cancer Genome Atlas (TCGA). Although the relationship between NCSTN levels and the clinicopathological features of HCC patients was not significant, a survival analysis of HCC patients from TCGA indicated that overall and disease-free survival were significantly associated with NCSTN expression. NCSTN expression in HCC cell lines regulated cell growth and apoptosis in vitro. NCSTN downregulation in HepG2 cells inhibited tumour growth ability in vivo. In addition, NCSTN downregulation in HepG2 cell lines decreased p-PI3K and p-Akt expression, and IGF1, a PI3K/Akt activator, neutralized the effects on PI3K and Akt phosphorylation. Moreover, NCSTN overexpression in Sk-hep1 cells activated the PI3K/Akt signalling pathway, and MK-2206, a PI3K/Akt inhibitor, reversed this activation according to Western blotting analysis.

Conclusions

We suggest that NCSTN serves as an oncogene in HCC by promoting growth and inhibiting apoptosis via the PI3K/Akt pathway, providing a potential novel therapeutic target for HCC treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRef
2.
go back to reference Yu WB, Rao A, Vu V, Xu L, Rao JY, Wu JX. Management of centrally located hepatocellular carcinoma: update 2016. World J Hepatol. 2017;9:627–34.CrossRef Yu WB, Rao A, Vu V, Xu L, Rao JY, Wu JX. Management of centrally located hepatocellular carcinoma: update 2016. World J Hepatol. 2017;9:627–34.CrossRef
3.
go back to reference Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.CrossRef Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.CrossRef
4.
go back to reference Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24–49.CrossRef Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24–49.CrossRef
5.
go back to reference Sharma D, Otto G, Warren EC, Beesley P, King JS, Williams RSB. Gamma secretase orthologs are required for lysosomal activity and autophagic degradation in Dictyostelium discoideum, independent of PSEN (presenilin) proteolytic function. Autophagy. 2019;15:1407–18.CrossRef Sharma D, Otto G, Warren EC, Beesley P, King JS, Williams RSB. Gamma secretase orthologs are required for lysosomal activity and autophagic degradation in Dictyostelium discoideum, independent of PSEN (presenilin) proteolytic function. Autophagy. 2019;15:1407–18.CrossRef
6.
go back to reference Lombardo Y, Filipovic A, Molyneux G, Periyasamy M, Giamas G, Hu Y, et al. Nicastrin regulates breast cancer stem cell properties and tumor growth in vitro and in vivo. Proc Natl Acad Sci USA. 2012;109:16558–63.CrossRef Lombardo Y, Filipovic A, Molyneux G, Periyasamy M, Giamas G, Hu Y, et al. Nicastrin regulates breast cancer stem cell properties and tumor growth in vitro and in vivo. Proc Natl Acad Sci USA. 2012;109:16558–63.CrossRef
7.
go back to reference De Strooper B. Nicastrin: gatekeeper of the gamma-secretase complex. Cell. 2005;122:318–20.CrossRef De Strooper B. Nicastrin: gatekeeper of the gamma-secretase complex. Cell. 2005;122:318–20.CrossRef
8.
go back to reference Filipovic A, Lombardo Y, Faronato M, Abrahams J, Aboagye E, Nguyen QD, et al. Anti-nicastrin monoclonal antibodies elicit pleiotropic anti-tumour pharmacological effects in invasive breast cancer cells. Breast Cancer Res Treat. 2014;148:455–62.CrossRef Filipovic A, Lombardo Y, Faronato M, Abrahams J, Aboagye E, Nguyen QD, et al. Anti-nicastrin monoclonal antibodies elicit pleiotropic anti-tumour pharmacological effects in invasive breast cancer cells. Breast Cancer Res Treat. 2014;148:455–62.CrossRef
9.
go back to reference Meng RD, Shelton CC, Li YM, Qin LX, Notterman D, Paty PB, et al. Gamma-secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009;69:573–82.CrossRef Meng RD, Shelton CC, Li YM, Qin LX, Notterman D, Paty PB, et al. Gamma-secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009;69:573–82.CrossRef
10.
go back to reference Dong Y, Li A, Wang J, Weber JD, Michel LS. Synthetic lethality through combined Notch-epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res. 2010;70:5465–74.CrossRef Dong Y, Li A, Wang J, Weber JD, Michel LS. Synthetic lethality through combined Notch-epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res. 2010;70:5465–74.CrossRef
11.
go back to reference Woo HG, Park ES, Lee JS, Lee YH, Ishikawa T, Kim YJ, et al. Identification of potential driver genes in human liver carcinoma by genomewide screening. Cancer Res. 2009;69:4059–66.CrossRef Woo HG, Park ES, Lee JS, Lee YH, Ishikawa T, Kim YJ, et al. Identification of potential driver genes in human liver carcinoma by genomewide screening. Cancer Res. 2009;69:4059–66.CrossRef
12.
go back to reference Lee SA, Ho C, Roy R, Kosinski C, Patil MA, Tward AD, et al. Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology. 2008;47:1200–10.CrossRef Lee SA, Ho C, Roy R, Kosinski C, Patil MA, Tward AD, et al. Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology. 2008;47:1200–10.CrossRef
13.
go back to reference Scharl A, Vierbuchen M, Conradt B, Moll W, Wurz H, Bolte A. Immunohistochemical detection of progesterone receptor in formalin-fixed and paraffin-embedded breast cancer tissue using a monoclonal antibody. Arch Gynecol Obstet. 1990;247:63–71.CrossRef Scharl A, Vierbuchen M, Conradt B, Moll W, Wurz H, Bolte A. Immunohistochemical detection of progesterone receptor in formalin-fixed and paraffin-embedded breast cancer tissue using a monoclonal antibody. Arch Gynecol Obstet. 1990;247:63–71.CrossRef
14.
go back to reference Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.CrossRef Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.CrossRef
15.
go back to reference Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.CrossRef Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.CrossRef
16.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.CrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.CrossRef
17.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.CrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.CrossRef
18.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.CrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.CrossRef
19.
go back to reference Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.CrossRef Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.CrossRef
20.
go back to reference Shen Y, Lv D, Wang J, Yin Y, Miao F, Dou F, et al. GSI-I has a better effect in inhibiting hepatocellular carcinoma cell growth than GSI-IX, GSI-X, or GSI-XXI. Anticancer Drugs. 2012;23:683–90.CrossRef Shen Y, Lv D, Wang J, Yin Y, Miao F, Dou F, et al. GSI-I has a better effect in inhibiting hepatocellular carcinoma cell growth than GSI-IX, GSI-X, or GSI-XXI. Anticancer Drugs. 2012;23:683–90.CrossRef
21.
go back to reference Shen Y, Yin Y, Peng Y, Lv D, Miao F, Dou F, et al. Modulation of the gamma-secretase activity as a therapy against human hepatocellular carcinoma. J Cancer Res Ther. 2018;14:S473–9.CrossRef Shen Y, Yin Y, Peng Y, Lv D, Miao F, Dou F, et al. Modulation of the gamma-secretase activity as a therapy against human hepatocellular carcinoma. J Cancer Res Ther. 2018;14:S473–9.CrossRef
22.
go back to reference Wu CX, Xu A, Zhang CC, Olson P, Chen L, Lee TK, et al. Notch inhibitor PF-03084014 inhibits hepatocellular carcinoma growth and metastasis via suppression of cancer stemness due to reduced activation of Notch1–Stat3. Mol Cancer Ther. 2017;16:1531–43.CrossRef Wu CX, Xu A, Zhang CC, Olson P, Chen L, Lee TK, et al. Notch inhibitor PF-03084014 inhibits hepatocellular carcinoma growth and metastasis via suppression of cancer stemness due to reduced activation of Notch1–Stat3. Mol Cancer Ther. 2017;16:1531–43.CrossRef
23.
go back to reference Morell CM, Strazzabosco M. Notch signaling and new therapeutic options in liver disease. J Hepatol. 2014;60:885–90.CrossRef Morell CM, Strazzabosco M. Notch signaling and new therapeutic options in liver disease. J Hepatol. 2014;60:885–90.CrossRef
24.
go back to reference Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, et al. Nicastrin functions as a gamma-secretase-substrate receptor. Cell. 2005;122:435–47.CrossRef Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, et al. Nicastrin functions as a gamma-secretase-substrate receptor. Cell. 2005;122:435–47.CrossRef
25.
go back to reference Ilaya NT, Evin G, Masters CL, Culvenor JG. Nicastrin expression in mouse peripheral tissues is not co-ordinated with presenilin and is high in muscle. J Neurochem. 2004;91:230–7.CrossRef Ilaya NT, Evin G, Masters CL, Culvenor JG. Nicastrin expression in mouse peripheral tissues is not co-ordinated with presenilin and is high in muscle. J Neurochem. 2004;91:230–7.CrossRef
26.
go back to reference Pardossi-Piquard R, Dunys J, Giaime E, Guillot-Sestier MV, St George-Hyslop P, Checler F, et al. p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex. J Neurochem. 2009;109:225–37.CrossRef Pardossi-Piquard R, Dunys J, Giaime E, Guillot-Sestier MV, St George-Hyslop P, Checler F, et al. p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex. J Neurochem. 2009;109:225–37.CrossRef
Metadata
Title
Effect of nicastrin on hepatocellular carcinoma proliferation and apoptosis through PI3K/AKT signalling pathway modulation
Authors
Xicheng Wang
Xining Wang
Yunxiuxiu Xu
Maolin Yan
Wenxin Li
Jie Chen
Tao Chen
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01172-4

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine