Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 2/2015

01-02-2015 | Original Article

Multi-view vision system for laparoscopy surgery

Authors: Brahim Tamadazte, Anthony Agustinos, Philippe Cinquin, Gaelle Fiard, Sandrine Voros

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 2/2015

Login to get access

Abstract

Purpose

A global endoscopic view of the surgical field could help avoid complications such as perforation of occluded organs and may reduce the endoscope displacements and also the usual time of laparoscopic procedure using a conventional endoscopy system. An augmented laparoscopy system was developed by increasing the field of view of a traditional endoscope. This system was implemented and tested in vitro using a testbench.

Method

High-definition miniature cameras were integrated into a traditional endoscope to obtain a panoramic vision device with a large field of view of the abdominal cavity. The additional cameras are mounted around the endoscopy body as a pair of glasses providing a global view of the abdominal cavity completing the traditional endoscopic view. Each camera can reach a frame rate of 30 images/second with a resolution of 1,600 \(\times \) 1,200 pixels. To be able to fix the cameras to the endoscope, a deployment, fixation and rapid extraction system of the proposed device through the trocar was designed and validated in preclinical experiments (testbench and human cadaver). The preclinical experiments compared the time required to perform a pick-and-place task with the traditional endoscope alone and with the proposed system alone.

Results

A statistically significant reduction in procedure time was found using an augmented video endoscopy system for a pick-and-place task.

Conclusion

An augmented laparoscopy system with increased field of view is feasible and may be advantageous compared with a traditional endoscope. In vivo testing of the system should be done to establish the clinical utility of this innovation.
Literature
1.
go back to reference Ballantyne G, Moll F (2003) The davinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin N Am 83:1293–1304PubMedCrossRef Ballantyne G, Moll F (2003) The davinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin N Am 83:1293–1304PubMedCrossRef
2.
go back to reference Covia D, Cavallottib C, Vatteronia M, Clementela L, Valdastrib P, Menciassib A, Dariob P, Sartoria A (2010) Miniaturized digital camera system for disposable endoscopic applications. Sens Actuators A Phys 162(2):291–296CrossRef Covia D, Cavallottib C, Vatteronia M, Clementela L, Valdastrib P, Menciassib A, Dariob P, Sartoria A (2010) Miniaturized digital camera system for disposable endoscopic applications. Sens Actuators A Phys 162(2):291–296CrossRef
3.
go back to reference Dowler N, Holland S (1996) The evolutionary design of an endoscopic telemanipulator. IEEE Robot Autom Mag 3:38–45CrossRef Dowler N, Holland S (1996) The evolutionary design of an endoscopic telemanipulator. IEEE Robot Autom Mag 3:38–45CrossRef
4.
go back to reference Heemskerk J, Zandbergen R, Maessen J, Greve J, Bouvy N (2006) Advantages of advanced laparoscopic systems. Surg Endosc Other Intervent Tech 20:730–733CrossRef Heemskerk J, Zandbergen R, Maessen J, Greve J, Bouvy N (2006) Advantages of advanced laparoscopic systems. Surg Endosc Other Intervent Tech 20:730–733CrossRef
5.
go back to reference Hu T, Allen P, Nadkarni T, Hogle N, Fowler D (2008) Insertable stereoscopic 3d surgical imaging device with pan and tilt. In: IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics. Arizona, USA, pp 311–316 Hu T, Allen P, Nadkarni T, Hogle N, Fowler D (2008) Insertable stereoscopic 3d surgical imaging device with pan and tilt. In: IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics. Arizona, USA, pp 311–316
6.
go back to reference Kobayashi E, Ando T, Yamashita H, Sakuma I, Fukuyo T, Ando K, Chiba T (2007) A high-resolution three-dimensional thin endoscope for fetal surgery. Sens Actuators A Phys 23(11):2450–2453 Kobayashi E, Ando T, Yamashita H, Sakuma I, Fukuyo T, Ando K, Chiba T (2007) A high-resolution three-dimensional thin endoscope for fetal surgery. Sens Actuators A Phys 23(11):2450–2453
7.
go back to reference Koninckx P, Gool LV (2008) Endoscopic vision systems. Patent WO-2008-006180 Koninckx P, Gool LV (2008) Endoscopic vision systems. Patent WO-2008-006180
8.
go back to reference Long J, Cinquin P, Troccaz J, Voros S, Berkelman P, Descotes J, Letoublon C, Rambeaud J (2007) Development of miniaturized light endoscope holder robot for laparoscopic surgery. J. Endourol. 21(8):911–914 Long J, Cinquin P, Troccaz J, Voros S, Berkelman P, Descotes J, Letoublon C, Rambeaud J (2007) Development of miniaturized light endoscope holder robot for laparoscopic surgery. J. Endourol. 21(8):911–914
9.
go back to reference Makhoul B, Taille ADL, Vordos D, Salomon L, Sebe P, Audet J, Ruiz L, Hoznek A, Antiphon P, Cicco A, Yiou R, Chopin D, Abbou C (2004) Laparoscopic radical nephrectomy for t1 renal cancer: the gold standard? a comparison of laparoscopic vs open nephrectomy. BJU Int 93(1):67–70PubMedCrossRef Makhoul B, Taille ADL, Vordos D, Salomon L, Sebe P, Audet J, Ruiz L, Hoznek A, Antiphon P, Cicco A, Yiou R, Chopin D, Abbou C (2004) Laparoscopic radical nephrectomy for t1 renal cancer: the gold standard? a comparison of laparoscopic vs open nephrectomy. BJU Int 93(1):67–70PubMedCrossRef
10.
go back to reference Marek J, Van Ohsen U, Rolf-Rainer G (2012) A robust motion estimation system for minimal invasive laparoscopy. Med Imaging 8316, 83,162L–83,162L–6 Marek J, Van Ohsen U, Rolf-Rainer G (2012) A robust motion estimation system for minimal invasive laparoscopy. Med Imaging 8316, 83,162L–83,162L–6
11.
go back to reference Martinez A, Flores R, Vera M, Salazar R, Luis M, Daniel L (2007) Tonatiuh II: assisting manipulator for laparoscopic surgery. Invasive Ther Allied Technol 16:310–313CrossRef Martinez A, Flores R, Vera M, Salazar R, Luis M, Daniel L (2007) Tonatiuh II: assisting manipulator for laparoscopic surgery. Invasive Ther Allied Technol 16:310–313CrossRef
12.
go back to reference Miller A, Allen P, Fowler D (2004) In-vivo stereoscopic imaging system with 5 degrees-of-freedom for minimal access surgery. In: Medicine meets virtual reality (MMVR), pp 234–240 Miller A, Allen P, Fowler D (2004) In-vivo stereoscopic imaging system with 5 degrees-of-freedom for minimal access surgery. In: Medicine meets virtual reality (MMVR), pp 234–240
13.
go back to reference Nathan C, Chakradeo V, Malhotra K, D’Agostino H, Patwardhan R (2006) The voice-controlled robotic assist scope holder aesop for the endoscopic approach to the sella 16(3):123–131 Nathan C, Chakradeo V, Malhotra K, D’Agostino H, Patwardhan R (2006) The voice-controlled robotic assist scope holder aesop for the endoscopic approach to the sella 16(3):123–131
14.
go back to reference Rentschler M, Dumpert J, Platt S, Ahmed S, Farritor S, Oleynikov D (2006) Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. J Surg Endosc 20–1:135–138CrossRef Rentschler M, Dumpert J, Platt S, Ahmed S, Farritor S, Oleynikov D (2006) Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. J Surg Endosc 20–1:135–138CrossRef
15.
go back to reference Simi M, Ciuti G, Tognarelli S, Valdastri P, Menciassi A, Dario P (2010) Magnetic link design for a robotic laparoscopic camera. J Appl Phys 107:1–4CrossRef Simi M, Ciuti G, Tognarelli S, Valdastri P, Menciassi A, Dario P (2010) Magnetic link design for a robotic laparoscopic camera. J Appl Phys 107:1–4CrossRef
16.
go back to reference Suzuki N, Hattori A (2013) Development of new augmented reality function using intraperitoneal multi-view camera. In: Augmented environments for computer-assisted interventions, vol 7815. Springer, Berlin, pp 67–76 Suzuki N, Hattori A (2013) Development of new augmented reality function using intraperitoneal multi-view camera. In: Augmented environments for computer-assisted interventions, vol 7815. Springer, Berlin, pp 67–76
17.
go back to reference Tamadazte B, Fouard G, Long J, Cinquin P, Voros S (2013) Enhanced vision system for laparoscopic surgery. In: IEEE conference proceedings engineering in medicine and biology society. Japan, pp. 5702–5705 Tamadazte B, Fouard G, Long J, Cinquin P, Voros S (2013) Enhanced vision system for laparoscopic surgery. In: IEEE conference proceedings engineering in medicine and biology society. Japan, pp. 5702–5705
18.
go back to reference Tamadazte B, Voros S, Boschet C, Cinquin P, Fouard C (2012) Distributed vision system and virtual view for laparoscopic surgery. In: MICCAI 2012 workshop on augmented environments for computer-assisted interventions. Nice, France Tamadazte B, Voros S, Boschet C, Cinquin P, Fouard C (2012) Distributed vision system and virtual view for laparoscopic surgery. In: MICCAI 2012 workshop on augmented environments for computer-assisted interventions. Nice, France
19.
go back to reference Terry B, Ruppert A, Steinhaus K, Schoen J, Rentschler M (2010) An integrated port camera and display system for laparoscopy. IEEE Trans Biomed Eng 57(3):1191–1197PubMedCrossRef Terry B, Ruppert A, Steinhaus K, Schoen J, Rentschler M (2010) An integrated port camera and display system for laparoscopy. IEEE Trans Biomed Eng 57(3):1191–1197PubMedCrossRef
21.
go back to reference Voros S, Haber G, Menudet J, Long J, Cinquin P (2010) An integrated port camera and display system for laparoscopy. IEEE Trans Mechatron 15(6):879–886 Voros S, Haber G, Menudet J, Long J, Cinquin P (2010) An integrated port camera and display system for laparoscopy. IEEE Trans Mechatron 15(6):879–886
22.
go back to reference Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83CrossRef Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83CrossRef
23.
go back to reference Wolf R, Duchateau J, Cinquin P, Voros S (2011) 3d tracking of laparoscopic instruments using statistical and geometric modeling. In: International conference on medical image computing and computer assisted intervention (MICCAI). Toronto, Canada, pp 203–210 Wolf R, Duchateau J, Cinquin P, Voros S (2011) 3d tracking of laparoscopic instruments using statistical and geometric modeling. In: International conference on medical image computing and computer assisted intervention (MICCAI). Toronto, Canada, pp 203–210
24.
go back to reference Xie T, Guo S, Chen Z, Mukai D, Brenner M (2006) Grin lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking. Opt. Express 14:3238–3246PubMedCrossRef Xie T, Guo S, Chen Z, Mukai D, Brenner M (2006) Grin lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking. Opt. Express 14:3238–3246PubMedCrossRef
Metadata
Title
Multi-view vision system for laparoscopy surgery
Authors
Brahim Tamadazte
Anthony Agustinos
Philippe Cinquin
Gaelle Fiard
Sandrine Voros
Publication date
01-02-2015
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 2/2015
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-014-1064-2

Other articles of this Issue 2/2015

International Journal of Computer Assisted Radiology and Surgery 2/2015 Go to the issue