Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Research

Multi-omics integration with weighted affinity and self-diffusion applied for cancer subtypes identification

Authors: Xin Duan, Xinnan Ding, Zhuanzhe Zhao

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Characterizing cancer molecular subtypes is crucial for improving prognosis and individualized treatment. Integrative analysis of multi-omics data has become an important approach for disease subtyping, yielding better understanding of the complex biology. Current multi-omics integration tools and methods for cancer subtyping often suffer challenges of high computational efficiency as well as the problem of weight assignment on data types.

Results

Here, we present an efficient multi-omics integration via weighted affinity and self-diffusion (MOSD) to dissect cancer heterogeneity. MOSD first construct local scaling affinity on each data type and then integrate all affinities by weighted linear combination, followed by the self-diffusion to further improve the patients’ similarities for the downstream clustering analysis. To demonstrate the effectiveness and usefulness for cancer subtyping, we apply MOSD across ten cancer types with three measurements (Gene expression, DNA methylation, miRNA).

Conclusions

Our approach exhibits more significant differences in patient survival and computationally efficient benchmarking against several state-of-art integration methods and the identified molecular subtypes reveal strongly biological interpretability. The code as well as its implementation are available in GitHub: https://​github.​com/​DXCODEE/​MOSD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ren S, Shao Y, Zhao X, Hong CS, Wang F, Lu X, Li J, Ye G, Yan M, Zhuang ZJM, Proteomics C. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol Cell Proteom. 2016;15:154–63.CrossRef Ren S, Shao Y, Zhao X, Hong CS, Wang F, Lu X, Li J, Ye G, Yan M, Zhuang ZJM, Proteomics C. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol Cell Proteom. 2016;15:154–63.CrossRef
2.
go back to reference Chakraborty S, Hosen MI, Ahmed M, et al. Onco-multi-OMICS approach: a new frontier in cancer research. BioMed Res Int. 2018;2018:9836256. Chakraborty S, Hosen MI, Ahmed M, et al. Onco-multi-OMICS approach: a new frontier in cancer research. BioMed Res Int. 2018;2018:9836256.
4.
go back to reference Liu T, Lin N, Shi N, Zhang B. Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments. BMC Bioinformatics. 2009;10:146.CrossRefPubMedPubMedCentral Liu T, Lin N, Shi N, Zhang B. Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments. BMC Bioinformatics. 2009;10:146.CrossRefPubMedPubMedCentral
5.
go back to reference Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics. 2001;17:126–36.CrossRefPubMed Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics. 2001;17:126–36.CrossRefPubMed
6.
go back to reference Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11:333–7.CrossRefPubMed Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11:333–7.CrossRefPubMed
8.
go back to reference Speicher NK, Pfeifer N. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics. 2015;31:i268–75.CrossRefPubMedPubMedCentral Speicher NK, Pfeifer N. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics. 2015;31:i268–75.CrossRefPubMedPubMedCentral
9.
go back to reference Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat Commun. 2018;9:1–14.CrossRef Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat Commun. 2018;9:1–14.CrossRef
10.
go back to reference Nguyen H, Shrestha S, Draghici S, et al. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics. 2019;35(16):2843–6. Nguyen H, Shrestha S, Draghici S, et al. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics. 2019;35(16):2843–6.
11.
go back to reference John CR, Watson D, Barnes MR, Pitzalis C, Lewis MJ. Spectrum: fast density-aware spectral clustering for single and multi-omic data. Bioinformatics. 2020;36:1159–66.CrossRefPubMed John CR, Watson D, Barnes MR, Pitzalis C, Lewis MJ. Spectrum: fast density-aware spectral clustering for single and multi-omic data. Bioinformatics. 2020;36:1159–66.CrossRefPubMed
12.
go back to reference Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009;25:2906–12.CrossRefPubMedPubMedCentral Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009;25:2906–12.CrossRefPubMedPubMedCentral
13.
go back to reference Liu H, Shang M, Zhang H, Liang C: Cancer subtype identification based on multi-view subspace clustering with adaptive local structure learning. In: 2021 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE. 2021. 484–490. Liu H, Shang M, Zhang H, Liang C: Cancer subtype identification based on multi-view subspace clustering with adaptive local structure learning. In: 2021 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE. 2021. 484–490.
14.
go back to reference Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26:i237–45.CrossRefPubMedPubMedCentral Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26:i237–45.CrossRefPubMedPubMedCentral
15.
go back to reference Coifman RR, Lafon S. Diffusion maps. Appl Comput Harmon Anal. 2006;21:5–30.CrossRef Coifman RR, Lafon S. Diffusion maps. Appl Comput Harmon Anal. 2006;21:5–30.CrossRef
16.
go back to reference Wang B, Tu Z. Affinity learning via self-diffusion for image segmentation and clustering. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012. 2312-2319 Wang B, Tu Z. Affinity learning via self-diffusion for image segmentation and clustering. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012. 2312-2319
17.
go back to reference Zelnik-Manor L, Perona P. Self-tuning spectral clustering. Adv Neural Inf Process Syst. 2004;17:1601–8. Zelnik-Manor L, Perona P. Self-tuning spectral clustering. Adv Neural Inf Process Syst. 2004;17:1601–8.
18.
go back to reference Liu J, Han J. Spectral clustering. In: Aggarwal CC, Reddy CK, editors. Data clustering. Boca Raton: Chapman and Hall/CRC; 2018. p. 177–200.CrossRef Liu J, Han J. Spectral clustering. In: Aggarwal CC, Reddy CK, editors. Data clustering. Boca Raton: Chapman and Hall/CRC; 2018. p. 177–200.CrossRef
20.
go back to reference Therneau TM, Lumley T. Package ‘survival.’ R Top Doc. 2015;128:28–33. Therneau TM, Lumley T. Package ‘survival.’ R Top Doc. 2015;128:28–33.
21.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.CrossRefPubMedPubMedCentral Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.CrossRefPubMedPubMedCentral
22.
go back to reference Wang X, Terfve C, Rose JC, Markowetz F. HTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics. 2011;27:879–80.CrossRefPubMedPubMedCentral Wang X, Terfve C, Rose JC, Markowetz F. HTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics. 2011;27:879–80.CrossRefPubMedPubMedCentral
23.
go back to reference Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017;18:1–15.CrossRef Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017;18:1–15.CrossRef
24.
go back to reference Zhang P. Evaluating accuracy of community detection using the relative normalized mutual information. J Stat Mech: Theory Exp. 2015;2015:P11006.CrossRef Zhang P. Evaluating accuracy of community detection using the relative normalized mutual information. J Stat Mech: Theory Exp. 2015;2015:P11006.CrossRef
25.
go back to reference Yang Y, Tian S, Qiu Y, Zhao P, Zou Q. MDICC: novel method for multi-omics data integration and cancer subtype identification. Brief Bioinform. 2022;23:bbac132.CrossRefPubMed Yang Y, Tian S, Qiu Y, Zhao P, Zou Q. MDICC: novel method for multi-omics data integration and cancer subtype identification. Brief Bioinform. 2022;23:bbac132.CrossRefPubMed
26.
go back to reference Yang B, Yang Y, Wang M, Su X. MRGCN: cancer subtyping with multi-reconstruction graph convolutional network using full and partial multi-omics dataset. Bioinformatics. 2023;39:btad353.CrossRefPubMedPubMedCentral Yang B, Yang Y, Wang M, Su X. MRGCN: cancer subtyping with multi-reconstruction graph convolutional network using full and partial multi-omics dataset. Bioinformatics. 2023;39:btad353.CrossRefPubMedPubMedCentral
27.
go back to reference Zhao J, Zhao B, Song X, Lyu C, Chen W, Xiong Y, Wei D-Q. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data. Brief Bioinform. 2023;24:bbad025.CrossRefPubMed Zhao J, Zhao B, Song X, Lyu C, Chen W, Xiong Y, Wei D-Q. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data. Brief Bioinform. 2023;24:bbad025.CrossRefPubMed
28.
go back to reference Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LCG, Lannon WA, Grotzinger C, Del Rio M. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19:619–25.CrossRefPubMedPubMedCentral Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LCG, Lannon WA, Grotzinger C, Del Rio M. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19:619–25.CrossRefPubMedPubMedCentral
29.
go back to reference Ronen J, Hayat S. Akalin AJLSA: Evaluation of colorectal cancer subtypes and cell lines using deep learning. Life Sci Alliance. 2019;2(6). Ronen J, Hayat S. Akalin AJLSA: Evaluation of colorectal cancer subtypes and cell lines using deep learning. Life Sci Alliance. 2019;2(6).
30.
go back to reference Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpointsimmune checkpoints in human colorectal cancer. Cancer Discov. 2015;5:43–51.CrossRefPubMed Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpointsimmune checkpoints in human colorectal cancer. Cancer Discov. 2015;5:43–51.CrossRefPubMed
31.
go back to reference Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5:2929.PubMedPubMedCentral Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5:2929.PubMedPubMedCentral
32.
go back to reference Fusco N, Malapelle U, Fassan M, Marchiò C, Buglioni S, Zupo S, Criscitiello C, Vigneri P, Dei Tos AP, Maiorano E. PIK3CA mutations as a molecular target for hormone receptor-positive, HER2-negative metastatic breast cancer. Front Oncol. 2021;11:644737.CrossRefPubMedPubMedCentral Fusco N, Malapelle U, Fassan M, Marchiò C, Buglioni S, Zupo S, Criscitiello C, Vigneri P, Dei Tos AP, Maiorano E. PIK3CA mutations as a molecular target for hormone receptor-positive, HER2-negative metastatic breast cancer. Front Oncol. 2021;11:644737.CrossRefPubMedPubMedCentral
33.
go back to reference Lyu B, Haque A. Deep learning based tumor type classification using gene expression data. In: Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics. 2018. 89–96 Lyu B, Haque A. Deep learning based tumor type classification using gene expression data. In: Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics. 2018. 89–96
34.
go back to reference Zeng Z, Mao C, Vo A, Nugent JO, Khan SA, Clare SE, Luo Y. Deep learning for cancer type classification. bioRxiv 2019:612762. Zeng Z, Mao C, Vo A, Nugent JO, Khan SA, Clare SE, Luo Y. Deep learning for cancer type classification. bioRxiv 2019:612762.
35.
go back to reference Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights. 2020;14:1177932219899051.CrossRefPubMedPubMedCentral Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights. 2020;14:1177932219899051.CrossRefPubMedPubMedCentral
36.
go back to reference Wang J, Mouradov D, Wang X, Jorissen RN, Chambers MC, Zimmerman LJ, Vasaikar S, Love CG, Li S, Lowes K. Colorectal cancer cell line proteomes are representative of primary tumors and predict drug sensitivity. Gastroenterology. 2017;153:1082–95.CrossRefPubMed Wang J, Mouradov D, Wang X, Jorissen RN, Chambers MC, Zimmerman LJ, Vasaikar S, Love CG, Li S, Lowes K. Colorectal cancer cell line proteomes are representative of primary tumors and predict drug sensitivity. Gastroenterology. 2017;153:1082–95.CrossRefPubMed
Metadata
Title
Multi-omics integration with weighted affinity and self-diffusion applied for cancer subtypes identification
Authors
Xin Duan
Xinnan Ding
Zhuanzhe Zhao
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-04864-x

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.