Skip to main content
Top
Published in: Metabolic Brain Disease 1/2012

Open Access 01-03-2012 | Review Article

Morphine metabolism, transport and brain disposition

Authors: Simona De Gregori, Manuela De Gregori, Guglielmina Nadia Ranzani, Massimo Allegri, Cristina Minella, Mario Regazzi

Published in: Metabolic Brain Disease | Issue 1/2012

Login to get access

Abstract

The chemical structures of morphine and its metabolites are closely related to the clinical effects of drugs (analgesia and side-effects) and to their capability to cross the Blood Brain Barrier (BBB). Morphine-6-glucuronide (M6G) and Morphine-3-glucuronide (M3G) are both highly hydrophilic, but only M6G can penetrate the BBB; accordingly, M6G is considered a more attractive analgesic than the parent drug and the M3G. Several hypotheses have been made to explain these differences. In this review we will discuss recent advances in the field, considering brain disposition of M6G, UDP-glucoronosyltransferases (UGT) involved in morphine metabolism, UGT interindividual variability and transport proteins.
Literature
go back to reference Allegri M, De Gregori M, Niebel T et al (2010) Pharmacogenetics and postoperative pain: a new approach to improve acute pain management. Minerva Anestesiol 76(11):937–44PubMed Allegri M, De Gregori M, Niebel T et al (2010) Pharmacogenetics and postoperative pain: a new approach to improve acute pain management. Minerva Anestesiol 76(11):937–44PubMed
go back to reference Bourasset F, Cisternino S, Temsamani J, Scherrmann JM (2003) Evidence for an active transport of morphine-6-β-D-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J Neurochem 86:1564–1567PubMedCrossRef Bourasset F, Cisternino S, Temsamani J, Scherrmann JM (2003) Evidence for an active transport of morphine-6-β-D-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J Neurochem 86:1564–1567PubMedCrossRef
go back to reference Bouw MR, Tunblad K, Hammarlund-Udenaes M (2001) Blood Brain Barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats – pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol 134:1796–1804PubMedCrossRef Bouw MR, Tunblad K, Hammarlund-Udenaes M (2001) Blood Brain Barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats – pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol 134:1796–1804PubMedCrossRef
go back to reference Campa D, Gioia A, Tomei A et al (2008) Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 83:559–566PubMedCrossRef Campa D, Gioia A, Tomei A et al (2008) Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 83:559–566PubMedCrossRef
go back to reference Carrupt PA, Testa B, Bechalany A et al (1991) Morphine 6-Glucuronide and Morphine 3-Glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 34:1272–1275PubMedCrossRef Carrupt PA, Testa B, Bechalany A et al (1991) Morphine 6-Glucuronide and Morphine 3-Glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 34:1272–1275PubMedCrossRef
go back to reference Christensen CB, Jǿrgensen LN (1987) Morphine-6-glucuronide has high affinity for the opioid receptors. Pharmacol Toxicol 60:75–76PubMedCrossRef Christensen CB, Jǿrgensen LN (1987) Morphine-6-glucuronide has high affinity for the opioid receptors. Pharmacol Toxicol 60:75–76PubMedCrossRef
go back to reference Coffman BL, King CD, Rios GR, Tephly TR (1998) The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos 26(1):73–77 Coffman BL, King CD, Rios GR, Tephly TR (1998) The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos 26(1):73–77
go back to reference Coughtrie MW, Ask B, Rane A et al (1989) The enantioselective glucuronidation of morphine in rats and humans. Biochem Pharmacol 38:3273–3280PubMedCrossRef Coughtrie MW, Ask B, Rane A et al (1989) The enantioselective glucuronidation of morphine in rats and humans. Biochem Pharmacol 38:3273–3280PubMedCrossRef
go back to reference Dagenais C, Rousselle C, Pollack GM, Scherrmann JM (2000) Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J Cereb Blood Flow Metab 20:381–386PubMedCrossRef Dagenais C, Rousselle C, Pollack GM, Scherrmann JM (2000) Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J Cereb Blood Flow Metab 20:381–386PubMedCrossRef
go back to reference De Boer AG, van der Sandt ICJ, Gaillard PJ (2003) The role of drug transporters at the Blood-Brain-Barrier. Annu Rev Pharmacol Toxicol 43:629–656PubMedCrossRef De Boer AG, van der Sandt ICJ, Gaillard PJ (2003) The role of drug transporters at the Blood-Brain-Barrier. Annu Rev Pharmacol Toxicol 43:629–656PubMedCrossRef
go back to reference Di YM, Chan E, Wei MQ et al (2009) Prediction of deleterious non-synonymous single-nucleotide polymorphisms of human uridine diphosphate glucuronosyltransferase genes. AAPS J 11:469–480PubMedCrossRef Di YM, Chan E, Wei MQ et al (2009) Prediction of deleterious non-synonymous single-nucleotide polymorphisms of human uridine diphosphate glucuronosyltransferase genes. AAPS J 11:469–480PubMedCrossRef
go back to reference Fujita K, Ando Y, Yamamoto W et al (2010) Association of UGT2B7 and ABCB1 genotypes with morphine-induced adverse drug reactions in Japanese patients with cancer. Cancer Chemother Pharmacol Jan 65(2):251–8CrossRef Fujita K, Ando Y, Yamamoto W et al (2010) Association of UGT2B7 and ABCB1 genotypes with morphine-induced adverse drug reactions in Japanese patients with cancer. Cancer Chemother Pharmacol Jan 65(2):251–8CrossRef
go back to reference Holthe M, Klepstad P, Zahlsen K et al (2002) Morphine glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1 *28 polymorphisms in cancer patients on chronic morphine therapy. Eur J Clin Pharmacol 58:353–356PubMedCrossRef Holthe M, Klepstad P, Zahlsen K et al (2002) Morphine glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1 *28 polymorphisms in cancer patients on chronic morphine therapy. Eur J Clin Pharmacol 58:353–356PubMedCrossRef
go back to reference Innocenti F, Liu W, Fackenthal D, Ramírez J, Chen P, Ye X, Wu X, Zhang W, Mirkov S, Das S, Cook E Jr, Ratain MJ (2008) Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics 18(8):683–97PubMedCrossRef Innocenti F, Liu W, Fackenthal D, Ramírez J, Chen P, Ye X, Wu X, Zhang W, Mirkov S, Das S, Cook E Jr, Ratain MJ (2008) Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics 18(8):683–97PubMedCrossRef
go back to reference Johansson BB, Nordborg C, Westergren I (1990) Neuronal injury after transient opening of the blood-brain barrier: modifying factors. Johansson BB, Owman CG, Widner H. Pathophysiology of the blood-brain barrier. Amsterdam Elsevier 145–157 Johansson BB, Nordborg C, Westergren I (1990) Neuronal injury after transient opening of the blood-brain barrier: modifying factors. Johansson BB, Owman CG, Widner H. Pathophysiology of the blood-brain barrier. Amsterdam Elsevier 145–157
go back to reference Lötsch J, Geisslinger G (2005) Are μ-opioid receptor polymorphisms important for clinical opioid therapy? TRENDS Mol Med 11(2):82–89PubMedCrossRef Lötsch J, Geisslinger G (2005) Are μ-opioid receptor polymorphisms important for clinical opioid therapy? TRENDS Mol Med 11(2):82–89PubMedCrossRef
go back to reference Lötsch J, Tegeder I, Angst MS, Geisslinger G (2001) Antinociceptive effects of morphine-6-glucuronide in homozygous MDR1a P-glycoprotein knockout and in wildtype mice in the hotplate test. Life Sci 66:2393–2403CrossRef Lötsch J, Tegeder I, Angst MS, Geisslinger G (2001) Antinociceptive effects of morphine-6-glucuronide in homozygous MDR1a P-glycoprotein knockout and in wildtype mice in the hotplate test. Life Sci 66:2393–2403CrossRef
go back to reference Lötsch J, Schmidt R, Vetter G et al (2002a) Increased CNS uptake and enhanced antinociception of morphine-6-glucuronide in rats after inhibition of P-glycoprotein. J Neurochem 83:241–248PubMedCrossRef Lötsch J, Schmidt R, Vetter G et al (2002a) Increased CNS uptake and enhanced antinociception of morphine-6-glucuronide in rats after inhibition of P-glycoprotein. J Neurochem 83:241–248PubMedCrossRef
go back to reference Lötsch J, Zimmermann M, Darimont J (2002b) Does the A118G polymorphism at the μ-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology 97:814–819PubMedCrossRef Lötsch J, Zimmermann M, Darimont J (2002b) Does the A118G polymorphism at the μ-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology 97:814–819PubMedCrossRef
go back to reference Minn A, Ghersi-Egea JF, Perrin R et al (1991) Drug metabolizing enzyme in the brain and cerebral microvessels. Brain Res Rev 16:65–82PubMedCrossRef Minn A, Ghersi-Egea JF, Perrin R et al (1991) Drug metabolizing enzyme in the brain and cerebral microvessels. Brain Res Rev 16:65–82PubMedCrossRef
go back to reference Murakami K, Kondo T, Chan PH (1997) Blood-brain barrier disruption: edema formation and apoprotic neuronal death following cold injury. Acta Neurochir Suppl (Wien) 70:234–236 Murakami K, Kondo T, Chan PH (1997) Blood-brain barrier disruption: edema formation and apoprotic neuronal death following cold injury. Acta Neurochir Suppl (Wien) 70:234–236
go back to reference Osborne R, Joel S, Trew D, Slevin M (1990) Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 47:12PubMedCrossRef Osborne R, Joel S, Trew D, Slevin M (1990) Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 47:12PubMedCrossRef
go back to reference Polt R, Porreca F, Szabo LZ et al (1994) Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci USA 91:7114–7118PubMedCrossRef Polt R, Porreca F, Szabo LZ et al (1994) Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci USA 91:7114–7118PubMedCrossRef
go back to reference Romberg R, Olofsen E, Bijil H (2005) Polymorphism of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid induced respiratory depression despite reduced analgesic response. Anesthesiology 102:522–530PubMedCrossRef Romberg R, Olofsen E, Bijil H (2005) Polymorphism of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid induced respiratory depression despite reduced analgesic response. Anesthesiology 102:522–530PubMedCrossRef
go back to reference Sai K, Itoda M, Saito Y et al (2006) Genetic variations and haplotype structures of the ABCB1 gene in a Japanese population: an expanded haplotype block covering the distal promoter region, andassociated ethnic differences. Ann Hum Genet 70:605–622PubMedCrossRef Sai K, Itoda M, Saito Y et al (2006) Genetic variations and haplotype structures of the ABCB1 gene in a Japanese population: an expanded haplotype block covering the distal promoter region, andassociated ethnic differences. Ann Hum Genet 70:605–622PubMedCrossRef
go back to reference Smith MT (2000) Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol 27:524–528PubMedCrossRef Smith MT (2000) Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol 27:524–528PubMedCrossRef
go back to reference Stone A, Mackenzie P, Galetin A et al (2003) Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human UDP-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos 31:1086–1089PubMedCrossRef Stone A, Mackenzie P, Galetin A et al (2003) Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human UDP-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos 31:1086–1089PubMedCrossRef
go back to reference Ulens C, Baker L, Ratka A et al (2001) Morphine-6beta-glucuronide and morphine-3-glucuronide, opioid receptor agonists with different potencies. Biochem Pharmacol 62(9):1273–1282PubMedCrossRef Ulens C, Baker L, Ratka A et al (2001) Morphine-6beta-glucuronide and morphine-3-glucuronide, opioid receptor agonists with different potencies. Biochem Pharmacol 62(9):1273–1282PubMedCrossRef
go back to reference Xie R, Bouw M, Hammarlund-Udenaes M (2000) Modelling of the blood-brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport. Br J Pharmacol 131:1784–1792PubMedCrossRef Xie R, Bouw M, Hammarlund-Udenaes M (2000) Modelling of the blood-brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport. Br J Pharmacol 131:1784–1792PubMedCrossRef
go back to reference Yamada H, Ishii K, Ishii Y et al (2003) Formation of highly analgesic morphine-6-glucuronide following physiologic concentration of morphine in human brain. J Toxicol Sci 28:395–401PubMedCrossRef Yamada H, Ishii K, Ishii Y et al (2003) Formation of highly analgesic morphine-6-glucuronide following physiologic concentration of morphine in human brain. J Toxicol Sci 28:395–401PubMedCrossRef
go back to reference Yoshimura H, Ida S, Oguri K, Tsukamoto H (1973) Biochemical basis for analgesic activity of morphine-6-glucuronide. Penetration of morphine-6-glucuronide in the brain of rats. Biochem Pharmacol 22:1423–1430PubMedCrossRef Yoshimura H, Ida S, Oguri K, Tsukamoto H (1973) Biochemical basis for analgesic activity of morphine-6-glucuronide. Penetration of morphine-6-glucuronide in the brain of rats. Biochem Pharmacol 22:1423–1430PubMedCrossRef
Metadata
Title
Morphine metabolism, transport and brain disposition
Authors
Simona De Gregori
Manuela De Gregori
Guglielmina Nadia Ranzani
Massimo Allegri
Cristina Minella
Mario Regazzi
Publication date
01-03-2012
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 1/2012
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-011-9274-6

Other articles of this Issue 1/2012

Metabolic Brain Disease 1/2012 Go to the issue