Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Monocytes/macrophages activation contributes to b-gamma-glutamyltransferase accumulation inside atherosclerotic plaques

Authors: Eugenia Belcastro, Maria Franzini, Silvana Cianchetti, Evelina Lorenzini, Silvia Masotti, Vanna Fierabracci, Angela Pucci, Alfonso Pompella, Alessandro Corti

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Gamma-glutamyltransferase (GGT) is a well-established independent risk factor for cardiovascular mortality related to atherosclerotic disease. Four GGT fractions have been identified in plasma, but only b-GGT fraction accumulates in atherosclerotic plaques, and correlates with other histological markers of vulnerability. The present study was aimed to evaluate whether macrophagic lineage cells may provide a source of b-GGT within the atherosclerotic plaque.

Methods

GGT expression and release were studied in human monocytes isolated from peripheral blood of healthy donors. The growth factors GM-CSF and M-CSF were used to induce differentiation into M1-like and M2-like macrophages, respectively. Plaque GGT was investigated in tissue samples obtained from patients undergoing carotid endoarterectomy.

Results

We found that M1-like macrophages express higher levels of GGT as compared to M2-like, and that both monocytes and M1-like macrophages—but not M2-like—are able to release the b-GGT fraction upon activation with pro-inflammatory stimuli. Western blot analysis of b-GGT extracted from plaques confirmed the presence of a GGT immunoreactive peptide coincident with that of macrophages.

Conclusions

Our data indicate that macrophages characterized by a pro-inflammatory phenotype may contribute to intra-plaque accumulation of b-GGT, which in turn may play a role in the progression of atherosclerosis by modulating inflammatory processes and favouring plaque instability.
Literature
1.
2.
go back to reference Shah PK. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol. 2003;41(4 Suppl S):15S–22S.CrossRefPubMed Shah PK. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol. 2003;41(4 Suppl S):15S–22S.CrossRefPubMed
6.
go back to reference Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, Li J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–7.CrossRefPubMed Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, Li J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–7.CrossRefPubMed
7.
go back to reference Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461–8.CrossRefPubMed Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461–8.CrossRefPubMed
8.
go back to reference Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, Sebti Y, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ Res. 2011;108(8):985–95.PubMedCentralCrossRefPubMed Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, Sebti Y, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ Res. 2011;108(8):985–95.PubMedCentralCrossRefPubMed
9.
go back to reference Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis. 2013;22(7):910–8.CrossRefPubMed Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis. 2013;22(7):910–8.CrossRefPubMed
10.
go back to reference Van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Krüppel-like factor 2. Atherosclerosis. 2011;214(2):345–9.CrossRefPubMed Van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Krüppel-like factor 2. Atherosclerosis. 2011;214(2):345–9.CrossRefPubMed
11.
go back to reference Ruttmann E, Brant LJ, Concin H, Diem G, Rapp K, Ulmer H. Vorarlberg Health Monitoring and Promotion Program Study Group. Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: an epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation. 2005;112(14):2130–7.CrossRefPubMed Ruttmann E, Brant LJ, Concin H, Diem G, Rapp K, Ulmer H. Vorarlberg Health Monitoring and Promotion Program Study Group. Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: an epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation. 2005;112(14):2130–7.CrossRefPubMed
12.
go back to reference Emdin M, Passino C, Michelassi C, Titta F, L’abbate A, Donato L, et al. Prognostic value of serum gamma-glutamyl transferase activity after myocardial infarction. Eur Heart J. 2001;22(19):1802–7.CrossRefPubMed Emdin M, Passino C, Michelassi C, Titta F, L’abbate A, Donato L, et al. Prognostic value of serum gamma-glutamyl transferase activity after myocardial infarction. Eur Heart J. 2001;22(19):1802–7.CrossRefPubMed
13.
go back to reference Franzini M, Bramanti E, Ottaviano V, Ghiri E, Scatena F, Barsacchi R, et al. A high performance gel filtration chromatography method for gamma-glutamyltransferase fraction analysis. Anal Biochem. 2008;374(1):1–6.CrossRefPubMed Franzini M, Bramanti E, Ottaviano V, Ghiri E, Scatena F, Barsacchi R, et al. A high performance gel filtration chromatography method for gamma-glutamyltransferase fraction analysis. Anal Biochem. 2008;374(1):1–6.CrossRefPubMed
14.
go back to reference Franzini M, Fornaciari I, Rong J, Larson MG, Passino C, Emdin M, et al. Correlates and reference limits of plasma gamma-glutamyltransferase fractions from the Framingham Heart Study. Clin Chim Acta. 2013;417:19–25.PubMedCentralCrossRefPubMed Franzini M, Fornaciari I, Rong J, Larson MG, Passino C, Emdin M, et al. Correlates and reference limits of plasma gamma-glutamyltransferase fractions from the Framingham Heart Study. Clin Chim Acta. 2013;417:19–25.PubMedCentralCrossRefPubMed
15.
go back to reference Fornaciari I, Fierabracci V, Corti A, Aziz Elawadi H, Lorenzini E, Emdin M, et al. Gamma-glutamyltransferase fractions in human plasma and bile: characteristic and biogenesis. PLoS One. 2014;9(2):e88532.PubMedCentralCrossRefPubMed Fornaciari I, Fierabracci V, Corti A, Aziz Elawadi H, Lorenzini E, Emdin M, et al. Gamma-glutamyltransferase fractions in human plasma and bile: characteristic and biogenesis. PLoS One. 2014;9(2):e88532.PubMedCentralCrossRefPubMed
16.
go back to reference Franzini M, Corti A, Martinelli B, Del Corso A, Emdin M, Parenti GF, et al. Gamma-glutamyltransferase activity in human atherosclerotic plaques–biochemical similarities with the circulating enzyme. Atherosclerosis. 2009;202(1):119–27.CrossRefPubMed Franzini M, Corti A, Martinelli B, Del Corso A, Emdin M, Parenti GF, et al. Gamma-glutamyltransferase activity in human atherosclerotic plaques–biochemical similarities with the circulating enzyme. Atherosclerosis. 2009;202(1):119–27.CrossRefPubMed
17.
go back to reference Wickham S, West MB, Cook PF, Hanigan MH. Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem. 2011;414:208–14.PubMedCentralCrossRefPubMed Wickham S, West MB, Cook PF, Hanigan MH. Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem. 2011;414:208–14.PubMedCentralCrossRefPubMed
18.
go back to reference Angeli V, Tacito A, Paolicchi A, Barsacchi R, Franzini M, Baldassini R, et al. A kinetic study of gamma-glutamyltransferase (GGT)-mediated S-nitrosoglutathione catabolism. Arch Biochem Biophys. 2009;48:191–6.CrossRef Angeli V, Tacito A, Paolicchi A, Barsacchi R, Franzini M, Baldassini R, et al. A kinetic study of gamma-glutamyltransferase (GGT)-mediated S-nitrosoglutathione catabolism. Arch Biochem Biophys. 2009;48:191–6.CrossRef
19.
go back to reference Paolicchi A, Minotti G, Tonarelli P, Tongiani R, De Cesare D, Mezzetti A, et al. Gamma-glutamyl transpeptidase-dependent iron reduction and LDL oxidation–a potential mechanism in atherosclerosis. J Investig Med. 1999;47(3):151–60.PubMed Paolicchi A, Minotti G, Tonarelli P, Tongiani R, De Cesare D, Mezzetti A, et al. Gamma-glutamyl transpeptidase-dependent iron reduction and LDL oxidation–a potential mechanism in atherosclerosis. J Investig Med. 1999;47(3):151–60.PubMed
20.
go back to reference Dominici S, Paolicchi A, Lorenzini E, Maellaro E, Comporti M, Pieri L, et al. Gamma-glutamyltransferase-dependent prooxidant reactions: a factor in multiple processes. BioFactors. 2003;17(1–4):187–98.CrossRefPubMed Dominici S, Paolicchi A, Lorenzini E, Maellaro E, Comporti M, Pieri L, et al. Gamma-glutamyltransferase-dependent prooxidant reactions: a factor in multiple processes. BioFactors. 2003;17(1–4):187–98.CrossRefPubMed
21.
go back to reference Dominici S, Paolicchi A, Corti A, Maellaro E, Pompella A. Prooxidant reactions promoted by soluble and cell-bound gamma-glutamyltransferase activity. Methods Enzymol. 2005;401:484–501.CrossRefPubMed Dominici S, Paolicchi A, Corti A, Maellaro E, Pompella A. Prooxidant reactions promoted by soluble and cell-bound gamma-glutamyltransferase activity. Methods Enzymol. 2005;401:484–501.CrossRefPubMed
22.
go back to reference Pang JH, Jiang MJ, Chen YL, Wang FW, Wang DL, Chu SH, et al. Increased ferritin gene expression in atherosclerotic lesions. J Clin Invest. 1996;97(10):2204–12.PubMedCentralCrossRefPubMed Pang JH, Jiang MJ, Chen YL, Wang FW, Wang DL, Chu SH, et al. Increased ferritin gene expression in atherosclerotic lesions. J Clin Invest. 1996;97(10):2204–12.PubMedCentralCrossRefPubMed
23.
go back to reference Hultberg B, Sjögren U. L-gamma-glutamyl transpeptidase activity in normal and leukemic leukocytes. Acta Haematol. 1980;63(3):132–5.CrossRefPubMed Hultberg B, Sjögren U. L-gamma-glutamyl transpeptidase activity in normal and leukemic leukocytes. Acta Haematol. 1980;63(3):132–5.CrossRefPubMed
24.
go back to reference Khalaf MR, Hayhoe FG. Cytochemistry of gamma-glutamyltransferase in haemic cells and malignancies. Histochem J. 1987;19(6–7):385–95.CrossRefPubMed Khalaf MR, Hayhoe FG. Cytochemistry of gamma-glutamyltransferase in haemic cells and malignancies. Histochem J. 1987;19(6–7):385–95.CrossRefPubMed
25.
go back to reference Emdin M, Passino C, Donato L, Paolicchi A, Pompella A. Serum gamma-glutamyltransferase as a risk factor of ischemic stroke might be independent of alcohol consumption. Stroke. 2002;33(4):1163–4.CrossRefPubMed Emdin M, Passino C, Donato L, Paolicchi A, Pompella A. Serum gamma-glutamyltransferase as a risk factor of ischemic stroke might be independent of alcohol consumption. Stroke. 2002;33(4):1163–4.CrossRefPubMed
26.
go back to reference Paolicchi A, Emdin M, Ghliozeni E, Ciancia E, Passino C, Popoff G, et al. Images in cardiovascular medicine. Human atherosclerotic plaques contain gamma-glutamyl transpeptidase enzyme activity. Circulation. 2004;109(11):1440.CrossRefPubMed Paolicchi A, Emdin M, Ghliozeni E, Ciancia E, Passino C, Popoff G, et al. Images in cardiovascular medicine. Human atherosclerotic plaques contain gamma-glutamyl transpeptidase enzyme activity. Circulation. 2004;109(11):1440.CrossRefPubMed
27.
go back to reference Pucci A, Franzini M, Matteucci M, Ceragioli S, Marconi M, Ferrari M, et al. b-Gamma-glutamyltransferase activity in human vulnerable carotid plaques. Atherosclerosis. 2014;237(1):307–13.CrossRefPubMed Pucci A, Franzini M, Matteucci M, Ceragioli S, Marconi M, Ferrari M, et al. b-Gamma-glutamyltransferase activity in human vulnerable carotid plaques. Atherosclerosis. 2014;237(1):307–13.CrossRefPubMed
28.
go back to reference Wankowicz Z, Megyeri P, Issekutz A. Synergy between tumour necrosis factor alpha and interleukin-1 in the induction of polymorphonuclear leukocyte migration during inflammation. J Leukoc Biol. 1988;43(4):349–56.PubMed Wankowicz Z, Megyeri P, Issekutz A. Synergy between tumour necrosis factor alpha and interleukin-1 in the induction of polymorphonuclear leukocyte migration during inflammation. J Leukoc Biol. 1988;43(4):349–56.PubMed
29.
go back to reference Yoon JH, Kim KS, Kim HU, Linton JA, Lee JG. Effects of TNF-alpha and IL-1 beta on mucin, lysozyme, IL-6 and IL-8 in passage-2 normal human nasal epithelial cells. Acta Otolaryngol. 1999;119(8):905–10.CrossRefPubMed Yoon JH, Kim KS, Kim HU, Linton JA, Lee JG. Effects of TNF-alpha and IL-1 beta on mucin, lysozyme, IL-6 and IL-8 in passage-2 normal human nasal epithelial cells. Acta Otolaryngol. 1999;119(8):905–10.CrossRefPubMed
30.
go back to reference Tufvesson E, Westergren-Thorsson G. Alteration of proteoglycan synthesis in human lung fibroblasts induced by interleukin-1beta and tumor necrosis factor-alpha. J Cell Biochem. 2000;77(2):298–309.CrossRefPubMed Tufvesson E, Westergren-Thorsson G. Alteration of proteoglycan synthesis in human lung fibroblasts induced by interleukin-1beta and tumor necrosis factor-alpha. J Cell Biochem. 2000;77(2):298–309.CrossRefPubMed
31.
go back to reference Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 2004;101(13):4560–5.PubMedCentralCrossRefPubMed Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 2004;101(13):4560–5.PubMedCentralCrossRefPubMed
32.
go back to reference Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol. 2006;79(2):285–93.CrossRefPubMed Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol. 2006;79(2):285–93.CrossRefPubMed
33.
go back to reference Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J Immunol. 2012;188(11):5752–65.CrossRefPubMed Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J Immunol. 2012;188(11):5752–65.CrossRefPubMed
34.
go back to reference Matheeussen V, Waumans Y, Martinet W, Van Goethem S, Van der Veken P, Scharpé S, et al. Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Res Cardiol. 2013;108(3):350.CrossRefPubMed Matheeussen V, Waumans Y, Martinet W, Van Goethem S, Van der Veken P, Scharpé S, et al. Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Res Cardiol. 2013;108(3):350.CrossRefPubMed
35.
go back to reference Barnett HJ, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998;339(20):1415–25.CrossRefPubMed Barnett HJ, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998;339(20):1415–25.CrossRefPubMed
36.
go back to reference Hanigan MH, Frierson HF Jr. Immunohistochemical detection of gamma-glutamyl transpeptidase in normal human tissue. J Histochem Cytochem. 1996;44(10):1101–8.CrossRefPubMed Hanigan MH, Frierson HF Jr. Immunohistochemical detection of gamma-glutamyl transpeptidase in normal human tissue. J Histochem Cytochem. 1996;44(10):1101–8.CrossRefPubMed
37.
go back to reference Corti A, Franzini M, Cianchetti S, Bergamini G, Lorenzini E, Melotti P, et al. Contribution by polymorphonucleate granulocytes to elevated gamma-glutamyltransferase in cystic fibrosis sputum. PLoS One. 2012;7(4):e34772.PubMedCentralCrossRefPubMed Corti A, Franzini M, Cianchetti S, Bergamini G, Lorenzini E, Melotti P, et al. Contribution by polymorphonucleate granulocytes to elevated gamma-glutamyltransferase in cystic fibrosis sputum. PLoS One. 2012;7(4):e34772.PubMedCentralCrossRefPubMed
38.
go back to reference Franzini M, Ottaviano V, Fierabracci V, Bramanti E, Zyw L, Barsacchi R, et al. Fractions of plasma gamma-glutamyltransferase in healthy individuals: reference values. Clin Chim Acta. 2008;395(1–2):188–9.CrossRefPubMed Franzini M, Ottaviano V, Fierabracci V, Bramanti E, Zyw L, Barsacchi R, et al. Fractions of plasma gamma-glutamyltransferase in healthy individuals: reference values. Clin Chim Acta. 2008;395(1–2):188–9.CrossRefPubMed
39.
go back to reference Huseby NE, Strömme JH. Practical points regarding routine determination of gamma-glutamyl transferase (gamma-GT) in serum with a kinetic method at 37 degrees C. Scand J Clin Lab Invest. 1974;34(4):357–63.CrossRefPubMed Huseby NE, Strömme JH. Practical points regarding routine determination of gamma-glutamyl transferase (gamma-GT) in serum with a kinetic method at 37 degrees C. Scand J Clin Lab Invest. 1974;34(4):357–63.CrossRefPubMed
40.
go back to reference Niida S, Kawahara M, Ishizuka Y, Ikeda Y, Kondo T, Hibi T, et al. Gamma-glutamyltranspeptidase stimulates receptor activator of nuclear factor-kappaB ligand expression independent of its enzymatic activity and serves as a pathological bone-resorbing factor. J Biol Chem. 2004;279(7):5752–6.CrossRefPubMed Niida S, Kawahara M, Ishizuka Y, Ikeda Y, Kondo T, Hibi T, et al. Gamma-glutamyltranspeptidase stimulates receptor activator of nuclear factor-kappaB ligand expression independent of its enzymatic activity and serves as a pathological bone-resorbing factor. J Biol Chem. 2004;279(7):5752–6.CrossRefPubMed
41.
go back to reference Evjen G, Huseby NE. Characterization of the carbohydrate moiety of human gamma-glutamyltransferases using lectin-blotting and glycosidase treatment. Clin Chim Acta. 1992;209(1–2):27–34.CrossRefPubMed Evjen G, Huseby NE. Characterization of the carbohydrate moiety of human gamma-glutamyltransferases using lectin-blotting and glycosidase treatment. Clin Chim Acta. 1992;209(1–2):27–34.CrossRefPubMed
42.
go back to reference Pshezhetsky AV, Ashmarina M. Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology. Prog Nucleic Acid Res Mol Biol. 2001;69:81–114.CrossRefPubMed Pshezhetsky AV, Ashmarina M. Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology. Prog Nucleic Acid Res Mol Biol. 2001;69:81–114.CrossRefPubMed
43.
go back to reference Miller AM, Sandler E, Kobb SM, Eastgate J, Zucali J. Hematopoietic growth factor induction of gamma-glutamyl transferase in the KG-1 myeloid cell line. Exp Hematol. 1993;21(1):9–15.PubMed Miller AM, Sandler E, Kobb SM, Eastgate J, Zucali J. Hematopoietic growth factor induction of gamma-glutamyl transferase in the KG-1 myeloid cell line. Exp Hematol. 1993;21(1):9–15.PubMed
44.
go back to reference Guidez F, Li AC, Horvai A, Welch JS, Glass CK. Differential utilization of Ras signaling pathways by macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF receptors during macrophage differentiation. Mol Cell Biol. 1998;18(7):3851–61.PubMedCentralCrossRefPubMed Guidez F, Li AC, Horvai A, Welch JS, Glass CK. Differential utilization of Ras signaling pathways by macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF receptors during macrophage differentiation. Mol Cell Biol. 1998;18(7):3851–61.PubMedCentralCrossRefPubMed
45.
go back to reference Ebner K, Bandion A, Binder BR, de Martin R, Schmid JA. GMCSF activates NF-kappaB via direct interaction of the GMCSF receptor with IkappaB kinase beta. Blood. 2003;102(1):192–9.CrossRefPubMed Ebner K, Bandion A, Binder BR, de Martin R, Schmid JA. GMCSF activates NF-kappaB via direct interaction of the GMCSF receptor with IkappaB kinase beta. Blood. 2003;102(1):192–9.CrossRefPubMed
46.
go back to reference Rego SL, Helms RS, Dréau D. Breast tumor cell TACE-shed MCSF promotes pro-angiogenic macrophages through NF-κB signaling. Angiogenesis. 2014;17(3):573–85.CrossRefPubMed Rego SL, Helms RS, Dréau D. Breast tumor cell TACE-shed MCSF promotes pro-angiogenic macrophages through NF-κB signaling. Angiogenesis. 2014;17(3):573–85.CrossRefPubMed
47.
go back to reference Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol. 2009;86(2):411–21.CrossRefPubMed Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol. 2009;86(2):411–21.CrossRefPubMed
48.
go back to reference Pandur S, Pankiv S, Johannessen M, Moens U, Huseby NE. Gamma-glutamyltransferase is upregulated after oxidative stress through the Ras signal transduction pathway in rat colon carcinoma cells. Free Radic Res. 2007;41(12):1376–84.CrossRefPubMed Pandur S, Pankiv S, Johannessen M, Moens U, Huseby NE. Gamma-glutamyltransferase is upregulated after oxidative stress through the Ras signal transduction pathway in rat colon carcinoma cells. Free Radic Res. 2007;41(12):1376–84.CrossRefPubMed
49.
go back to reference Daubeuf S, Accaoui MJ, Pettersen I, Huseby NE, Visvikis A, Galteau MM. Differential regulation of gamma-glutamyltransferase mRNAs in four human tumour cell lines. Biochim Biophys Acta. 2001;1568(1):67–73.CrossRefPubMed Daubeuf S, Accaoui MJ, Pettersen I, Huseby NE, Visvikis A, Galteau MM. Differential regulation of gamma-glutamyltransferase mRNAs in four human tumour cell lines. Biochim Biophys Acta. 2001;1568(1):67–73.CrossRefPubMed
50.
go back to reference Reuter S, Schnekenburger M, Cristofanon S, Buck I, Teiten MH, Daubeuf S, et al. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1. Biochem Pharmacol. 2009;77(3):397–411.CrossRefPubMed Reuter S, Schnekenburger M, Cristofanon S, Buck I, Teiten MH, Daubeuf S, et al. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1. Biochem Pharmacol. 2009;77(3):397–411.CrossRefPubMed
51.
go back to reference Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ. Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clin Exp Immunol. 2004;135(1):64–73.PubMedCentralCrossRefPubMed Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ. Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clin Exp Immunol. 2004;135(1):64–73.PubMedCentralCrossRefPubMed
52.
go back to reference Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK. IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res. 2009;82(1):59–66.CrossRefPubMed Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK. IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res. 2009;82(1):59–66.CrossRefPubMed
53.
go back to reference Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61.PubMedCentralCrossRefPubMed Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61.PubMedCentralCrossRefPubMed
54.
go back to reference Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.CrossRefPubMed Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.CrossRefPubMed
55.
go back to reference Heisterkamp N, Groffen J, Warburton D, Sneddon TP. The human gamma-glutamyltransferase gene family. Hum Genet. 2008;123(4):321–32.CrossRefPubMed Heisterkamp N, Groffen J, Warburton D, Sneddon TP. The human gamma-glutamyltransferase gene family. Hum Genet. 2008;123(4):321–32.CrossRefPubMed
Metadata
Title
Monocytes/macrophages activation contributes to b-gamma-glutamyltransferase accumulation inside atherosclerotic plaques
Authors
Eugenia Belcastro
Maria Franzini
Silvana Cianchetti
Evelina Lorenzini
Silvia Masotti
Vanna Fierabracci
Angela Pucci
Alfonso Pompella
Alessandro Corti
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0687-6

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.