Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Short report

Molecular characterization of Nipah virus from Pteropus hypomelanus in Southern Thailand

Authors: Supaporn Wacharapluesadee, Panumas Samseeneam, Mana Phermpool, Thongchai Kaewpom, Apaporn Rodpan, Pattarapol Maneeorn, Phimchanok Srongmongkol, Budsabong Kanchanasaka, Thiravat Hemachudha

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Nipah virus (NiV) first emerged in Malaysia in 1998, with two bat species (Pteropus hypomelanus and P. vampyrus) as the putative natural reservoirs. In 2002, NiV IgG antibodies were detected in these species from Thailand, but viral RNA could not be detected for strain characterization. Two strains of NiV (Malaysia and Bangladesh) have been found in P. lylei in central Thailand, although Bangladesh strain, the causative strain for the outbreak in Bangladesh since 2001, was dominant. To understand the diversity of NiV in Thailand, this study identified NiV strain, using molecular characterizations, from P. hypomelanus in southern Thailand.

Findings

Pooled bat urine specimens were collected from plastic sheet underneath bat roosts in April 2010, and then monthly from December 2010 to May 2011 at an island in southern Thailand. Five in 184 specimens were positive for NiV, using duplex nested RT-PCR assay on partial nucleocapsid fragment (357 bp). Whole sequences of nucleocapsid gene from four bats were characterized. All 5 partial fragments and 4 whole nucleocapsid genes formed a monophyletic with NiV-MY.

Conclusions

Our study showed that P. hypomelanus in southern Thailand and from Malaysia, a bordering country, harbored similar NiV. This finding indicates that NiV is not limited to central Thailand or P. lylei species, and it may be a source of inter-species transmission. This indicates a higher potential for a widespread NiV outbreak in Thailand. NiV surveillance in Pteropus bats, the major natural reservoirs, should be conducted continuously in countries or regions with high susceptibility to outbreaks.
Literature
1.
go back to reference Rota PA, Lo MK. Molecular virology of the henipaviruses. Curr Top Microbiol Immunol. 2012;359:41–58.PubMed Rota PA, Lo MK. Molecular virology of the henipaviruses. Curr Top Microbiol Immunol. 2012;359:41–58.PubMed
3.
go back to reference Ching PKG, de los Reyes VC, Sucaldito MN, Tayag E, Columna-Vingno AB, Malbas Jr FF, et al. Outbreak of Henipavirus Infection, Philippines, 2014. Emerg Infect Dis. 2015;21:328–31.CrossRefPubMedPubMedCentral Ching PKG, de los Reyes VC, Sucaldito MN, Tayag E, Columna-Vingno AB, Malbas Jr FF, et al. Outbreak of Henipavirus Infection, Philippines, 2014. Emerg Infect Dis. 2015;21:328–31.CrossRefPubMedPubMedCentral
4.
go back to reference Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, et al. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis. 2009;15:1229–35.CrossRefPubMedPubMedCentral Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, et al. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis. 2009;15:1229–35.CrossRefPubMedPubMedCentral
5.
go back to reference Clayton BA, Middleton D, Bergfeld J, Haining J, Arkinstall R, Wang L, et al. Transmission routes for Nipah virus from Malaysia and Bangladesh. Emerg Infect Dis. 2012;18:1983–93.CrossRefPubMedPubMedCentral Clayton BA, Middleton D, Bergfeld J, Haining J, Arkinstall R, Wang L, et al. Transmission routes for Nipah virus from Malaysia and Bangladesh. Emerg Infect Dis. 2012;18:1983–93.CrossRefPubMedPubMedCentral
6.
go back to reference Baseler L, de Wit E, Scott DP, Munster VJ, Feldmann H. Syrian hamsters (Mesocricetus auratus) oronasally inoculated with a Nipah virus isolate from Bangladesh or Malaysia develop similar respiratory tract lesions. Vet Pathol. 2015;52:38–45.CrossRefPubMed Baseler L, de Wit E, Scott DP, Munster VJ, Feldmann H. Syrian hamsters (Mesocricetus auratus) oronasally inoculated with a Nipah virus isolate from Bangladesh or Malaysia develop similar respiratory tract lesions. Vet Pathol. 2015;52:38–45.CrossRefPubMed
7.
go back to reference Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al. Isolation of Nipah virus from Malaysian Island flying-foxes. Microb Infect. 2002;4:145–51.CrossRef Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al. Isolation of Nipah virus from Malaysian Island flying-foxes. Microb Infect. 2002;4:145–51.CrossRef
8.
go back to reference Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, et al. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg. 2011;85:946–51.CrossRefPubMedPubMedCentral Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, et al. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg. 2011;85:946–51.CrossRefPubMedPubMedCentral
9.
go back to reference Rahman SA, Hassan L, Epstein JH, Mamat ZC, Yatim AM, Hassan SS, et al. Risk factors for Nipah virus infection among pteropid bats, Peninsular Malaysia. Emerg Infect Dis. 2013;19:51–60.CrossRefPubMedPubMedCentral Rahman SA, Hassan L, Epstein JH, Mamat ZC, Yatim AM, Hassan SS, et al. Risk factors for Nipah virus infection among pteropid bats, Peninsular Malaysia. Emerg Infect Dis. 2013;19:51–60.CrossRefPubMedPubMedCentral
10.
go back to reference Simons RR, Gale P, Horigan V, Snary EL, Breed AC. Potential for Introduction of Bat-Borne Zoonotic Viruses into the EU: A Review. Viruses. 2014;6:2084–121.CrossRefPubMedPubMedCentral Simons RR, Gale P, Horigan V, Snary EL, Breed AC. Potential for Introduction of Bat-Borne Zoonotic Viruses into the EU: A Review. Viruses. 2014;6:2084–121.CrossRefPubMedPubMedCentral
11.
go back to reference Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang LY, Hassan L, et al. Characterization of Nipah virus from naturally infected Pteropus vampyrus bats, Malaysia. Emerg Infect Dis. 2010;16:1990–3.CrossRefPubMedPubMedCentral Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang LY, Hassan L, et al. Characterization of Nipah virus from naturally infected Pteropus vampyrus bats, Malaysia. Emerg Infect Dis. 2010;16:1990–3.CrossRefPubMedPubMedCentral
12.
14.
go back to reference Yadav PD, Raut CG, Shete AM, Mishra AC, Towner JS, Nichol ST, et al. Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India. Am J Trop Med Hyg. 2012;87:576–8.CrossRefPubMedPubMedCentral Yadav PD, Raut CG, Shete AM, Mishra AC, Towner JS, Nichol ST, et al. Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India. Am J Trop Med Hyg. 2012;87:576–8.CrossRefPubMedPubMedCentral
15.
go back to reference Wacharapluesadee S, Ngamprasertwong T, Kaewpom T, Kattong P, Rodpan A, Wanghongsa S, et al. Genetic characterization of Nipah virus from Thai fruit bats (Pteropus lylei). Asian Biomedicine. 2013;7:813–9. Wacharapluesadee S, Ngamprasertwong T, Kaewpom T, Kattong P, Rodpan A, Wanghongsa S, et al. Genetic characterization of Nipah virus from Thai fruit bats (Pteropus lylei). Asian Biomedicine. 2013;7:813–9.
16.
go back to reference Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, et al. Bat Nipah virus, Thailand. Emerg Infect Dis. 2005;11:1949–51.CrossRefPubMedPubMedCentral Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, et al. Bat Nipah virus, Thailand. Emerg Infect Dis. 2005;11:1949–51.CrossRefPubMedPubMedCentral
17.
go back to reference Wacharapluesadee S, Hemachudha T. Duplex nested RT-PCR for detection of Nipah virus RNA from urine specimens of bats. J Virol Methods. 2007;141:97–101.CrossRefPubMed Wacharapluesadee S, Hemachudha T. Duplex nested RT-PCR for detection of Nipah virus RNA from urine specimens of bats. J Virol Methods. 2007;141:97–101.CrossRefPubMed
18.
go back to reference Chua KB. A novel approach for collecting samples from fruit bats for isolation of infectious agents. Microb Infect. 2003;5:487–90.CrossRef Chua KB. A novel approach for collecting samples from fruit bats for isolation of infectious agents. Microb Infect. 2003;5:487–90.CrossRef
19.
go back to reference Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
20.
go back to reference AbuBakar S, Chang LY, Ali AR, Sharifah SH, Yusoff K, Zamrod Z. Isolation and molecular identification of Nipah virus from pigs. Emerg Infect Dis. 2004;12:2228–30.CrossRef AbuBakar S, Chang LY, Ali AR, Sharifah SH, Yusoff K, Zamrod Z. Isolation and molecular identification of Nipah virus from pigs. Emerg Infect Dis. 2004;12:2228–30.CrossRef
22.
go back to reference Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P, Saengsen D, et al. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis. 2010;10:183–90.CrossRefPubMed Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P, Saengsen D, et al. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis. 2010;10:183–90.CrossRefPubMed
Metadata
Title
Molecular characterization of Nipah virus from Pteropus hypomelanus in Southern Thailand
Authors
Supaporn Wacharapluesadee
Panumas Samseeneam
Mana Phermpool
Thongchai Kaewpom
Apaporn Rodpan
Pattarapol Maneeorn
Phimchanok Srongmongkol
Budsabong Kanchanasaka
Thiravat Hemachudha
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0510-x

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.