Skip to main content
Top
Published in: Tumor Biology 8/2015

01-08-2015 | Review

Mitochondrial targeted peptides for cancer therapy

Authors: Sadaf Farsinejad, Zohre Gheisary, Sanaz Ebrahimi Samani, Ali Mohammad Alizadeh

Published in: Tumor Biology | Issue 8/2015

Login to get access

Abstract

Mitochondria are a key pharmacological target in all cancer cells, since the structure and function of this organelle is different between healthy and malignant cells. Oxidative damage, disruption of mitochondrial ATP synthesis, calcium dyshomeostasis, mtDNA damage, and induction of the mitochondrial outer membrane permeabilization (MOMP) lead to the mitochondrial dysfunctionality and increase the probability of the programmed cell death or apoptosis. A variety of the signaling pathways have been developed to promote cell death including overexpression of pro-apoptotic members of Bcl-2 family, overloaded calcium, and elevated reactive oxygen species (ROS) play a key role in the promoting mitochondrial cytochrome c release through MOMP and eventually leads to cell death. There are a wide range of the therapeutic-based peptide drugs, known mitochondrial targeted peptides (MTPs), which specifically target mitochondrial pathways into death. They have prominent advantages such as low toxicity, high specificity, and easy to synthesis. Some of these therapeutic peptides have shown to increased the clinical activity alone or in combination with other agents. In this review, we will outline the biological properties of MTPs for cancer therapy. Understanding the molecular mechanisms and signaling pathways controlling cell death by MTPs can be critical for the development of the therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Literature
1.
2.
go back to reference Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol. 2014;35(9):8483–523. Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol. 2014;35(9):8483–523.
3.
go back to reference Imanieh MH, Bagheri F, Alizadeh AM, Ashkani-Esfahani S. Oxytocin has therapeutic effects on cancer, a hypothesis. Eur J Pharmacol. 2014;741:112–23. Imanieh MH, Bagheri F, Alizadeh AM, Ashkani-Esfahani S. Oxytocin has therapeutic effects on cancer, a hypothesis. Eur J Pharmacol. 2014;741:112–23.
4.
go back to reference Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16:3–10.CrossRefPubMed Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16:3–10.CrossRefPubMed
5.
go back to reference Wu H-C, Chang D-K, Huang C-T. Targeted therapy for cancer. J Cancer Mol. 2006;2:57–66. Wu H-C, Chang D-K, Huang C-T. Targeted therapy for cancer. J Cancer Mol. 2006;2:57–66.
6.
go back to reference Neuzil J, Dyason JC, Freeman R, Dong L-F, Prochazka L, Wang X-F, et al. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr. 2007;39:65–72.CrossRefPubMed Neuzil J, Dyason JC, Freeman R, Dong L-F, Prochazka L, Wang X-F, et al. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr. 2007;39:65–72.CrossRefPubMed
7.
go back to reference J. Thundimadathil. Cancer treatment using peptides: current therapies and future prospects. J amino acids. 2012;2012. J. Thundimadathil. Cancer treatment using peptides: current therapies and future prospects. J amino acids. 2012;2012.
8.
9.
go back to reference Aina OH, Sroka TC, Chen ML, Lam KS. Therapeutic cancer targeting peptides. Pept Sci. 2002;66:184–99.CrossRef Aina OH, Sroka TC, Chen ML, Lam KS. Therapeutic cancer targeting peptides. Pept Sci. 2002;66:184–99.CrossRef
11.
12.
go back to reference Whelan RS, Konstantinidis K, Wei A-C, Chen Y, Reyna DE, Jha S, et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci. 2012;109:6566–71.CrossRefPubMedPubMedCentral Whelan RS, Konstantinidis K, Wei A-C, Chen Y, Reyna DE, Jha S, et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci. 2012;109:6566–71.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Smith RA, Hartley RC, Cocheme HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci. 2012;33:341–52.CrossRefPubMed Smith RA, Hartley RC, Cocheme HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci. 2012;33:341–52.CrossRefPubMed
15.
go back to reference Frezza C, Gottlieb E. Mitochondria in cancer: not just innocent bystanders. in Seminars in Cancer Biol. 2009;4-11. Frezza C, Gottlieb E. Mitochondria in cancer: not just innocent bystanders. in Seminars in Cancer Biol. 2009;4-11.
17.
go back to reference Martel C, Huynh LH, Garnier A, Ventura-Clapier R, Brenner C. Inhibition of the mitochondrial permeability transition for cytoprotection: direct versus indirect mechanisms. Biochem Res Int. 2012;2012:213403.CrossRefPubMedPubMedCentral Martel C, Huynh LH, Garnier A, Ventura-Clapier R, Brenner C. Inhibition of the mitochondrial permeability transition for cytoprotection: direct versus indirect mechanisms. Biochem Res Int. 2012;2012:213403.CrossRefPubMedPubMedCentral
20.
go back to reference Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G. Mitochondrial membrane permeabilization during the apoptotic process. Ann N Y Acad Sci. 1999;887:18–30.CrossRefPubMed Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G. Mitochondrial membrane permeabilization during the apoptotic process. Ann N Y Acad Sci. 1999;887:18–30.CrossRefPubMed
21.
go back to reference Alizadeh AM, Faghihi M, Khori V, Sohanaki H, Pourkhalili K, Mohammadghasemi F, et al. Oxytocin protects cardiomyocytes from apoptosis induced by ischemia–reperfusion in rat heart: role of mitochondrial ATP-dependent potassium channel and permeability transition pore. Peptides. 2012;36:71–7.CrossRefPubMed Alizadeh AM, Faghihi M, Khori V, Sohanaki H, Pourkhalili K, Mohammadghasemi F, et al. Oxytocin protects cardiomyocytes from apoptosis induced by ischemia–reperfusion in rat heart: role of mitochondrial ATP-dependent potassium channel and permeability transition pore. Peptides. 2012;36:71–7.CrossRefPubMed
23.
go back to reference Hosseini J, Mahmoodi M, Jalili A, Fakhari S, Hosseini-zijoud S-M, Tahamtan M, et al. Aloe-emodin Induces apoptosis through the up-regulation of Fas in the human breast cancer cell line MCF-7. Life Sci J. 2014;11(2s):47–53. Hosseini J, Mahmoodi M, Jalili A, Fakhari S, Hosseini-zijoud S-M, Tahamtan M, et al. Aloe-emodin Induces apoptosis through the up-regulation of Fas in the human breast cancer cell line MCF-7. Life Sci J. 2014;11(2s):47–53.
24.
go back to reference Jabbour AM, Heraud J, Daunt C, Kaufmann T, Sandow J, O'Reilly L, et al. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ. 2008;16:555–63.CrossRefPubMed Jabbour AM, Heraud J, Daunt C, Kaufmann T, Sandow J, O'Reilly L, et al. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ. 2008;16:555–63.CrossRefPubMed
25.
go back to reference Ren D, Tu H-C, Kim H, Wang GX, Bean GR, Takeuchi O, et al. BID, BIM, and PUMA are essential for activation of the BAX-and BAK-dependent cell death program. Science. 2010;330:1390–3.CrossRefPubMedPubMedCentral Ren D, Tu H-C, Kim H, Wang GX, Bean GR, Takeuchi O, et al. BID, BIM, and PUMA are essential for activation of the BAX-and BAK-dependent cell death program. Science. 2010;330:1390–3.CrossRefPubMedPubMedCentral
26.
go back to reference Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75.CrossRefPubMed Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75.CrossRefPubMed
28.
go back to reference Rooswinkel R, Van De Kooij B, Verheij M, Borst J. Bcl-2 is a better ABT-737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B. Cell Death Dis. 2012;3:e366.CrossRefPubMedPubMedCentral Rooswinkel R, Van De Kooij B, Verheij M, Borst J. Bcl-2 is a better ABT-737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B. Cell Death Dis. 2012;3:e366.CrossRefPubMedPubMedCentral
30.
go back to reference Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP. Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst. 2008;100:580–95.CrossRefPubMed Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP. Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst. 2008;100:580–95.CrossRefPubMed
31.
go back to reference Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K, Richardson P, et al. A novel Bcl-2/Bcl-XL/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene. 2006;26:2374–80.CrossRefPubMed Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K, Richardson P, et al. A novel Bcl-2/Bcl-XL/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene. 2006;26:2374–80.CrossRefPubMed
32.
go back to reference Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.CrossRefPubMed Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.CrossRefPubMed
33.
go back to reference Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Böck B, et al. Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene. 2008;27:6646–56.CrossRefPubMed Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Böck B, et al. Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene. 2008;27:6646–56.CrossRefPubMed
34.
go back to reference Trudel S, Stewart AK, Li Z, Shu Y, Liang S-B, Trieu Y, et al. The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin Cancer Res. 2007;13:621–9.CrossRefPubMed Trudel S, Stewart AK, Li Z, Shu Y, Liang S-B, Trieu Y, et al. The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin Cancer Res. 2007;13:621–9.CrossRefPubMed
35.
go back to reference Ackler S, Mitten MJ, Foster K, Oleksijew A, Refici M, Tahir SK, et al. The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother Pharmacol. 2010;66:869–80.CrossRefPubMed Ackler S, Mitten MJ, Foster K, Oleksijew A, Refici M, Tahir SK, et al. The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother Pharmacol. 2010;66:869–80.CrossRefPubMed
36.
go back to reference Rudin CM, Hann CL, Garon EB, De Oliveira MR, Bonomi PD, Camidge DR, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18:3163–9.CrossRefPubMedPubMedCentral Rudin CM, Hann CL, Garon EB, De Oliveira MR, Bonomi PD, Camidge DR, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18:3163–9.CrossRefPubMedPubMedCentral
37.
go back to reference Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.CrossRefPubMedPubMedCentral Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.CrossRefPubMedPubMedCentral
38.
go back to reference Vogler M, Dinsdale D, Dyer MJ, Cohen GM. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ. 2008;16:360–7.CrossRefPubMed Vogler M, Dinsdale D, Dyer MJ, Cohen GM. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ. 2008;16:360–7.CrossRefPubMed
39.
go back to reference Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.CrossRefPubMed Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.CrossRefPubMed
40.
go back to reference Shoemaker AR, Mitten MJ, Adickes J, Ackler S, Refici M, Ferguson D, et al. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res. 2008;14:3268–77.CrossRefPubMed Shoemaker AR, Mitten MJ, Adickes J, Ackler S, Refici M, Ferguson D, et al. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res. 2008;14:3268–77.CrossRefPubMed
41.
go back to reference Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.CrossRefPubMed Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.CrossRefPubMed
42.
go back to reference Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, et al. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24:120–9.CrossRefPubMed Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, et al. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24:120–9.CrossRefPubMed
43.
go back to reference Paik PK, Rudin CM, Brown A, Rizvi NA, Takebe N, Travis W, et al. A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol. 2010;66:1079–85.CrossRefPubMedPubMedCentral Paik PK, Rudin CM, Brown A, Rizvi NA, Takebe N, Travis W, et al. A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol. 2010;66:1079–85.CrossRefPubMedPubMedCentral
44.
go back to reference Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Madiraju SM, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci. 2007;104:19512–7.CrossRefPubMedPubMedCentral Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Madiraju SM, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci. 2007;104:19512–7.CrossRefPubMedPubMedCentral
45.
go back to reference Ma C, Yin G, You F, Wei Y, Huang Z, Chen X, et al. A specific cell-penetrating peptide induces apoptosis in SKOV3 cells by down-regulation of Bcl-2. Biotechnol Lett. 2013;35:1791–7.CrossRefPubMed Ma C, Yin G, You F, Wei Y, Huang Z, Chen X, et al. A specific cell-penetrating peptide induces apoptosis in SKOV3 cells by down-regulation of Bcl-2. Biotechnol Lett. 2013;35:1791–7.CrossRefPubMed
46.
go back to reference Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105–14.CrossRefPubMed Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105–14.CrossRefPubMed
47.
go back to reference Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci U S A. 2004;101:9381–6.CrossRefPubMedPubMedCentral Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci U S A. 2004;101:9381–6.CrossRefPubMedPubMedCentral
48.
go back to reference Kardeh S, Ashkani-Esfahani S, Alizadeh AM. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol. 2014;735:150–68.CrossRefPubMed Kardeh S, Ashkani-Esfahani S, Alizadeh AM. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol. 2014;735:150–68.CrossRefPubMed
49.
50.
go back to reference Galindo MF, Jordan J, Gonzalez-Garcia C, Cena V. Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in isolated rat brain mitochondria. Br J Pharmacol. 2003;139:797–804.CrossRefPubMedPubMedCentral Galindo MF, Jordan J, Gonzalez-Garcia C, Cena V. Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in isolated rat brain mitochondria. Br J Pharmacol. 2003;139:797–804.CrossRefPubMedPubMedCentral
51.
go back to reference Faghihi M, Alizadeh AM, Khori V, Latifpour M, Khodayari S. The role of nitric oxide, reactive oxygen species, and protein kinase C in oxytocin-induced cardioprotection in ischemic rat heart. Peptides. 2012;37:314–9.CrossRefPubMed Faghihi M, Alizadeh AM, Khori V, Latifpour M, Khodayari S. The role of nitric oxide, reactive oxygen species, and protein kinase C in oxytocin-induced cardioprotection in ischemic rat heart. Peptides. 2012;37:314–9.CrossRefPubMed
52.
go back to reference Petrosillo G, Ruggiero FM, Paradies G. Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J. 2003;17:2202–8.CrossRefPubMed Petrosillo G, Ruggiero FM, Paradies G. Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J. 2003;17:2202–8.CrossRefPubMed
53.
go back to reference Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–57.CrossRefPubMed Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–57.CrossRefPubMed
54.
go back to reference Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.CrossRefPubMed Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.CrossRefPubMed
55.
go back to reference Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974;346:261–310.CrossRefPubMed Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974;346:261–310.CrossRefPubMed
56.
go back to reference Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279:34682–90.CrossRefPubMed Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279:34682–90.CrossRefPubMed
57.
go back to reference Yin L, Kufe D. MUC1-C oncoprotein blocks terminal differentiation of chronic myelogenous leukemia cells by a ROS-mediated mechanism. Genes Cancer. 2011;2:56–64.CrossRefPubMedPubMedCentral Yin L, Kufe D. MUC1-C oncoprotein blocks terminal differentiation of chronic myelogenous leukemia cells by a ROS-mediated mechanism. Genes Cancer. 2011;2:56–64.CrossRefPubMedPubMedCentral
58.
go back to reference Wierzbicki PM, Adrych K, Kartanowicz D, Dobrowolski S, Stanislawowski M, Chybicki J, et al. Fragile histidine triad (FHIT) gene is overexpressed in colorectal cancer. J Physiol Pharmacol. 2009;4:63–70. Wierzbicki PM, Adrych K, Kartanowicz D, Dobrowolski S, Stanislawowski M, Chybicki J, et al. Fragile histidine triad (FHIT) gene is overexpressed in colorectal cancer. J Physiol Pharmacol. 2009;4:63–70.
59.
go back to reference Yu GR, Qin WW, Li JP, Hua W, Meng YL, Chen R, et al. HIV-TAT-fused FHIT protein functions as a potential pro-apoptotic molecule in hepatocellular carcinoma cells. Biosci Rep. 2012;32:271–9.CrossRefPubMed Yu GR, Qin WW, Li JP, Hua W, Meng YL, Chen R, et al. HIV-TAT-fused FHIT protein functions as a potential pro-apoptotic molecule in hepatocellular carcinoma cells. Biosci Rep. 2012;32:271–9.CrossRefPubMed
60.
go back to reference Zhivotovsky B, Orrenius S. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium. 2011;50:211–21.CrossRefPubMed Zhivotovsky B, Orrenius S. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium. 2011;50:211–21.CrossRefPubMed
61.
go back to reference Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci. 2011;119:3–19.CrossRefPubMed Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci. 2011;119:3–19.CrossRefPubMed
62.
go back to reference Norberg E, Gogvadze V, Ott M, Horn M, Uhlen P, Orrenius S, et al. An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ. 2008;15:1857–64.CrossRefPubMed Norberg E, Gogvadze V, Ott M, Horn M, Uhlen P, Orrenius S, et al. An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ. 2008;15:1857–64.CrossRefPubMed
64.
go back to reference Thor H, Hartzell P, Orrenius S. Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca2+. J Biol Chem. 1984;259:6612–5.PubMed Thor H, Hartzell P, Orrenius S. Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca2+. J Biol Chem. 1984;259:6612–5.PubMed
65.
go back to reference Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995;82:415–24.CrossRefPubMed Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995;82:415–24.CrossRefPubMed
66.
go back to reference Seo YW, Woo HN, Piya S, Moon AR, Oh JW, Yun CW, et al. The cell death-inducing activity of the peptide containing Noxa mitochondrial-targeting domain is associated with calcium release. Cancer Res. 2009;69:8356–65.CrossRefPubMed Seo YW, Woo HN, Piya S, Moon AR, Oh JW, Yun CW, et al. The cell death-inducing activity of the peptide containing Noxa mitochondrial-targeting domain is associated with calcium release. Cancer Res. 2009;69:8356–65.CrossRefPubMed
67.
go back to reference Zhong F, Harr MW, Bultynck G, Monaco G, Parys JB, De Smedt H, et al. Induction of Ca(2)+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood. 2011;117:2924–34.CrossRefPubMedPubMedCentral Zhong F, Harr MW, Bultynck G, Monaco G, Parys JB, De Smedt H, et al. Induction of Ca(2)+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood. 2011;117:2924–34.CrossRefPubMedPubMedCentral
68.
go back to reference Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene. 2000;19:329–36.CrossRefPubMed Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene. 2000;19:329–36.CrossRefPubMed
69.
go back to reference Shimizu S, Ide T, Yanagida T, Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem. 2000;275:12321–5.CrossRefPubMed Shimizu S, Ide T, Yanagida T, Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem. 2000;275:12321–5.CrossRefPubMed
70.
go back to reference Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM. Bid, but not Bax, regulates VDAC channels. J Biol Chem. 2004;279:13575–83.CrossRefPubMed Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM. Bid, but not Bax, regulates VDAC channels. J Biol Chem. 2004;279:13575–83.CrossRefPubMed
71.
go back to reference Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 2007;292:C45–51.CrossRefPubMed Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 2007;292:C45–51.CrossRefPubMed
72.
go back to reference Pennarun B, Gaidos G, Bucur O, Tinari A, Rupasinghe C, Jin T, et al. killerFLIP: a novel lytic peptide specifically inducing cancer cell death. Cell Death Dis. 2013;4:e894.CrossRefPubMedPubMedCentral Pennarun B, Gaidos G, Bucur O, Tinari A, Rupasinghe C, Jin T, et al. killerFLIP: a novel lytic peptide specifically inducing cancer cell death. Cell Death Dis. 2013;4:e894.CrossRefPubMedPubMedCentral
73.
go back to reference Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology. 2011;216:322–33.CrossRefPubMed Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology. 2011;216:322–33.CrossRefPubMed
74.
go back to reference Wu WKK, Sung JJY, To KF, Yu L, Li HT, Li ZJ, et al. The host defense peptide LL‐37 activates the tumor‐suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol. 2010;223:178–86.PubMed Wu WKK, Sung JJY, To KF, Yu L, Li HT, Li ZJ, et al. The host defense peptide LL‐37 activates the tumor‐suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol. 2010;223:178–86.PubMed
75.
go back to reference Ren SX, Cheng AS, To KF, Tong JH, Li MS, Shen J, et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res. 2012;72:6512–23.CrossRefPubMedPubMedCentral Ren SX, Cheng AS, To KF, Tong JH, Li MS, Shen J, et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res. 2012;72:6512–23.CrossRefPubMedPubMedCentral
76.
go back to reference Chuang C-M, Monie A, Wu A, Mao C-P, Hung C-F. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther. 2009;20:303–13.CrossRefPubMedPubMedCentral Chuang C-M, Monie A, Wu A, Mao C-P, Hung C-F. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther. 2009;20:303–13.CrossRefPubMedPubMedCentral
78.
go back to reference Law B, Quinti L, Choi Y, Weissleder R, Tung C-H. A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol Cancer Ther. 2006;5:1944–9.CrossRefPubMed Law B, Quinti L, Choi Y, Weissleder R, Tung C-H. A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol Cancer Ther. 2006;5:1944–9.CrossRefPubMed
80.
go back to reference Ko J-K, Choi K-H, Pan Z, Lin P, Weisleder N, Kim C-W, et al. The tail-anchoring domain of Bfl1 and HCCS1 targets mitochondrial membrane permeability to induce apoptosis. J Cell Sci. 2007;120:2912–23.CrossRefPubMed Ko J-K, Choi K-H, Pan Z, Lin P, Weisleder N, Kim C-W, et al. The tail-anchoring domain of Bfl1 and HCCS1 targets mitochondrial membrane permeability to induce apoptosis. J Cell Sci. 2007;120:2912–23.CrossRefPubMed
81.
go back to reference Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–92.CrossRefPubMed Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–92.CrossRefPubMed
82.
go back to reference Mizukawa K, Kawamura A, Sasayama T, Tanaka K, Kamei M, Sasaki M, et al. Synthetic Smac peptide enhances the effect of etoposide-induced apoptosis in human glioblastoma cell lines. J Neuro-Oncol. 2006;77:247–55.CrossRef Mizukawa K, Kawamura A, Sasayama T, Tanaka K, Kamei M, Sasaki M, et al. Synthetic Smac peptide enhances the effect of etoposide-induced apoptosis in human glioblastoma cell lines. J Neuro-Oncol. 2006;77:247–55.CrossRef
83.
go back to reference Yin L, Kosugi M, Kufe D. Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down-regulating TIGAR expression and depleting NADPH. Blood. 2012;119:810–6.CrossRefPubMedPubMedCentral Yin L, Kosugi M, Kufe D. Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down-regulating TIGAR expression and depleting NADPH. Blood. 2012;119:810–6.CrossRefPubMedPubMedCentral
84.
go back to reference Raina D, Kosugi M, Ahmad R, Panchamoorthy G, Rajabi H, Alam M, et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Mol Cancer Ther. 2011;10:806–16.CrossRefPubMedPubMedCentral Raina D, Kosugi M, Ahmad R, Panchamoorthy G, Rajabi H, Alam M, et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Mol Cancer Ther. 2011;10:806–16.CrossRefPubMedPubMedCentral
85.
go back to reference Shoshan-Barmatz V, Abu-Hamad S, Arzoine L, Zaid H. VDAC1 compositions and methods of use thereof for regulating apoptosis. ed: Google Patents, 2014. Shoshan-Barmatz V, Abu-Hamad S, Arzoine L, Zaid H. VDAC1 compositions and methods of use thereof for regulating apoptosis. ed: Google Patents, 2014.
86.
go back to reference Prezma T, Shteinfer A, Admoni L, Raviv Z, Sela I, Levi I, et al. VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis. 2013;4:e809.CrossRefPubMedPubMedCentral Prezma T, Shteinfer A, Admoni L, Raviv Z, Sela I, Levi I, et al. VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis. 2013;4:e809.CrossRefPubMedPubMedCentral
87.
go back to reference Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, et al. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One. 2008;3:e1852.CrossRefPubMedPubMedCentral Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, et al. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One. 2008;3:e1852.CrossRefPubMedPubMedCentral
88.
go back to reference Smeele KM, Southworth R, Eeerbeek O, Wu R, Koeman A, Ardehali H, et al. Acute dissociation of hexokinase from mitochondria abrogates normal functioning, ischemic tolerance and ischemic preconditioning of the intact beating heart. Circulation. 2010;122:A15296. Smeele KM, Southworth R, Eeerbeek O, Wu R, Koeman A, Ardehali H, et al. Acute dissociation of hexokinase from mitochondria abrogates normal functioning, ischemic tolerance and ischemic preconditioning of the intact beating heart. Circulation. 2010;122:A15296.
89.
go back to reference Smolarczyk R, Cichoń T, Graja K, Hucz J, Sochanik A, Szala S. Antitumor effect of RGD-4C-GG-D (KLAKLAK) 2 peptide in mouse B16 (F10) melanoma model. Acta Biochim Pol. 2005;53:801–5. Smolarczyk R, Cichoń T, Graja K, Hucz J, Sochanik A, Szala S. Antitumor effect of RGD-4C-GG-D (KLAKLAK) 2 peptide in mouse B16 (F10) melanoma model. Acta Biochim Pol. 2005;53:801–5.
90.
go back to reference Lee HS, Park CB, Kim JM, Jang SA, Park IY, Kim MS, et al. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett. 2008;271:47–55.CrossRefPubMed Lee HS, Park CB, Kim JM, Jang SA, Park IY, Kim MS, et al. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett. 2008;271:47–55.CrossRefPubMed
Metadata
Title
Mitochondrial targeted peptides for cancer therapy
Authors
Sadaf Farsinejad
Zohre Gheisary
Sanaz Ebrahimi Samani
Ali Mohammad Alizadeh
Publication date
01-08-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 8/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3719-1

Other articles of this Issue 8/2015

Tumor Biology 8/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine