Skip to main content
Top
Published in: Tumor Biology 8/2015

01-08-2015 | Research Article

Impact of TGF-β1 -509C/T and 869T/C polymorphisms on glioma risk and patient prognosis

Authors: Joana Vieira de Castro, Céline S. Gonçalves, Sandra Costa, Paulo Linhares, Rui Vaz, Ricardo Nabiço, Júlia Amorim, Marta Viana-Pereira, Rui M. Reis, Bruno M. Costa

Published in: Tumor Biology | Issue 8/2015

Login to get access

Abstract

Transforming growth factor beta (TGF-β) plays an important role in carcinogenesis. Two polymorphisms in the TGF-β1 gene (-509C/T and 869T/C) were described to influence susceptibility to gastric and breast cancers. The 869T/C polymorphism was also associated with overall survival in breast cancer patients. In the present study, we investigated the relevance of these TGF-β1 polymorphism in glioma risk and prognosis. A case-control study that included 114 glioma patients and 138 cancer-free controls was performed. Single nucleotide polymorphisms (SNPs) were evaluated by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). The influence of TGF-β1 -509C/T and 869T/C polymorphisms on glioma patient survival was evaluated by a Cox regression model adjusted for patients’ age and sex and represented in Kaplan-Meier curves. Our results demonstrated that TGF-β1 gene polymorphisms -509C/T and 869T/C are not significantly associated with glioma risk. Survival analyses showed that the homozygous -509TT genotype associates with longer overall survival of glioblastoma (GBM) patients when compared with patients carrying CC + CT genotypes (OR, 2.41; 95 % CI, 1.06–5.50; p = 0.036). In addition, the homozygous 869CC genotype is associated with increased overall survival of GBM patients when compared with 869TT + TC genotypes (OR, 2.62; 95 % CI, 1.11–6.17; p = 0.027). In conclusion, this study suggests that TGF-β1 -509C/T and 869T/C polymorphisms are not significantly associated with risk for developing gliomas but may be relevant prognostic biomarkers in GBM patients.
Literature
1.
go back to reference Boyle P, Levin B. World cancer report 2008. IARC Press, International Agency for Research on Cancer, 2008. Boyle P, Levin B. World cancer report 2008. IARC Press, International Agency for Research on Cancer, 2008.
2.
go back to reference Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2:494–503. quiz 491 p following 516.CrossRefPubMed Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2:494–503. quiz 491 p following 516.CrossRefPubMed
3.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 who classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.CrossRefPubMedPubMedCentral Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 who classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.CrossRefPubMedPubMedCentral
4.
go back to reference Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.CrossRefPubMedPubMedCentral Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.CrossRefPubMedPubMedCentral
5.
go back to reference Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol. 2006;24:1273–80.CrossRefPubMed Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol. 2006;24:1273–80.CrossRefPubMed
6.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMed
7.
go back to reference Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’yasova D, et al. Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer. 2008;113:1953–68.CrossRefPubMedPubMedCentral Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’yasova D, et al. Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer. 2008;113:1953–68.CrossRefPubMedPubMedCentral
8.
go back to reference Reuss D, von Deimling A. Hereditary tumor syndromes and gliomas. Recent Results Cancer Res. 2009;171:83–102.CrossRefPubMed Reuss D, von Deimling A. Hereditary tumor syndromes and gliomas. Recent Results Cancer Res. 2009;171:83–102.CrossRefPubMed
9.
go back to reference Wrensch M, Lee M, Miike R, Newman B, Barger G, Davis R, et al. Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. Am J Epidemiol. 1997;145:581–93.CrossRefPubMed Wrensch M, Lee M, Miike R, Newman B, Barger G, Davis R, et al. Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. Am J Epidemiol. 1997;145:581–93.CrossRefPubMed
10.
go back to reference Hocking B. Occupational exposure to ionizing and non-ionizing radiation and risk of glioma. Occup Med (Lond). 2008;58:148–9. author reply 149.CrossRef Hocking B. Occupational exposure to ionizing and non-ionizing radiation and risk of glioma. Occup Med (Lond). 2008;58:148–9. author reply 149.CrossRef
11.
go back to reference Ron E, Modan B, Boice Jr JD, Alfandary E, Stovall M, Chetrit A, et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med. 1988;319:1033–9.CrossRefPubMed Ron E, Modan B, Boice Jr JD, Alfandary E, Stovall M, Chetrit A, et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med. 1988;319:1033–9.CrossRefPubMed
12.
go back to reference Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41:899–904.CrossRefPubMedPubMedCentral Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41:899–904.CrossRefPubMedPubMedCentral
13.
go back to reference Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the cdkn2b and rtel1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41:905–8.CrossRefPubMedPubMedCentral Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the cdkn2b and rtel1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41:905–8.CrossRefPubMedPubMedCentral
15.
go back to reference Derynck R, Zhang YE. Smad-dependent and smad-independent pathways in tgf-beta family signalling. Nature. 2003;425:577–84.CrossRefPubMed Derynck R, Zhang YE. Smad-dependent and smad-independent pathways in tgf-beta family signalling. Nature. 2003;425:577–84.CrossRefPubMed
16.
go back to reference Kaminska B, Kocyk M, Kijewska M. Tgf beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol. 2013;986:171–87.CrossRefPubMed Kaminska B, Kocyk M, Kijewska M. Tgf beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol. 2013;986:171–87.CrossRefPubMed
17.
go back to reference Rich JN. The role of transforming growth factor-beta in primary brain tumors. Front Biosci. 2003;8:e245–60.CrossRefPubMed Rich JN. The role of transforming growth factor-beta in primary brain tumors. Front Biosci. 2003;8:e245–60.CrossRefPubMed
18.
go back to reference Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, et al. Tgf-beta increases glioma-initiating cell self-renewal through the induction of lif in human glioblastoma. Cancer Cell. 2009;15:315–27.CrossRefPubMed Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, et al. Tgf-beta increases glioma-initiating cell self-renewal through the induction of lif in human glioblastoma. Cancer Cell. 2009;15:315–27.CrossRefPubMed
19.
go back to reference Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003;63:2610–5.PubMed Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003;63:2610–5.PubMed
20.
go back to reference Cai Q, Tang Y, Zhang M, Shang Z, Li G, Tian J, et al. Tgfbeta1 leu10pro polymorphism contributes to the development of prostate cancer: evidence from a meta-analysis. Tumour Biol. 2014;35:667–73.CrossRefPubMed Cai Q, Tang Y, Zhang M, Shang Z, Li G, Tian J, et al. Tgfbeta1 leu10pro polymorphism contributes to the development of prostate cancer: evidence from a meta-analysis. Tumour Biol. 2014;35:667–73.CrossRefPubMed
21.
go back to reference Chang WW, Zhang L, Su H, Yao YS. An updated meta-analysis of transforming growth factor-beta1 gene: three polymorphisms with gastric cancer. Tumour Biol. 2014;35:2837–44.CrossRefPubMed Chang WW, Zhang L, Su H, Yao YS. An updated meta-analysis of transforming growth factor-beta1 gene: three polymorphisms with gastric cancer. Tumour Biol. 2014;35:2837–44.CrossRefPubMed
22.
go back to reference Migita K, Miyazoe S, Maeda Y, Daikoku M, Abiru S, Ueki T, et al. Cytokine gene polymorphisms in japanese patients with hepatitis b virus infection–association between tgf-beta1 polymorphisms and hepatocellular carcinoma. J Hepatol. 2005;42:505–10.CrossRefPubMed Migita K, Miyazoe S, Maeda Y, Daikoku M, Abiru S, Ueki T, et al. Cytokine gene polymorphisms in japanese patients with hepatitis b virus infection–association between tgf-beta1 polymorphisms and hepatocellular carcinoma. J Hepatol. 2005;42:505–10.CrossRefPubMed
23.
go back to reference Li K, Xia F, Zhang K, Mo A, Liu L. Association of a tgf-b1-509c/t polymorphism with gastric cancer risk: a meta-analysis. Ann Hum Genet. 2013;77:1–8.CrossRefPubMed Li K, Xia F, Zhang K, Mo A, Liu L. Association of a tgf-b1-509c/t polymorphism with gastric cancer risk: a meta-analysis. Ann Hum Genet. 2013;77:1–8.CrossRefPubMed
24.
go back to reference Gonzalez-Zuloeta Ladd AM, Arias-Vasquez A, Siemes C, Coebergh JW, Hofman A, Witteman J, et al. Transforming-growth factor beta1 leu10pro polymorphism and breast cancer morbidity. Eur J Cancer. 2007;43:371–4.CrossRefPubMed Gonzalez-Zuloeta Ladd AM, Arias-Vasquez A, Siemes C, Coebergh JW, Hofman A, Witteman J, et al. Transforming-growth factor beta1 leu10pro polymorphism and breast cancer morbidity. Eur J Cancer. 2007;43:371–4.CrossRefPubMed
25.
go back to reference Shu XO, Gao YT, Cai Q, Pierce L, Cai H, Ruan ZX, et al. Genetic polymorphisms in the tgf-beta 1 gene and breast cancer survival: a report from the shanghai breast cancer study. Cancer Res. 2004;64:836–9.CrossRefPubMed Shu XO, Gao YT, Cai Q, Pierce L, Cai H, Ruan ZX, et al. Genetic polymorphisms in the tgf-beta 1 gene and breast cancer survival: a report from the shanghai breast cancer study. Cancer Res. 2004;64:836–9.CrossRefPubMed
26.
go back to reference Ewart-Toland A, Chan JM, Yuan J, Balmain A, Ma J. A gain of function tgfb1 polymorphism may be associated with late stage prostate cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:759–64.PubMed Ewart-Toland A, Chan JM, Yuan J, Balmain A, Ma J. A gain of function tgfb1 polymorphism may be associated with late stage prostate cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:759–64.PubMed
27.
go back to reference Kang HG, Chae MH, Park JM, Kim EJ, Park JH, Kam S, et al. Polymorphisms in tgf-beta1 gene and the risk of lung cancer. Lung Cancer. 2006;52:1–7.CrossRefPubMed Kang HG, Chae MH, Park JM, Kim EJ, Park JH, Kam S, et al. Polymorphisms in tgf-beta1 gene and the risk of lung cancer. Lung Cancer. 2006;52:1–7.CrossRefPubMed
28.
go back to reference Luedecking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI. Analysis of genetic polymorphisms in the transforming growth factor-beta1 gene and the risk of alzheimer’s disease. Hum Genet. 2000;106:565–9.CrossRefPubMed Luedecking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI. Analysis of genetic polymorphisms in the transforming growth factor-beta1 gene and the risk of alzheimer’s disease. Hum Genet. 2000;106:565–9.CrossRefPubMed
29.
go back to reference Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet. 1999;8:93–7.CrossRefPubMed Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet. 1999;8:93–7.CrossRefPubMed
30.
go back to reference Kaklamani VG, Baddi L, Liu J, Rosman D, Phukan S, Bradley C, et al. Combined genetic assessment of transforming growth factor-beta signaling pathway variants may predict breast cancer risk. Cancer Res. 2005;65:3454–61.PubMed Kaklamani VG, Baddi L, Liu J, Rosman D, Phukan S, Bradley C, et al. Combined genetic assessment of transforming growth factor-beta signaling pathway variants may predict breast cancer risk. Cancer Res. 2005;65:3454–61.PubMed
31.
go back to reference Watanabe Y, Kinoshita A, Yamada T, Ohta T, Kishino T, Matsumoto N, et al. A catalog of 106 single-nucleotide polymorphisms (snps) and 11 other types of variations in genes for transforming growth factor-beta1 (tgf-beta1) and its signaling pathway. J Hum Genet. 2002;47:478–83.CrossRefPubMed Watanabe Y, Kinoshita A, Yamada T, Ohta T, Kishino T, Matsumoto N, et al. A catalog of 106 single-nucleotide polymorphisms (snps) and 11 other types of variations in genes for transforming growth factor-beta1 (tgf-beta1) and its signaling pathway. J Hum Genet. 2002;47:478–83.CrossRefPubMed
32.
go back to reference Li X, Yue ZC, Zhang YY, Bai J, Meng XN, Geng JS, et al. Elevated serum level and gene polymorphisms of tgf-beta1 in gastric cancer. J Clin Lab Anal. 2008;22:164–71.CrossRefPubMed Li X, Yue ZC, Zhang YY, Bai J, Meng XN, Geng JS, et al. Elevated serum level and gene polymorphisms of tgf-beta1 in gastric cancer. J Clin Lab Anal. 2008;22:164–71.CrossRefPubMed
33.
go back to reference Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.CrossRefPubMed Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.CrossRefPubMed
34.
go back to reference Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer. J Clin Oncol. 2005;23:2078–93.CrossRefPubMed Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer. J Clin Oncol. 2005;23:2078–93.CrossRefPubMed
35.
go back to reference Derynck R, Akhurst RJ, Balmain A. Tgf-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.CrossRefPubMed Derynck R, Akhurst RJ, Balmain A. Tgf-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.CrossRefPubMed
36.
go back to reference Mullenbach R, Lagoda PJ, Welter C. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 1989;5:391.PubMed Mullenbach R, Lagoda PJ, Welter C. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 1989;5:391.PubMed
37.
go back to reference Wu GY, Hasenberg T, Magdeburg R, Bonninghoff R, Sturm JW, Keese M. Association between egf, tgf-beta1, vegf gene polymorphism and colorectal cancer. World J Surg. 2009;33:124–9.CrossRefPubMed Wu GY, Hasenberg T, Magdeburg R, Bonninghoff R, Sturm JW, Keese M. Association between egf, tgf-beta1, vegf gene polymorphism and colorectal cancer. World J Surg. 2009;33:124–9.CrossRefPubMed
38.
go back to reference Lima-Ramos V, Pacheco-Figueiredo L, Costa S, Pardal F, Silva A, Amorim J, et al. Tp53 codon 72 polymorphism in susceptibility, overall survival, and adjuvant therapy response of gliomas. Cancer Genet Cytogenet. 2008;180:14–9.CrossRefPubMed Lima-Ramos V, Pacheco-Figueiredo L, Costa S, Pardal F, Silva A, Amorim J, et al. Tp53 codon 72 polymorphism in susceptibility, overall survival, and adjuvant therapy response of gliomas. Cancer Genet Cytogenet. 2008;180:14–9.CrossRefPubMed
39.
go back to reference Liu Y, Scheurer ME, El-Zein R, Cao Y, Do KA, Gilbert M, et al. Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol Biomarkers Prev. 2009;18:204–14.CrossRefPubMedPubMedCentral Liu Y, Scheurer ME, El-Zein R, Cao Y, Do KA, Gilbert M, et al. Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol Biomarkers Prev. 2009;18:204–14.CrossRefPubMedPubMedCentral
40.
go back to reference Wang LE, Bondy ML, Shen H, El-Zein R, Aldape K, Cao Y, et al. Polymorphisms of DNA repair genes and risk of glioma. Cancer Res. 2004;64:5560–3.CrossRefPubMed Wang LE, Bondy ML, Shen H, El-Zein R, Aldape K, Cao Y, et al. Polymorphisms of DNA repair genes and risk of glioma. Cancer Res. 2004;64:5560–3.CrossRefPubMed
41.
go back to reference Wiencke JK, Aldape K, McMillan A, Wiemels J, Moghadassi M, Miike R, et al. Molecular features of adult glioma associated with patient race/ethnicity, age, and a polymorphism in o6-methylguanine-DNA-methyltransferase. Cancer Epidemiol Biomark Prev. 2005;14:1774–83.CrossRef Wiencke JK, Aldape K, McMillan A, Wiemels J, Moghadassi M, Miike R, et al. Molecular features of adult glioma associated with patient race/ethnicity, age, and a polymorphism in o6-methylguanine-DNA-methyltransferase. Cancer Epidemiol Biomark Prev. 2005;14:1774–83.CrossRef
42.
go back to reference Elexpuru-Camiruaga J, Buxton N, Kandula V, Dias PS, Campbell D, McIntosh J, et al. Susceptibility to astrocytoma and meningioma: influence of allelism at glutathione s-transferase (gstt1 and gstm1) and cytochrome p-450 (cyp2d6) loci. Cancer Res. 1995;55:4237–9.PubMed Elexpuru-Camiruaga J, Buxton N, Kandula V, Dias PS, Campbell D, McIntosh J, et al. Susceptibility to astrocytoma and meningioma: influence of allelism at glutathione s-transferase (gstt1 and gstm1) and cytochrome p-450 (cyp2d6) loci. Cancer Res. 1995;55:4237–9.PubMed
43.
go back to reference Zhao P, Zhao L, Zou P, Lu A, Liu N, Yan W, et al. Genetic oxidative stress variants and glioma risk in a chinese population: a hospital-based case-control study. BMC Cancer. 2012;12:617.CrossRefPubMedPubMedCentral Zhao P, Zhao L, Zou P, Lu A, Liu N, Yan W, et al. Genetic oxidative stress variants and glioma risk in a chinese population: a hospital-based case-control study. BMC Cancer. 2012;12:617.CrossRefPubMedPubMedCentral
44.
go back to reference Costa BM, Ferreira P, Costa S, Canedo P, Oliveira P, Silva A, et al. Association between functional egf + 61 polymorphism and glioma risk. Clin Cancer Res. 2007;13:2621–6.CrossRefPubMed Costa BM, Ferreira P, Costa S, Canedo P, Oliveira P, Silva A, et al. Association between functional egf + 61 polymorphism and glioma risk. Clin Cancer Res. 2007;13:2621–6.CrossRefPubMed
45.
go back to reference Costa BM, Viana-Pereira M, Fernandes R, Costa S, Linhares P, Vaz R, et al. Impact of egfr genetic variants on glioma risk and patient outcome. Cancer Epidemiol Biomarkers Prev. 2011;20:2610–7.CrossRefPubMed Costa BM, Viana-Pereira M, Fernandes R, Costa S, Linhares P, Vaz R, et al. Impact of egfr genetic variants on glioma risk and patient outcome. Cancer Epidemiol Biomarkers Prev. 2011;20:2610–7.CrossRefPubMed
46.
go back to reference Jiang H, Lian M, Xie J, Li J, Wang M. Three single nucleotide polymorphisms of the vascular endothelial growth factor (vegf) gene and glioma risk in a chinese population. J Int Med Res. 2013;41:1484–94.CrossRefPubMed Jiang H, Lian M, Xie J, Li J, Wang M. Three single nucleotide polymorphisms of the vascular endothelial growth factor (vegf) gene and glioma risk in a chinese population. J Int Med Res. 2013;41:1484–94.CrossRefPubMed
47.
48.
go back to reference Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, et al. The l10p polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett. 2003;201:181–4.CrossRefPubMed Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, et al. The l10p polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett. 2003;201:181–4.CrossRefPubMed
49.
go back to reference Qi P, Ruan CP, Wang H, Zhou FG, Zhao YP, Gu X, et al. 509c>t polymorphism in the tgf-beta1 gene promoter is not associated with susceptibility to and progression of colorectal cancer in chinese. Color Dis: Off J Assoc Coloproctol G B Irel. 2010;12:1153–8.CrossRef Qi P, Ruan CP, Wang H, Zhou FG, Zhao YP, Gu X, et al. 509c>t polymorphism in the tgf-beta1 gene promoter is not associated with susceptibility to and progression of colorectal cancer in chinese. Color Dis: Off J Assoc Coloproctol G B Irel. 2010;12:1153–8.CrossRef
50.
go back to reference Crivello A, Giacalone A, Vaglica M, Scola L, Forte GI, Macaluso MC, et al. Regulatory cytokine gene polymorphisms and risk of colorectal carcinoma. Ann N Y Acad Sci. 2006;1089:98–103.CrossRefPubMed Crivello A, Giacalone A, Vaglica M, Scola L, Forte GI, Macaluso MC, et al. Regulatory cytokine gene polymorphisms and risk of colorectal carcinoma. Ann N Y Acad Sci. 2006;1089:98–103.CrossRefPubMed
51.
go back to reference Macarthur M, Sharp L, Hold GL, Little J, El-Omar EM. The role of cytokine gene polymorphisms in colorectal cancer and their interaction with aspirin use in the northeast of scotland. Cancer Epidemiol Biomarkers Prev. 2005;14:1613–8.CrossRefPubMed Macarthur M, Sharp L, Hold GL, Little J, El-Omar EM. The role of cytokine gene polymorphisms in colorectal cancer and their interaction with aspirin use in the northeast of scotland. Cancer Epidemiol Biomarkers Prev. 2005;14:1613–8.CrossRefPubMed
52.
go back to reference Saltzman BS, Yamamoto JF, Decker R, Yokochi L, Theriault AG, Vogt TM, et al. Association of genetic variation in the transforming growth factor beta-1 gene with serum levels and risk of colorectal neoplasia. Cancer Res. 2008;68:1236–44.CrossRefPubMedPubMedCentral Saltzman BS, Yamamoto JF, Decker R, Yokochi L, Theriault AG, Vogt TM, et al. Association of genetic variation in the transforming growth factor beta-1 gene with serum levels and risk of colorectal neoplasia. Cancer Res. 2008;68:1236–44.CrossRefPubMedPubMedCentral
53.
go back to reference Zhang Y, Liu B, Jin M, Ni Q, Liang X, Ma X, et al. Genetic polymorphisms of transforming growth factor-beta1 and its receptors and colorectal cancer susceptibility: a population-based case-control study in china. Cancer Lett. 2009;275:102–8.CrossRefPubMed Zhang Y, Liu B, Jin M, Ni Q, Liang X, Ma X, et al. Genetic polymorphisms of transforming growth factor-beta1 and its receptors and colorectal cancer susceptibility: a population-based case-control study in china. Cancer Lett. 2009;275:102–8.CrossRefPubMed
54.
go back to reference Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M, et al. Add-on anti-tgf-beta antibody to ace inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol: JASN. 2003;14:1816–24.CrossRefPubMed Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M, et al. Add-on anti-tgf-beta antibody to ace inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol: JASN. 2003;14:1816–24.CrossRefPubMed
Metadata
Title
Impact of TGF-β1 -509C/T and 869T/C polymorphisms on glioma risk and patient prognosis
Authors
Joana Vieira de Castro
Céline S. Gonçalves
Sandra Costa
Paulo Linhares
Rui Vaz
Ricardo Nabiço
Júlia Amorim
Marta Viana-Pereira
Rui M. Reis
Bruno M. Costa
Publication date
01-08-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 8/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3343-0

Other articles of this Issue 8/2015

Tumor Biology 8/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine