Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2013

Open Access 01-12-2013 | Research article

Mitochondrial quality, dynamics and functional capacity in Parkinson’s disease cybrid cell lines selected for Lewy body expression

Authors: Emily N Cronin-Furman, M Kathleen Borland, Kristen E Bergquist, James P Bennett Jr, Patricia A Trimmer

Published in: Molecular Neurodegeneration | Issue 1/2013

Login to get access

Abstract

Background

Lewy bodies (LB) are a neuropathological hallmark of Parkinson’s disease (PD) and other synucleinopathies. The role their formation plays in disease pathogenesis is not well understood, in part because studies of LB have been limited to examination of post-mortem tissue. LB formation may be detrimental to neuronal survival or merely an adaptive response to other ongoing pathological processes. In a human cytoplasmic hybrid (cybrid) neural cell model that expresses mitochondrial DNA from PD patients, we observed spontaneous formation of intracellular protein aggregates (“cybrid LB” or CLB) that replicate morphological and biochemical properties of native, cortical LB. We studied mitochondrial morphology, bioenergetics and biogenesis signaling by creating stable sub-clones of three PD cybrid cell lines derived from cells expressing CLB.

Results

Cloning based on CLB expression had a differential effect on mitochondrial morphology, movement and oxygen utilization in each of three sub-cloned lines, but no long-term change in CLB expression. In one line (PD63CLB), mitochondrial function declined compared to the original PD cybrid line (PD63Orig) due to low levels of mtDNA in nucleoids. In another cell line (PD61Orig), the reverse was true, and cellular and mitochondrial function improved after sub-cloning for CLB expression (PD61CLB). In the third cell line (PD67Orig), there was no change in function after selection for CLB expression (PD67CLB).

Conclusions

Expression of mitochondrial DNA derived from PD patients in cybrid cell lines induced the spontaneous formation of CLB. The creation of three sub-cloned cybrid lines from cells expressing CLB resulted in differential phenotypic changes in mitochondrial and cellular function. These changes were driven by the expression of patient derived mitochondrial DNA in nucleoids, rather than by the presence of CLB. Our studies suggest that mitochondrial DNA plays an important role in cellular and mitochondrial dysfunction in PD. Additional studies will be needed to assess the direct effect of CLB expression on cellular and mitochondrial function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Braak H, Del TK, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U: Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol. 2002, 249 (3): III/1-III/5.CrossRef Braak H, Del TK, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U: Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol. 2002, 249 (3): III/1-III/5.CrossRef
2.
go back to reference Burbulla LF, Schelling C, Kato H, Rapaport D, Woitalla D, Schiesling C, Schulte C, Sharma M, Illig T, Bauer P, et al: Dissecting the role of the mitochondrial chaperone mortalin in Parkinson’s disease: functional impact of disease-related variants on mitochondrial homeostasis. Hum Mol Genet. 2010, 19: 4437-4452. 10.1093/hmg/ddq370.PubMedCentralCrossRefPubMed Burbulla LF, Schelling C, Kato H, Rapaport D, Woitalla D, Schiesling C, Schulte C, Sharma M, Illig T, Bauer P, et al: Dissecting the role of the mitochondrial chaperone mortalin in Parkinson’s disease: functional impact of disease-related variants on mitochondrial homeostasis. Hum Mol Genet. 2010, 19: 4437-4452. 10.1093/hmg/ddq370.PubMedCentralCrossRefPubMed
4.
go back to reference Esteves AR, Domingues AF, Ferreira IL, Januario C, Swerdlow RH, Oliveira CR, Cardoso SM: Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion. 2008, 8: 219-228. 10.1016/j.mito.2008.03.004.CrossRefPubMed Esteves AR, Domingues AF, Ferreira IL, Januario C, Swerdlow RH, Oliveira CR, Cardoso SM: Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion. 2008, 8: 219-228. 10.1016/j.mito.2008.03.004.CrossRefPubMed
5.
go back to reference Exner N, Lutz AK, Haass C, Winklhofer KF: Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012, 31: 3038-3062. 10.1038/emboj.2012.170.PubMedCentralCrossRefPubMed Exner N, Lutz AK, Haass C, Winklhofer KF: Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012, 31: 3038-3062. 10.1038/emboj.2012.170.PubMedCentralCrossRefPubMed
6.
go back to reference Esteves AR, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons KE, Pahwa R, Burns JM, Cardoso SM, Swerdlow RH: Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J Neurochem. 2010, 113: 674-682. 10.1111/j.1471-4159.2010.06631.x.CrossRefPubMed Esteves AR, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons KE, Pahwa R, Burns JM, Cardoso SM, Swerdlow RH: Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J Neurochem. 2010, 113: 674-682. 10.1111/j.1471-4159.2010.06631.x.CrossRefPubMed
7.
go back to reference Keeney PM, Dunham LD, Quigley CK, Morton SL, Bergquist KE, Bennett JP: Cybrid models of Parkinson’s disease show variable mitochondrial biogenesis and genotype-respiration relationships. Exp Neurol. 2009, 220: 374-382. 10.1016/j.expneurol.2009.09.025.PubMedCentralCrossRefPubMed Keeney PM, Dunham LD, Quigley CK, Morton SL, Bergquist KE, Bennett JP: Cybrid models of Parkinson’s disease show variable mitochondrial biogenesis and genotype-respiration relationships. Exp Neurol. 2009, 220: 374-382. 10.1016/j.expneurol.2009.09.025.PubMedCentralCrossRefPubMed
8.
go back to reference Trimmer PA, Borland MK, Keeney PM, Bennett JP, Parker WD: Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem. 2004, 88: 800-812. 10.1046/j.1471-4159.2003.02168.x.CrossRefPubMed Trimmer PA, Borland MK, Keeney PM, Bennett JP, Parker WD: Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem. 2004, 88: 800-812. 10.1046/j.1471-4159.2003.02168.x.CrossRefPubMed
9.
go back to reference Leverenz JB, Umar I, Wang Q, Montine TJ, McMillan PJ, Tsuang DW, Jin J, Pan C, Shin J, Zhu D, Zhang J: Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol. 2007, 17: 139-145. 10.1111/j.1750-3639.2007.00048.x.CrossRefPubMed Leverenz JB, Umar I, Wang Q, Montine TJ, McMillan PJ, Tsuang DW, Jin J, Pan C, Shin J, Zhu D, Zhang J: Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol. 2007, 17: 139-145. 10.1111/j.1750-3639.2007.00048.x.CrossRefPubMed
10.
go back to reference Xia Q, Liao L, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J: Proteomic identification of novel proteins associated with Lewy bodies. Front Biosci. 2008, 13: 3850-3856.PubMedCentralCrossRefPubMed Xia Q, Liao L, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J: Proteomic identification of novel proteins associated with Lewy bodies. Front Biosci. 2008, 13: 3850-3856.PubMedCentralCrossRefPubMed
11.
go back to reference Wakabayashi K, Tanji K, Mori F, Takahashi H: The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007, 27: 494-506. 10.1111/j.1440-1789.2007.00803.x.CrossRefPubMed Wakabayashi K, Tanji K, Mori F, Takahashi H: The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007, 27: 494-506. 10.1111/j.1440-1789.2007.00803.x.CrossRefPubMed
12.
go back to reference Galvin JE, Lee VM, Schmidt ML, Tu PH, Iwatsubo T, Trojanowski JQ: Pathobiology of the Lewy body. Adv Neurol. 1999, 80: 313-324.PubMed Galvin JE, Lee VM, Schmidt ML, Tu PH, Iwatsubo T, Trojanowski JQ: Pathobiology of the Lewy body. Adv Neurol. 1999, 80: 313-324.PubMed
14.
go back to reference Lu L, Neff F, Alvarez-Fischer D, Henze C, Xie Y, Oertel WH, Schlegel J, Hartmann A: Gene expression profiling of Lewy body-bearing neurons in Parkinson’s disease. Exp Neurol. 2005, 195: 27-39. 10.1016/j.expneurol.2005.04.011.CrossRefPubMed Lu L, Neff F, Alvarez-Fischer D, Henze C, Xie Y, Oertel WH, Schlegel J, Hartmann A: Gene expression profiling of Lewy body-bearing neurons in Parkinson’s disease. Exp Neurol. 2005, 195: 27-39. 10.1016/j.expneurol.2005.04.011.CrossRefPubMed
15.
go back to reference Conway KA, Harper JD, Lansbury PT: Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry. 2000, 39: 2552-2563. 10.1021/bi991447r.CrossRefPubMed Conway KA, Harper JD, Lansbury PT: Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry. 2000, 39: 2552-2563. 10.1021/bi991447r.CrossRefPubMed
16.
go back to reference Sanchez I, Mahlke C, Yuan J: Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature. 2003, 421: 373-379. 10.1038/nature01301.CrossRefPubMed Sanchez I, Mahlke C, Yuan J: Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature. 2003, 421: 373-379. 10.1038/nature01301.CrossRefPubMed
17.
go back to reference Bertrand SJ, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM: Endogenous amyloidogenesis in long-term rat hippocampal cell cultures. BMC Neurosci. 2011, 12: 38-10.1186/1471-2202-12-38.PubMedCentralCrossRefPubMed Bertrand SJ, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM: Endogenous amyloidogenesis in long-term rat hippocampal cell cultures. BMC Neurosci. 2011, 12: 38-10.1186/1471-2202-12-38.PubMedCentralCrossRefPubMed
19.
go back to reference Olanow CW, Perl DP, DeMartino GN, McNaught KS: Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol. 2004, 3: 496-503. 10.1016/S1474-4422(04)00827-0.CrossRefPubMed Olanow CW, Perl DP, DeMartino GN, McNaught KS: Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol. 2004, 3: 496-503. 10.1016/S1474-4422(04)00827-0.CrossRefPubMed
20.
go back to reference Lees AJ, Hardy J, Revesz T: Parkinson’s disease. Lancet. 2009, 373: 2055-2066. 10.1016/S0140-6736(09)60492-X.CrossRefPubMed Lees AJ, Hardy J, Revesz T: Parkinson’s disease. Lancet. 2009, 373: 2055-2066. 10.1016/S0140-6736(09)60492-X.CrossRefPubMed
21.
go back to reference Greffard S, Verny M, Bonnet AM, Seilhean D, Hauw JJ, Duyckaerts C: A stable proportion of Lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiol Aging. 2010, 31: 99-103. 10.1016/j.neurobiolaging.2008.03.015.CrossRefPubMed Greffard S, Verny M, Bonnet AM, Seilhean D, Hauw JJ, Duyckaerts C: A stable proportion of Lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiol Aging. 2010, 31: 99-103. 10.1016/j.neurobiolaging.2008.03.015.CrossRefPubMed
22.
go back to reference Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MA, van der Want JJ, de Vos RA, Brunt ER, Sibon OC, Kampinga HH: Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 2006, 4: e417-10.1371/journal.pbio.0040417.PubMedCentralCrossRefPubMed Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MA, van der Want JJ, de Vos RA, Brunt ER, Sibon OC, Kampinga HH: Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 2006, 4: e417-10.1371/journal.pbio.0040417.PubMedCentralCrossRefPubMed
23.
go back to reference Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM: Asymmetric mitosis: Unequal segregation of proteins destined for degradation. Proc Natl Acad Sci USA. 2008, 105: 7732-7737. 10.1073/pnas.0803027105.PubMedCentralCrossRefPubMed Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM: Asymmetric mitosis: Unequal segregation of proteins destined for degradation. Proc Natl Acad Sci USA. 2008, 105: 7732-7737. 10.1073/pnas.0803027105.PubMedCentralCrossRefPubMed
24.
go back to reference Alafuzoff I, Ince PG, Arzberger T, Al-Sarraj S, Bell J, Bodi I, Bogdanovic N, Bugiani O, Ferrer I, Gelpi E, et al: Staging/typing of Lewy body related alpha-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol. 2009, 117: 635-652. 10.1007/s00401-009-0523-2.CrossRefPubMed Alafuzoff I, Ince PG, Arzberger T, Al-Sarraj S, Bell J, Bodi I, Bogdanovic N, Bugiani O, Ferrer I, Gelpi E, et al: Staging/typing of Lewy body related alpha-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol. 2009, 117: 635-652. 10.1007/s00401-009-0523-2.CrossRefPubMed
25.
go back to reference Doehner J, Genoud C, Imhof C, Krstic D, Knuesel I: Extrusion of misfolded and aggregated proteins - a protective strategy of aging neurons?. Eur J Neurosci. 2012, 35: 1938-1950. 10.1111/j.1460-9568.2012.08154.x.CrossRefPubMed Doehner J, Genoud C, Imhof C, Krstic D, Knuesel I: Extrusion of misfolded and aggregated proteins - a protective strategy of aging neurons?. Eur J Neurosci. 2012, 35: 1938-1950. 10.1111/j.1460-9568.2012.08154.x.CrossRefPubMed
26.
27.
go back to reference Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP, Miller SW, Davis RE, Parker WD: Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol. 2000, 162: 37-50. 10.1006/exnr.2000.7333.CrossRefPubMed Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP, Miller SW, Davis RE, Parker WD: Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol. 2000, 162: 37-50. 10.1006/exnr.2000.7333.CrossRefPubMed
28.
29.
go back to reference Gomes LC, Di Benedetto G, Scorrano L: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011, 13: 589-598. 10.1038/ncb2220.PubMedCentralCrossRefPubMed Gomes LC, Di Benedetto G, Scorrano L: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011, 13: 589-598. 10.1038/ncb2220.PubMedCentralCrossRefPubMed
30.
go back to reference Twig G, Hyde B, Shirihai OS: Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008, 1777: 1092-1097. 10.1016/j.bbabio.2008.05.001.CrossRefPubMed Twig G, Hyde B, Shirihai OS: Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008, 1777: 1092-1097. 10.1016/j.bbabio.2008.05.001.CrossRefPubMed
31.
go back to reference Palmer CS, Osellame LD, Stojanovski D, Ryan MT: The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal. 2011, 23: 1534-1545. 10.1016/j.cellsig.2011.05.021.CrossRefPubMed Palmer CS, Osellame LD, Stojanovski D, Ryan MT: The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal. 2011, 23: 1534-1545. 10.1016/j.cellsig.2011.05.021.CrossRefPubMed
32.
go back to reference Zick M, Rabl R, Reichert AS: Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta. 2009, 1793: 5-19. 10.1016/j.bbamcr.2008.06.013.CrossRefPubMed Zick M, Rabl R, Reichert AS: Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta. 2009, 1793: 5-19. 10.1016/j.bbamcr.2008.06.013.CrossRefPubMed
33.
go back to reference Alberts B: Molecular biology of the cell. 1983, New York: Garland Pub Alberts B: Molecular biology of the cell. 1983, New York: Garland Pub
34.
go back to reference Safiulina D, Veksler V, Zharkovsky A, Kaasik A: Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J Cell Physiol. 2006, 206: 347-353. 10.1002/jcp.20476.CrossRefPubMed Safiulina D, Veksler V, Zharkovsky A, Kaasik A: Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J Cell Physiol. 2006, 206: 347-353. 10.1002/jcp.20476.CrossRefPubMed
35.
go back to reference Ferrick DA, Neilson A, Beeson C: Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today. 2008, 13: 268-274. 10.1016/j.drudis.2007.12.008.CrossRefPubMed Ferrick DA, Neilson A, Beeson C: Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today. 2008, 13: 268-274. 10.1016/j.drudis.2007.12.008.CrossRefPubMed
36.
go back to reference Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hill BG, Zhang J, et al: Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med. 2011, 51: 1621-1635. 10.1016/j.freeradbiomed.2011.08.005.PubMedCentralCrossRefPubMed Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hill BG, Zhang J, et al: Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med. 2011, 51: 1621-1635. 10.1016/j.freeradbiomed.2011.08.005.PubMedCentralCrossRefPubMed
38.
go back to reference Dranka BP, Zielonka J, Kanthasamy AG, Kalyanaraman B: Alterations in bioenergetic function induced by Parkinson’s disease mimetic compounds: lack of correlation with superoxide generation. J Neurochem. 2012, 122: 941-951. 10.1111/j.1471-4159.2012.07836.x.PubMedCentralCrossRefPubMed Dranka BP, Zielonka J, Kanthasamy AG, Kalyanaraman B: Alterations in bioenergetic function induced by Parkinson’s disease mimetic compounds: lack of correlation with superoxide generation. J Neurochem. 2012, 122: 941-951. 10.1111/j.1471-4159.2012.07836.x.PubMedCentralCrossRefPubMed
39.
go back to reference Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH: Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012, 135: 2058-2073. 10.1093/brain/aws133.PubMedCentralCrossRefPubMed Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH: Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012, 135: 2058-2073. 10.1093/brain/aws133.PubMedCentralCrossRefPubMed
40.
go back to reference Sekine S, Miura M, Chihara T: Organelles in developing neurons: essential regulators of neuronal morphogenesis and function. Int J Dev Biol. 2009, 53: 19-27. 10.1387/ijdb.082618ss.CrossRefPubMed Sekine S, Miura M, Chihara T: Organelles in developing neurons: essential regulators of neuronal morphogenesis and function. Int J Dev Biol. 2009, 53: 19-27. 10.1387/ijdb.082618ss.CrossRefPubMed
41.
go back to reference Cai Q, Davis ML, Sheng ZH: Regulation of axonal mitochondrial transport and its impact on synaptic transmission. Neurosci Res. 2011, 70: 9-15. 10.1016/j.neures.2011.02.005.PubMedCentralCrossRefPubMed Cai Q, Davis ML, Sheng ZH: Regulation of axonal mitochondrial transport and its impact on synaptic transmission. Neurosci Res. 2011, 70: 9-15. 10.1016/j.neures.2011.02.005.PubMedCentralCrossRefPubMed
42.
go back to reference Kanazawa T, Uchihara T, Takahashi A, Nakamura A, Orimo S, Mizusawa H: Three-layered structure shared between Lewy bodies and lewy neurites-three-dimensional reconstruction of triple-labeled sections. Brain Pathol. 2008, 18: 415-422. 10.1111/j.1750-3639.2008.00140.x.CrossRefPubMed Kanazawa T, Uchihara T, Takahashi A, Nakamura A, Orimo S, Mizusawa H: Three-layered structure shared between Lewy bodies and lewy neurites-three-dimensional reconstruction of triple-labeled sections. Brain Pathol. 2008, 18: 415-422. 10.1111/j.1750-3639.2008.00140.x.CrossRefPubMed
44.
go back to reference Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U: Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener. 2009, 4: 26-10.1186/1750-1326-4-26.PubMedCentralCrossRefPubMed Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U: Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener. 2009, 4: 26-10.1186/1750-1326-4-26.PubMedCentralCrossRefPubMed
45.
go back to reference Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar K, Liu L, Bennett JP: Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener. 2008, 3: 21-10.1186/1750-1326-3-21.PubMedCentralCrossRefPubMed Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar K, Liu L, Bennett JP: Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener. 2008, 3: 21-10.1186/1750-1326-3-21.PubMedCentralCrossRefPubMed
46.
go back to reference Ashley N, Harris D, Poulton J: Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp Cell Res. 2005, 303: 432-446. 10.1016/j.yexcr.2004.10.013.CrossRefPubMed Ashley N, Harris D, Poulton J: Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp Cell Res. 2005, 303: 432-446. 10.1016/j.yexcr.2004.10.013.CrossRefPubMed
47.
go back to reference Bogenhagen DF, Rousseau D, Burke S: The layered structure of human mitochondrial DNA nucleoids. J Biol Chem. 2008, 283: 3665-3675.CrossRefPubMed Bogenhagen DF, Rousseau D, Burke S: The layered structure of human mitochondrial DNA nucleoids. J Biol Chem. 2008, 283: 3665-3675.CrossRefPubMed
48.
go back to reference He J, Cooper HM, Reyes A, Di Re M, Sembongi H, Litwin TR, Gao J, Neuman KC, Fearnley IM, Spinazzola A, et al: Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res. 2012, 40: 6109-6121. 10.1093/nar/gks266.PubMedCentralCrossRefPubMed He J, Cooper HM, Reyes A, Di Re M, Sembongi H, Litwin TR, Gao J, Neuman KC, Fearnley IM, Spinazzola A, et al: Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res. 2012, 40: 6109-6121. 10.1093/nar/gks266.PubMedCentralCrossRefPubMed
49.
go back to reference Keeney PM, Xie J, Capaldi RA, Bennett JP: Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci. 2006, 26: 5256-5264. 10.1523/JNEUROSCI.0984-06.2006.CrossRefPubMed Keeney PM, Xie J, Capaldi RA, Bennett JP: Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci. 2006, 26: 5256-5264. 10.1523/JNEUROSCI.0984-06.2006.CrossRefPubMed
50.
go back to reference Borland MK, Mohanakumar KP, Rubinstein JD, Keeney PM, Xie J, Capaldi R, Dunham LD, Trimmer PA, Bennett JP: Relationships among molecular genetic and respiratory properties of Parkinson’s disease cybrid cells show similarities to Parkinson’s brain tissues. Biochim Biophys Acta. 2008, 1792: 68-74.PubMedCentralCrossRefPubMed Borland MK, Mohanakumar KP, Rubinstein JD, Keeney PM, Xie J, Capaldi R, Dunham LD, Trimmer PA, Bennett JP: Relationships among molecular genetic and respiratory properties of Parkinson’s disease cybrid cells show similarities to Parkinson’s brain tissues. Biochim Biophys Acta. 2008, 1792: 68-74.PubMedCentralCrossRefPubMed
51.
go back to reference Moran M, Moreno-Lastres D, Marin-Buera L, Arenas J, Martin MA, Ugalde C: Mitochondrial respiratory chain dysfunction: Implications in neurodegeneration. Free Radic Biol Med. 2012, 53: 595-609. 10.1016/j.freeradbiomed.2012.05.009.CrossRefPubMed Moran M, Moreno-Lastres D, Marin-Buera L, Arenas J, Martin MA, Ugalde C: Mitochondrial respiratory chain dysfunction: Implications in neurodegeneration. Free Radic Biol Med. 2012, 53: 595-609. 10.1016/j.freeradbiomed.2012.05.009.CrossRefPubMed
52.
go back to reference Bereiter-Hahn JaB M: Distribution and dynamics of mitochondrial nucleoids in animal cells in culture. Exp Biol Online. 1997, 1: 1-17.CrossRef Bereiter-Hahn JaB M: Distribution and dynamics of mitochondrial nucleoids in animal cells in culture. Exp Biol Online. 1997, 1: 1-17.CrossRef
53.
go back to reference Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A: PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem. 2009, 284: 21379-21385. 10.1074/jbc.M109.018911.PubMedCentralCrossRefPubMed Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A: PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem. 2009, 284: 21379-21385. 10.1074/jbc.M109.018911.PubMedCentralCrossRefPubMed
54.
go back to reference Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, et al: PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med. 2010, 2: 52-73. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, et al: PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med. 2010, 2: 52-73.
55.
go back to reference Hock MB, Kralli A: Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009, 71: 177-203. 10.1146/annurev.physiol.010908.163119.CrossRefPubMed Hock MB, Kralli A: Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009, 71: 177-203. 10.1146/annurev.physiol.010908.163119.CrossRefPubMed
56.
go back to reference Mudo G, Makela J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Malkia A, Bonomo A, Kairisalo M, et al: Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci: CMLS. 2012, 69: 1153-1165. 10.1007/s00018-011-0850-z.CrossRefPubMed Mudo G, Makela J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Malkia A, Bonomo A, Kairisalo M, et al: Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci: CMLS. 2012, 69: 1153-1165. 10.1007/s00018-011-0850-z.CrossRefPubMed
57.
go back to reference Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT: PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet. 2009, 18: 1805-1812. 10.1093/hmg/ddp093.PubMedCentralCrossRefPubMed Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT: PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet. 2009, 18: 1805-1812. 10.1093/hmg/ddp093.PubMedCentralCrossRefPubMed
58.
go back to reference Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F: Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab. 2008, 93: 1433-1441. 10.1210/jc.2007-1701.CrossRefPubMed Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F: Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab. 2008, 93: 1433-1441. 10.1210/jc.2007-1701.CrossRefPubMed
59.
go back to reference Wenz T, Diaz F, Spiegelman BM, Moraes CT: Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 2008, 8: 249-256. 10.1016/j.cmet.2008.07.006.PubMedCentralCrossRefPubMed Wenz T, Diaz F, Spiegelman BM, Moraes CT: Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 2008, 8: 249-256. 10.1016/j.cmet.2008.07.006.PubMedCentralCrossRefPubMed
60.
go back to reference Scarpulla RC: Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci. 2008, 1147: 321-334. 10.1196/annals.1427.006.PubMedCentralCrossRefPubMed Scarpulla RC: Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci. 2008, 1147: 321-334. 10.1196/annals.1427.006.PubMedCentralCrossRefPubMed
61.
go back to reference Gaspari M, Larsson NG, Gustafsson CM: The transcription machinery in mammalian mitochondria. Biochim Biophys Acta. 2004, 1659: 148-152. 10.1016/j.bbabio.2004.10.003.CrossRefPubMed Gaspari M, Larsson NG, Gustafsson CM: The transcription machinery in mammalian mitochondria. Biochim Biophys Acta. 2004, 1659: 148-152. 10.1016/j.bbabio.2004.10.003.CrossRefPubMed
64.
go back to reference Jellinger KA: Formation and development of Lewy pathology: a critical update. J Neurol. 2009, 256 (Suppl 3): 270-279.CrossRefPubMed Jellinger KA: Formation and development of Lewy pathology: a critical update. J Neurol. 2009, 256 (Suppl 3): 270-279.CrossRefPubMed
65.
go back to reference Harding AJ, Broe GA, Halliday GM: Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain. 2002, 125: 391-403. 10.1093/brain/awf033.CrossRefPubMed Harding AJ, Broe GA, Halliday GM: Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain. 2002, 125: 391-403. 10.1093/brain/awf033.CrossRefPubMed
66.
go back to reference Harding AJ, Stimson E, Henderson JM, Halliday GM: Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain. 2002, 125: 2431-2445. 10.1093/brain/awf251.CrossRefPubMed Harding AJ, Stimson E, Henderson JM, Halliday GM: Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain. 2002, 125: 2431-2445. 10.1093/brain/awf251.CrossRefPubMed
67.
go back to reference Harrower TP, Michell AW, Barker RA: Lewy bodies in Parkinson’s disease: protectors or perpetrators?. Exp Neurol. 2005, 195: 1-6. 10.1016/j.expneurol.2005.06.002.CrossRefPubMed Harrower TP, Michell AW, Barker RA: Lewy bodies in Parkinson’s disease: protectors or perpetrators?. Exp Neurol. 2005, 195: 1-6. 10.1016/j.expneurol.2005.06.002.CrossRefPubMed
68.
go back to reference Harrower T, Barker RA: Cell therapies for neurological disease–from bench to clinic to bench. Expert Opin Biol Ther. 2005, 5: 289-291. 10.1517/14712598.5.3.289.CrossRefPubMed Harrower T, Barker RA: Cell therapies for neurological disease–from bench to clinic to bench. Expert Opin Biol Ther. 2005, 5: 289-291. 10.1517/14712598.5.3.289.CrossRefPubMed
69.
go back to reference de la Fuente-Fernandez R, Schulzer M, Mak E, Kishore A, Calne DB: The role of the Lewy body in idiopathic Parkinsonism. Parkinsonism Relat Disord. 1998, 4: 73-77. 10.1016/S1353-8020(98)00016-9.CrossRefPubMed de la Fuente-Fernandez R, Schulzer M, Mak E, Kishore A, Calne DB: The role of the Lewy body in idiopathic Parkinsonism. Parkinsonism Relat Disord. 1998, 4: 73-77. 10.1016/S1353-8020(98)00016-9.CrossRefPubMed
70.
go back to reference Hindle JV: Ageing, neurodegeneration and Parkinson’s disease. Age Ageing. 2010, 39: 156-161. 10.1093/ageing/afp223.CrossRefPubMed Hindle JV: Ageing, neurodegeneration and Parkinson’s disease. Age Ageing. 2010, 39: 156-161. 10.1093/ageing/afp223.CrossRefPubMed
71.
go back to reference Au WL, Calne DB: A reassessment of the Lewy body. Acta Neurol Taiwan. 2005, 14: 40-47.PubMed Au WL, Calne DB: A reassessment of the Lewy body. Acta Neurol Taiwan. 2005, 14: 40-47.PubMed
72.
go back to reference Kramer ML, Schulz-Schaeffer WJ: Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci: Offic J Soc Neurosci. 2007, 27: 1405-1410. 10.1523/JNEUROSCI.4564-06.2007.CrossRef Kramer ML, Schulz-Schaeffer WJ: Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci: Offic J Soc Neurosci. 2007, 27: 1405-1410. 10.1523/JNEUROSCI.4564-06.2007.CrossRef
73.
go back to reference Zhou J, Broe M, Huang Y, Anderson JP, Gai WP, Milward EA, Porritt M, Howells D, Hughes AJ, Wang X, Halliday GM: Changes in the solubility and phosphorylation of alpha-synuclein over the course of Parkinson’s disease. Acta Neuropathol. 2011, 121: 695-704. 10.1007/s00401-011-0815-1.CrossRefPubMed Zhou J, Broe M, Huang Y, Anderson JP, Gai WP, Milward EA, Porritt M, Howells D, Hughes AJ, Wang X, Halliday GM: Changes in the solubility and phosphorylation of alpha-synuclein over the course of Parkinson’s disease. Acta Neuropathol. 2011, 121: 695-704. 10.1007/s00401-011-0815-1.CrossRefPubMed
74.
go back to reference Lin CJ, Lee CC, Shih YL, Lin CH, Wang SH, Chen TH, Shih CM: Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS One. 2012, 7: e38706-10.1371/journal.pone.0038706.PubMedCentralCrossRefPubMed Lin CJ, Lee CC, Shih YL, Lin CH, Wang SH, Chen TH, Shih CM: Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS One. 2012, 7: e38706-10.1371/journal.pone.0038706.PubMedCentralCrossRefPubMed
75.
76.
go back to reference Ferrer I: Neuropathology and neurochemistry of nonmotor symptoms in Parkinson’s disease. Parkinsons Dis. 2011, 2011: 708404-PubMedCentralPubMed Ferrer I: Neuropathology and neurochemistry of nonmotor symptoms in Parkinson’s disease. Parkinsons Dis. 2011, 2011: 708404-PubMedCentralPubMed
77.
go back to reference Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, Melov S, Andersen JK: Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: Implications for Parkinson’s disease. Free Radic Biol Med. 2012, 53: 993-1003. 10.1016/j.freeradbiomed.2012.05.024.PubMedCentralCrossRefPubMed Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, Melov S, Andersen JK: Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: Implications for Parkinson’s disease. Free Radic Biol Med. 2012, 53: 993-1003. 10.1016/j.freeradbiomed.2012.05.024.PubMedCentralCrossRefPubMed
78.
go back to reference Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP, Davis RE, Parker WD: Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol. 1996, 40: 663-671. 10.1002/ana.410400417.CrossRefPubMed Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP, Davis RE, Parker WD: Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol. 1996, 40: 663-671. 10.1002/ana.410400417.CrossRefPubMed
79.
go back to reference Miller SW, Trimmer PA, Parker WD, Davis RE: Creation and characterization of mitochondrial DNA-depleted cell lines with "neuronal-like" properties. J Neurochem. 1996, 67: 1897-1907.CrossRefPubMed Miller SW, Trimmer PA, Parker WD, Davis RE: Creation and characterization of mitochondrial DNA-depleted cell lines with "neuronal-like" properties. J Neurochem. 1996, 67: 1897-1907.CrossRefPubMed
Metadata
Title
Mitochondrial quality, dynamics and functional capacity in Parkinson’s disease cybrid cell lines selected for Lewy body expression
Authors
Emily N Cronin-Furman
M Kathleen Borland
Kristen E Bergquist
James P Bennett Jr
Patricia A Trimmer
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2013
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-8-6

Other articles of this Issue 1/2013

Molecular Neurodegeneration 1/2013 Go to the issue