Skip to main content
Top
Published in: Malaria Journal 1/2011

Open Access 01-12-2011 | Research

Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control

Authors: Jennifer Pon, Eleonora Napoli, Shirley Luckhart, Cecilia Giulivi

Published in: Malaria Journal | Issue 1/2011

Login to get access

Abstract

Background

Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE) cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development.

Methods

To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE), mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference.

Results

The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98%) and 59% homologous to the mitochondrial NADP+-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i) V max with NAD+ was 3-fold higher than that with NADP+, (ii) addition of Mg2+ or Mn2+ increased the V max by 9- to 21-fold, with Mn2+ 2.3-fold more effective than Mg2+, (iii) succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv) among the analogs of L-malate tested as inhibitors of the NAD+-dependent ME catalyzed reaction, small (2- to 3-carbons) organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate).

Conclusions

The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in bioenergetics, suggesting that it is a suitable target for insecticide development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Giulivi C, Ross-Inta C, Horton AA, Luckhart S: Metabolic pathways in Anopheles stephensi mitochondria. Biochem J. 2008, 415: 309-316.CrossRefPubMed Giulivi C, Ross-Inta C, Horton AA, Luckhart S: Metabolic pathways in Anopheles stephensi mitochondria. Biochem J. 2008, 415: 309-316.CrossRefPubMed
2.
go back to reference Luckhart S, Vodovotz Y, Cui L, Rosenberg R: The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA. 1998, 95: 5700-5705.PubMedCentralCrossRefPubMed Luckhart S, Vodovotz Y, Cui L, Rosenberg R: The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA. 1998, 95: 5700-5705.PubMedCentralCrossRefPubMed
3.
go back to reference Bursell E: Aspects of the flight metabolism of tsetse flies (Glossina). Comp Biochem Physiol. 1966, 19: 809-818.CrossRef Bursell E: Aspects of the flight metabolism of tsetse flies (Glossina). Comp Biochem Physiol. 1966, 19: 809-818.CrossRef
4.
go back to reference Scaraffia PY, Wells MA: Proline can be utilized as an energy substrate during flight of Aedes aegypti females. J Insect Physiol. 2003, 49: 591-601.CrossRefPubMed Scaraffia PY, Wells MA: Proline can be utilized as an energy substrate during flight of Aedes aegypti females. J Insect Physiol. 2003, 49: 591-601.CrossRefPubMed
5.
go back to reference Schuler F, Casida JE: The insecticide target in the PSST subunit of Complex I. Pest Manag Sci. 2001, 57: 932-940.CrossRefPubMed Schuler F, Casida JE: The insecticide target in the PSST subunit of Complex I. Pest Manag Sci. 2001, 57: 932-940.CrossRefPubMed
6.
go back to reference Bursell E, Slack E: Oxidation of proline by sarcosomes of the tsetse fly Glossina morsitans. Insect Biochem. 1976, 6: 159-167.CrossRef Bursell E, Slack E: Oxidation of proline by sarcosomes of the tsetse fly Glossina morsitans. Insect Biochem. 1976, 6: 159-167.CrossRef
7.
go back to reference Bursell E: Oxaloacetic carboxylase in flight musculature of the tsetse fly. Comp Biochem Physiol. 1965, 16: 259-266.CrossRefPubMed Bursell E: Oxaloacetic carboxylase in flight musculature of the tsetse fly. Comp Biochem Physiol. 1965, 16: 259-266.CrossRefPubMed
9.
go back to reference Chou WY, Huang SM, Liu YH, Chang GG: Cloning and expression of pigeon liver cytosolic NADP+-dependent malic enzyme cDNA and some of its abortive mutants. Arch Biochem Biophys. 1994, 310: 158-166.CrossRefPubMed Chou WY, Huang SM, Liu YH, Chang GG: Cloning and expression of pigeon liver cytosolic NADP+-dependent malic enzyme cDNA and some of its abortive mutants. Arch Biochem Biophys. 1994, 310: 158-166.CrossRefPubMed
10.
go back to reference Loeber G, Infante AA, Maurer-Fogy I, Krystek E, Dworkin MB: Human NAD+-dependent mitochondrial malic enzyme: cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem. 1991, 266: 3016-3021.PubMed Loeber G, Infante AA, Maurer-Fogy I, Krystek E, Dworkin MB: Human NAD+-dependent mitochondrial malic enzyme: cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem. 1991, 266: 3016-3021.PubMed
11.
go back to reference Rao GSJ, Coleman DE, Kulkarni G, Goldsmith EJ, Cook PF, Harris BG: NAD-malic enzyme from Ascaris suum: Sequence and structural studies. Protein Pept Lett. 2000, 7: 297-304. Rao GSJ, Coleman DE, Kulkarni G, Goldsmith EJ, Cook PF, Harris BG: NAD-malic enzyme from Ascaris suum: Sequence and structural studies. Protein Pept Lett. 2000, 7: 297-304.
12.
go back to reference Ochoa S, Mehler A, Kornberg A: Reversible oxidative decarboxylation of malic acid. J Biol Chem. 1947, 167: 871-872.PubMed Ochoa S, Mehler A, Kornberg A: Reversible oxidative decarboxylation of malic acid. J Biol Chem. 1947, 167: 871-872.PubMed
13.
go back to reference Hibberd JM, Quick WP: Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature. 2002, 415: 451-454.CrossRefPubMed Hibberd JM, Quick WP: Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature. 2002, 415: 451-454.CrossRefPubMed
14.
go back to reference Chang GG, Wang JK, Huang TM, Lee HJ, Chou WY, Meng CL: Purification and characterization of the cytosolic NADP+-dependent malic enzyme from human breast cancer cell line. Eur J Biochem. 1991, 202: 681-688.CrossRefPubMed Chang GG, Wang JK, Huang TM, Lee HJ, Chou WY, Meng CL: Purification and characterization of the cytosolic NADP+-dependent malic enzyme from human breast cancer cell line. Eur J Biochem. 1991, 202: 681-688.CrossRefPubMed
15.
go back to reference Loeber G, Maurer-Fogy I, Schwendenwein R: Purification, cDNA cloning and heterologous expression of the human mitochondrial NADP+-dependent malic enzyme. Biochem J. 1994, 304: 687-692.PubMedCentralCrossRefPubMed Loeber G, Maurer-Fogy I, Schwendenwein R: Purification, cDNA cloning and heterologous expression of the human mitochondrial NADP+-dependent malic enzyme. Biochem J. 1994, 304: 687-692.PubMedCentralCrossRefPubMed
16.
go back to reference Hoek JB, Pearson DJ, Olembo NK: NAD-linked malic enzyme EC 1.1.1.39 in flight muscle of the tsetse fly Glossina and other insects. Biochem J. 1976, 160: 253-262.PubMedCentralCrossRefPubMed Hoek JB, Pearson DJ, Olembo NK: NAD-linked malic enzyme EC 1.1.1.39 in flight muscle of the tsetse fly Glossina and other insects. Biochem J. 1976, 160: 253-262.PubMedCentralCrossRefPubMed
17.
go back to reference Spampinato CP, Colombo SL, Andreo CS: Interaction of analogues of substrate with NADP-malic enzyme from maize leaves. Photosynth Res. 1994, 39: 67-73.CrossRefPubMed Spampinato CP, Colombo SL, Andreo CS: Interaction of analogues of substrate with NADP-malic enzyme from maize leaves. Photosynth Res. 1994, 39: 67-73.CrossRefPubMed
18.
go back to reference Bjornson RD, Carriero NJ, Colangelo C, Shifman M, Cheung K-H, Miller PL, Williams K: X!!Tandem, an improved method for running X!Tandem in parallel on collections of commodity computers. J Proteome Res. 2007, 7: 293-299.CrossRefPubMed Bjornson RD, Carriero NJ, Colangelo C, Shifman M, Cheung K-H, Miller PL, Williams K: X!!Tandem, an improved method for running X!Tandem in parallel on collections of commodity computers. J Proteome Res. 2007, 7: 293-299.CrossRefPubMed
20.
go back to reference Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002, 74: 5383-5392.CrossRefPubMed Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002, 74: 5383-5392.CrossRefPubMed
21.
go back to reference Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003, 75: 4646-4658.CrossRefPubMed Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003, 75: 4646-4658.CrossRefPubMed
22.
23.
go back to reference Zhang Y: Template-based modeling and free modeling by I-TASSER in CASP7. Proteins. 2007, 69 (Suppl 8): 108-117.CrossRefPubMed Zhang Y: Template-based modeling and free modeling by I-TASSER in CASP7. Proteins. 2007, 69 (Suppl 8): 108-117.CrossRefPubMed
24.
go back to reference Yang Z, Lanks CW, Tong L: Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate. Structure. 2002, 10: 951-960.CrossRefPubMed Yang Z, Lanks CW, Tong L: Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate. Structure. 2002, 10: 951-960.CrossRefPubMed
25.
go back to reference Hsieh JY, Su KL, Ho PT, Hung HC: Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme. Arch Biochem Biophys. 2009, 487: 19-27.CrossRefPubMed Hsieh JY, Su KL, Ho PT, Hung HC: Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme. Arch Biochem Biophys. 2009, 487: 19-27.CrossRefPubMed
26.
go back to reference Wierenga RK, Terpstra P, Hol WGJ: Prediction of the occurrence of the ADP-binding bab-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986, 187: 101-107.CrossRefPubMed Wierenga RK, Terpstra P, Hol WGJ: Prediction of the occurrence of the ADP-binding bab-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986, 187: 101-107.CrossRefPubMed
27.
go back to reference Cushman JC: Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. Eur J Biochem. 1992, 208: 259-266.CrossRefPubMed Cushman JC: Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. Eur J Biochem. 1992, 208: 259-266.CrossRefPubMed
28.
go back to reference Winning BM, Bourguignon J, Leaver CJ: Plant mitochondrial NAD+-dependent malic enzyme. cDNA cloning, deduced primary structure of the 59- and 62-kDa subunits, import, gene complexity and expression analysis. J Biol Chem. 1994, 269: 4780-4786.PubMed Winning BM, Bourguignon J, Leaver CJ: Plant mitochondrial NAD+-dependent malic enzyme. cDNA cloning, deduced primary structure of the 59- and 62-kDa subunits, import, gene complexity and expression analysis. J Biol Chem. 1994, 269: 4780-4786.PubMed
29.
go back to reference Bellamacina CR: The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 1996, 10: 1257-1269.PubMed Bellamacina CR: The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 1996, 10: 1257-1269.PubMed
30.
go back to reference Rossman MG, Liljas A, Brändén CI, Banaszak LJ: The Enzymes. 1975, New York: Academic Press, 61-112. Rossman MG, Liljas A, Brändén CI, Banaszak LJ: The Enzymes. 1975, New York: Academic Press, 61-112.
31.
go back to reference Detarsio E, Wheeler MC, Campos Bermudez VA, Andreo CS, Drincovich MF: Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleoside-binding sites. J Biol Chem. 2003, 278: 13757-13764.CrossRefPubMed Detarsio E, Wheeler MC, Campos Bermudez VA, Andreo CS, Drincovich MF: Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleoside-binding sites. J Biol Chem. 2003, 278: 13757-13764.CrossRefPubMed
32.
go back to reference Scrutton NS, Berry A, Perham RN: Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990, 343: 38-43.CrossRefPubMed Scrutton NS, Berry A, Perham RN: Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990, 343: 38-43.CrossRefPubMed
33.
go back to reference Hsieh JY, Liu GY, Chang GG, Hung HC: Determinants of the dual cofactor specificity and substrate cooperativity of the human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of glutamine 362. J Biol Chem. 2006, 281: 23237-23245.CrossRefPubMed Hsieh JY, Liu GY, Chang GG, Hung HC: Determinants of the dual cofactor specificity and substrate cooperativity of the human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of glutamine 362. J Biol Chem. 2006, 281: 23237-23245.CrossRefPubMed
34.
go back to reference Kuo CC, Tsai LC, Chin TY, Chang GG, Chou WY: Lysine residues 162 and 340 are involved in the catalysis and coenzyme binding of NADP+-dependent malic enzyme from pigeon. Biochem Biophys Res Comm. 2000, 270: 821-825.CrossRefPubMed Kuo CC, Tsai LC, Chin TY, Chang GG, Chou WY: Lysine residues 162 and 340 are involved in the catalysis and coenzyme binding of NADP+-dependent malic enzyme from pigeon. Biochem Biophys Res Comm. 2000, 270: 821-825.CrossRefPubMed
35.
go back to reference Hsu WC, Hung HC, Tong L, Chang GG: Dual functional roles of ATP in the human mitochondrial malic enzyme. Biochemistry. 2004, 43: 7382-7390.CrossRefPubMed Hsu WC, Hung HC, Tong L, Chang GG: Dual functional roles of ATP in the human mitochondrial malic enzyme. Biochemistry. 2004, 43: 7382-7390.CrossRefPubMed
36.
go back to reference Hsieh JY, Liu GY, Hung HC: Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of the nucleotide binding site Lys346. FEBS J. 2008, 275: 5383-5392.CrossRefPubMed Hsieh JY, Liu GY, Hung HC: Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of the nucleotide binding site Lys346. FEBS J. 2008, 275: 5383-5392.CrossRefPubMed
37.
go back to reference Coleman DE, Rao GSJ, Goldsmith EJ, Cook PF, Harris BG: Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 Å resolution. Biochemistry. 2002, 41: 6928-6938.CrossRefPubMed Coleman DE, Rao GSJ, Goldsmith EJ, Cook PF, Harris BG: Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 Å resolution. Biochemistry. 2002, 41: 6928-6938.CrossRefPubMed
38.
go back to reference Landsperger WJ, Harris BG: NAD+-malic enzyme. Regulatory properties of the enzyme from Ascaris suum. J Biol Chem. 1976, 251: 3599-3602.PubMed Landsperger WJ, Harris BG: NAD+-malic enzyme. Regulatory properties of the enzyme from Ascaris suum. J Biol Chem. 1976, 251: 3599-3602.PubMed
39.
go back to reference Yang Z, Floyd DL, Loeber G, Tong L: Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nat Struct Biol. 2000, 7: 251-257.CrossRefPubMed Yang Z, Floyd DL, Loeber G, Tong L: Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nat Struct Biol. 2000, 7: 251-257.CrossRefPubMed
40.
go back to reference Schimerlik MI, Cleland WW: Inhibition and alternate-substrate studies on the mechanism of malic enzyme. Biochemistry. 1977, 16: 565-570.CrossRefPubMed Schimerlik MI, Cleland WW: Inhibition and alternate-substrate studies on the mechanism of malic enzyme. Biochemistry. 1977, 16: 565-570.CrossRefPubMed
41.
go back to reference Holaday AS, Lowder GW: Effect of pH on the kinetic parameters of NADP-malic enzyme from a C(4) Flaveria (Asteraceae) species. Plant Physiol. 1989, 90: 401-405.PubMedCentralCrossRefPubMed Holaday AS, Lowder GW: Effect of pH on the kinetic parameters of NADP-malic enzyme from a C(4) Flaveria (Asteraceae) species. Plant Physiol. 1989, 90: 401-405.PubMedCentralCrossRefPubMed
42.
go back to reference Skorkowski EF: Mitochondrial malic enzyme from crustacean and fish muscle. Comp Biochem Physiol B. 1988, 90: 19-24.PubMed Skorkowski EF: Mitochondrial malic enzyme from crustacean and fish muscle. Comp Biochem Physiol B. 1988, 90: 19-24.PubMed
43.
go back to reference Roos A, Boron WF: Intracellular pH. Physiol Rev. 1981, 61: 296-434.PubMed Roos A, Boron WF: Intracellular pH. Physiol Rev. 1981, 61: 296-434.PubMed
45.
go back to reference Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, O'Keefe M, McKenzie JA, Batterham P, Daborn PJ: Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc Natl Acad Sci USA. 2005, 102: 12807-12812.PubMedCentralCrossRefPubMed Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, O'Keefe M, McKenzie JA, Batterham P, Daborn PJ: Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc Natl Acad Sci USA. 2005, 102: 12807-12812.PubMedCentralCrossRefPubMed
46.
go back to reference Whyard S, Downe AER, Walker VK: Isolation of an esterase conferring insecticide resistance in the mosquito Culex tarsalis. Insect Biochem Mol Biol. 1994, 24: 819-827.CrossRefPubMed Whyard S, Downe AER, Walker VK: Isolation of an esterase conferring insecticide resistance in the mosquito Culex tarsalis. Insect Biochem Mol Biol. 1994, 24: 819-827.CrossRefPubMed
47.
go back to reference Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L: Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res. 2009, 99: 23-31.CrossRefPubMed Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L: Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res. 2009, 99: 23-31.CrossRefPubMed
48.
go back to reference Song C, Scharf ME: Mitochondrial impacts of insecticidal formate esters in insecticide-resistant and insecticide-susceptible Drosophila melanogaster. Pest Manag Sci. 2009, 65: 697-703.CrossRefPubMed Song C, Scharf ME: Mitochondrial impacts of insecticidal formate esters in insecticide-resistant and insecticide-susceptible Drosophila melanogaster. Pest Manag Sci. 2009, 65: 697-703.CrossRefPubMed
49.
go back to reference Nauen R, Bretschneider T: New modes of action of insecticides. Pestic Outlook. 2002, 13: 241-245.CrossRef Nauen R, Bretschneider T: New modes of action of insecticides. Pestic Outlook. 2002, 13: 241-245.CrossRef
50.
go back to reference Vontas J, Blass C, Koutsos AC, David JP, Kafatos FC, Louis C, Hemingway J, Christophides GK, Ranson H: Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol. 2005, 14: 509-521.CrossRefPubMed Vontas J, Blass C, Koutsos AC, David JP, Kafatos FC, Louis C, Hemingway J, Christophides GK, Ranson H: Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol. 2005, 14: 509-521.CrossRefPubMed
51.
go back to reference Wang Y, Gulis G, Buckner S, Johnson PC, Sullivan D, Busenlehner L, Marcus S: The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe. Biochem Biophys Res Comm. 2010, 399: 123-128.PubMedCentralCrossRefPubMed Wang Y, Gulis G, Buckner S, Johnson PC, Sullivan D, Busenlehner L, Marcus S: The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe. Biochem Biophys Res Comm. 2010, 399: 123-128.PubMedCentralCrossRefPubMed
52.
go back to reference Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I: Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA. 2008, 105: 5980-5985.PubMedCentralCrossRefPubMed Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I: Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA. 2008, 105: 5980-5985.PubMedCentralCrossRefPubMed
53.
go back to reference Oxborough RM, Kitau J, Matowo J, Mndeme R, Feston E, Boko P, Odjo A, Metonnou CG, Irish S, N'Guessan R: Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes. Trans R Soc Trop Med Hyg. 2010, 104: 639-645.CrossRefPubMed Oxborough RM, Kitau J, Matowo J, Mndeme R, Feston E, Boko P, Odjo A, Metonnou CG, Irish S, N'Guessan R: Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes. Trans R Soc Trop Med Hyg. 2010, 104: 639-645.CrossRefPubMed
54.
go back to reference Farenhorst M, Mouatcho JC, Kikankie CK, Brooke BD, Hunt RH, Thomas MB, Koekemoer LL, Knols BG, Coetzee M: Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc Natl Acad Sci USA. 2009, 106: 17443-17447.PubMedCentralCrossRefPubMed Farenhorst M, Mouatcho JC, Kikankie CK, Brooke BD, Hunt RH, Thomas MB, Koekemoer LL, Knols BG, Coetzee M: Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc Natl Acad Sci USA. 2009, 106: 17443-17447.PubMedCentralCrossRefPubMed
55.
go back to reference Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680.PubMedCentralCrossRefPubMed Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680.PubMedCentralCrossRefPubMed
56.
go back to reference Schrodinger LLC: The PyMOL Molecular Graphics System, Version 1.3r1. 2010 Schrodinger LLC: The PyMOL Molecular Graphics System, Version 1.3r1. 2010
Metadata
Title
Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control
Authors
Jennifer Pon
Eleonora Napoli
Shirley Luckhart
Cecilia Giulivi
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2011
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-10-318

Other articles of this Issue 1/2011

Malaria Journal 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.