Skip to main content
Top
Published in: BMC Nephrology 1/2013

Open Access 01-12-2013 | Research article

Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach

Authors: Larisa V Fedorova, Anita Tamirisa, David J Kennedy, Steven T Haller, Georgy Budnyy, Joseph I Shapiro, Deepak Malhotra

Published in: BMC Nephrology | Issue 1/2013

Login to get access

Abstract

Background

Kidney injuries provoke considerable adjustment of renal physiology, metabolism, and architecture to nephron loss. Despite remarkable regenerative capacity of the renal tissue, these adaptations often lead to tubular atrophy, interstial and glomerular scaring, and development of chronic kidney disease. The therapeutic strategies for prevention of the transition from acute kidney damage to a chronic condition are limited. The purpose of this study was to elucidate large-scale alterations of the renal cortex proteome in partially nephrecromized rats at an early stage of chronic kidney disease.

Methods

Sprague–Dawley 5/6 nephrectomized rats and sham-operated controls were sacrificed at day 28 post-surgery. To identify proteins with notable alteration of expression we applied a 2D-proteomics approach followed by mass-spectrometry. Altered expression of identified and related proteins was validated by Western blotting and immunohistochemistry.

Results

Proteins with increased levels of expression after partial nephrectomy were albumin and vimentin. Proteins with decreased expression were metabolic or mitochondrial. Western blotting analysis showed that the renal cortex of nephrectomized rats expressed decreased amount (by ~50%) of proteins from the inner mitochondrial compartment - the beta-oxidation enzyme MCAD, the structural protein GRP-75, and the oxidative phosphorylation protein COXIV. Mitochondrial DNA copy number was decreased by 30% in the cortex of PNx rats. In contrast, the levels of an outer mitochondrial membrane protein, VDAC1, remained unchanged in remnant kidneys. Mitochondrial biogenesis was not altered after renal mass ablation as was indicated by unchanged levels of PPARγ and PGC1α proteins. Autophagy related protein Beclin 1 was up-regulated in remnant kidneys, however the level of LC3-II protein was unchanged. BNIP3 protein, which can initiate both mitochondrial autophagy and cell death, was up-regulated considerably in kidneys of nephrecomized rats.

Conclusions

The results of the study demonstrated that notable alterations in the renal cortex of 5/6 nephrectomized rats were associated with mitochondrial damage, however mitochondrial biogenesis and autophagy for replacement of damaged mitochondria were not stimulated. Accumulation of dysfunctional mitochondria after 5/6 nephrectomy may cause multiple adjustments in biosynthetic pathways, energy production, ROS signaling, and activation of pro-cell death regulatory pathways thus contributing to the development of chronic kidney disease.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Sharfuddin AA, Molitoris BA: Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011, 7 (4): 189-200.CrossRefPubMed Sharfuddin AA, Molitoris BA: Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011, 7 (4): 189-200.CrossRefPubMed
3.
go back to reference Wesson LG: Compensatory growth and other growth responses of the kidney. Nephron. 1989, 51 (2): 149-184.CrossRefPubMed Wesson LG: Compensatory growth and other growth responses of the kidney. Nephron. 1989, 51 (2): 149-184.CrossRefPubMed
4.
go back to reference Kennedy DJ, Vetteth S, Periyasamy SM, Kanj M, Fedorova L, Khouri S, Kahaleh MB, Xie Z, Malhotra D, Kolodkin NI, et al: Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension. 2006, 47 (3): 488-495.CrossRefPubMed Kennedy DJ, Vetteth S, Periyasamy SM, Kanj M, Fedorova L, Khouri S, Kahaleh MB, Xie Z, Malhotra D, Kolodkin NI, et al: Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension. 2006, 47 (3): 488-495.CrossRefPubMed
5.
go back to reference Haller ST, Kennedy DJ, Shidyak A, Budny GV, Malhotra D, Fedorova OV, Shapiro JI, Bagrov AY: Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am J Hypertens. 2012, 25 (6): 690-696.CrossRefPubMedPubMedCentral Haller ST, Kennedy DJ, Shidyak A, Budny GV, Malhotra D, Fedorova OV, Shapiro JI, Bagrov AY: Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am J Hypertens. 2012, 25 (6): 690-696.CrossRefPubMedPubMedCentral
6.
go back to reference Fedorova LV, Raju V, El-Okdi N, Shidyak A, Kennedy DJ, Vetteth S, Giovannucci DR, Bagrov AY, Fedorova OV, Shapiro JI, et al: The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition. Am J Physiol Renal Physiol. 2009, 296 (4): F922-F934.CrossRefPubMedPubMedCentral Fedorova LV, Raju V, El-Okdi N, Shidyak A, Kennedy DJ, Vetteth S, Giovannucci DR, Bagrov AY, Fedorova OV, Shapiro JI, et al: The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition. Am J Physiol Renal Physiol. 2009, 296 (4): F922-F934.CrossRefPubMedPubMedCentral
7.
go back to reference Willey JC, Crawford EL, Knight CR, Warner KA, Motten CA, Herness EA, Zahorchak RJ, Graves TG: Standardized RT-PCR and the standardized expression measurement center. Methods Mol Biol. 2004, 258: 13-41.PubMed Willey JC, Crawford EL, Knight CR, Warner KA, Motten CA, Herness EA, Zahorchak RJ, Graves TG: Standardized RT-PCR and the standardized expression measurement center. Methods Mol Biol. 2004, 258: 13-41.PubMed
8.
go back to reference Muchaneta-Kubara EC, el Nahas AM: Myofibroblast phenotypes expression in experimental renal scarring. Nephrol Dial Transplant. 1997, 12 (5): 904-915.CrossRefPubMed Muchaneta-Kubara EC, el Nahas AM: Myofibroblast phenotypes expression in experimental renal scarring. Nephrol Dial Transplant. 1997, 12 (5): 904-915.CrossRefPubMed
9.
go back to reference Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G: In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol. 1998, 9 (7): 1213-1224.PubMed Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G: In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol. 1998, 9 (7): 1213-1224.PubMed
10.
go back to reference Moradi H, Kwok V, Vaziri ND: Effect of chronic renal failure on arginase and argininosuccinate synthetase expression. Am J Nephrol. 2006, 26 (3): 310-318.CrossRefPubMed Moradi H, Kwok V, Vaziri ND: Effect of chronic renal failure on arginase and argininosuccinate synthetase expression. Am J Nephrol. 2006, 26 (3): 310-318.CrossRefPubMed
11.
go back to reference Chen GF, Baylis C: In vivo renal arginine release is impaired throughout development of chronic kidney disease. Am J Physiol Renal Physiol. 2009, 298 (1): F95-F102.CrossRefPubMedPubMedCentral Chen GF, Baylis C: In vivo renal arginine release is impaired throughout development of chronic kidney disease. Am J Physiol Renal Physiol. 2009, 298 (1): F95-F102.CrossRefPubMedPubMedCentral
12.
go back to reference Scarpulla RC: Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem. 2006, 97 (4): 673-683.CrossRefPubMed Scarpulla RC: Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem. 2006, 97 (4): 673-683.CrossRefPubMed
16.
go back to reference Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008, 283 (16): 10892-10903.CrossRefPubMedPubMedCentral Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008, 283 (16): 10892-10903.CrossRefPubMedPubMedCentral
18.
go back to reference Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN, Gustafsson AB: Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 2011, 18 (4): 721-731.CrossRefPubMed Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN, Gustafsson AB: Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 2011, 18 (4): 721-731.CrossRefPubMed
19.
go back to reference Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010, 90 (4): 1383-1435.CrossRefPubMed Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010, 90 (4): 1383-1435.CrossRefPubMed
20.
go back to reference Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171 (4): 603-614.CrossRefPubMedPubMedCentral Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171 (4): 603-614.CrossRefPubMedPubMedCentral
21.
go back to reference Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy. 2010, 6 (5): 614-621.CrossRefPubMedPubMedCentral Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy. 2010, 6 (5): 614-621.CrossRefPubMedPubMedCentral
22.
go back to reference Tanida I: Autophagosome formation and molecular mechanism of autophagy. Antioxidants & redox signaling. 2011, 14 (11): 2201-2214.CrossRef Tanida I: Autophagosome formation and molecular mechanism of autophagy. Antioxidants & redox signaling. 2011, 14 (11): 2201-2214.CrossRef
24.
go back to reference Miskell CA, Simpson DP: Hyperplasia precedes increased glomerular filtration rate in rat remnant kidney. Kidney international. 1990, 37 (2): 758-766.CrossRefPubMed Miskell CA, Simpson DP: Hyperplasia precedes increased glomerular filtration rate in rat remnant kidney. Kidney international. 1990, 37 (2): 758-766.CrossRefPubMed
25.
go back to reference Kliem V, Johnson RJ, Alpers CE, Yoshimura A, Couser WG, Koch KM, Floege J: Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney international. 1996, 49 (3): 666-678.CrossRefPubMed Kliem V, Johnson RJ, Alpers CE, Yoshimura A, Couser WG, Koch KM, Floege J: Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney international. 1996, 49 (3): 666-678.CrossRefPubMed
26.
go back to reference Faraj AH, Morley AR: Remnant kidney pathology after five-sixth nephrectomy in rat. I. A biochemical and morphological study. APMIS. 1992, 100 (12): 1097-1105.CrossRefPubMed Faraj AH, Morley AR: Remnant kidney pathology after five-sixth nephrectomy in rat. I. A biochemical and morphological study. APMIS. 1992, 100 (12): 1097-1105.CrossRefPubMed
27.
go back to reference Shapiro JI, Elkins N, Reiss OK, Suleymanlar G, Jin H, Schrier RW, Chan L: Energy metabolism following reduction of renal mass. Kidney Int Suppl. 1994, 45: S100-S105.PubMed Shapiro JI, Elkins N, Reiss OK, Suleymanlar G, Jin H, Schrier RW, Chan L: Energy metabolism following reduction of renal mass. Kidney Int Suppl. 1994, 45: S100-S105.PubMed
28.
go back to reference Shapiro JI, Harris DC, Schrier RW, Chan L: Attenuation of hypermetabolism in the remnant kidney by dietary phosphate restriction in the rat. Am J Physiol. 1990, 258 (1 Pt 2): F183-F188.PubMed Shapiro JI, Harris DC, Schrier RW, Chan L: Attenuation of hypermetabolism in the remnant kidney by dietary phosphate restriction in the rat. Am J Physiol. 1990, 258 (1 Pt 2): F183-F188.PubMed
29.
go back to reference Nath KA, Croatt AJ, Hostetter TH: Oxygen consumption and oxidant stress in surviving nephrons. Am J Physiol. 1990, 258 (5 Pt 2): F1354-F1362.PubMed Nath KA, Croatt AJ, Hostetter TH: Oxygen consumption and oxidant stress in surviving nephrons. Am J Physiol. 1990, 258 (5 Pt 2): F1354-F1362.PubMed
30.
go back to reference Harris DC, Chan L, Schrier RW: Remnant kidney hypermetabolism and progression of chronic renal failure. Am J Physiol. 1988, 254 (2 Pt 2): F267-F276.PubMed Harris DC, Chan L, Schrier RW: Remnant kidney hypermetabolism and progression of chronic renal failure. Am J Physiol. 1988, 254 (2 Pt 2): F267-F276.PubMed
31.
go back to reference Pfaller W, Rittinger M: Quantitative morphology of the rat kidney. Int J Biochem. 1980, 12 (1–2): 17-22.CrossRefPubMed Pfaller W, Rittinger M: Quantitative morphology of the rat kidney. Int J Biochem. 1980, 12 (1–2): 17-22.CrossRefPubMed
32.
go back to reference Bagnasco S, Good D, Balaban R, Burg M: Lactate production in isolated segments of the rat nephron. Am J Physiol. 1985, 248 (4 Pt 2): F522-F526.PubMed Bagnasco S, Good D, Balaban R, Burg M: Lactate production in isolated segments of the rat nephron. Am J Physiol. 1985, 248 (4 Pt 2): F522-F526.PubMed
33.
go back to reference Johnson HA, Amendola F: Mitochondrial proliferation in compensatory growth of the kidney. Am J Pathol. 1969, 54 (1): 35-45.PubMedPubMedCentral Johnson HA, Amendola F: Mitochondrial proliferation in compensatory growth of the kidney. Am J Pathol. 1969, 54 (1): 35-45.PubMedPubMedCentral
34.
go back to reference Hwang S, Bohman R, Navas P, Norman JT, Bradley T, Fine LG: Hypertrophy of renal mitochondria. J Am Soc Nephrol. 1990, 1 (5): 822-827.PubMed Hwang S, Bohman R, Navas P, Norman JT, Bradley T, Fine LG: Hypertrophy of renal mitochondria. J Am Soc Nephrol. 1990, 1 (5): 822-827.PubMed
35.
go back to reference Deocaris CC, Kaul SC, Wadhwa R: The versatile stress protein mortalin as a chaperone therapeutic agent. Protein Pept Lett. 2009, 16 (5): 517-529.CrossRefPubMed Deocaris CC, Kaul SC, Wadhwa R: The versatile stress protein mortalin as a chaperone therapeutic agent. Protein Pept Lett. 2009, 16 (5): 517-529.CrossRefPubMed
36.
go back to reference Ran Q, Wadhwa R, Kawai R, Kaul SC, Sifers RN, Bick RJ, Smith JR, Pereira-Smith OM: Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem Biophys Res Commun. 2000, 275 (1): 174-179.CrossRefPubMed Ran Q, Wadhwa R, Kawai R, Kaul SC, Sifers RN, Bick RJ, Smith JR, Pereira-Smith OM: Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem Biophys Res Commun. 2000, 275 (1): 174-179.CrossRefPubMed
37.
go back to reference Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ: Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol. 2001, 12 (7): 1448-1457.PubMed Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ: Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol. 2001, 12 (7): 1448-1457.PubMed
38.
go back to reference Manotham K, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, Kurokawa K, Fujita T, Nangaku M: Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol. 2004, 15 (5): 1277-1288.CrossRefPubMed Manotham K, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, Kurokawa K, Fujita T, Nangaku M: Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol. 2004, 15 (5): 1277-1288.CrossRefPubMed
39.
go back to reference Yu X, Fang Y, Ding X, Liu H, Zhu J, Zou J, Xu X, Zhong Y: Transient hypoxia-inducible factor activation in rat renal ablation and reduced fibrosis with L-mimosine. Nephrology (Carlton). 2012, 17 (1): 58-67.CrossRef Yu X, Fang Y, Ding X, Liu H, Zhu J, Zou J, Xu X, Zhong Y: Transient hypoxia-inducible factor activation in rat renal ablation and reduced fibrosis with L-mimosine. Nephrology (Carlton). 2012, 17 (1): 58-67.CrossRef
40.
go back to reference Nangaku M: Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006, 17 (1): 17-25.CrossRefPubMed Nangaku M: Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006, 17 (1): 17-25.CrossRefPubMed
41.
go back to reference Hall AM, Unwin RJ, Parker N, Duchen MR: Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol. 2009, 20 (6): 1293-1302.CrossRefPubMedPubMedCentral Hall AM, Unwin RJ, Parker N, Duchen MR: Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol. 2009, 20 (6): 1293-1302.CrossRefPubMedPubMedCentral
42.
go back to reference Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, Zhao Z, Ganger M, Tow CY, Seshan SV: Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol. 2011, 22 (6): 1041-1052.CrossRefPubMedPubMedCentral Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, Zhao Z, Ganger M, Tow CY, Seshan SV: Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol. 2011, 22 (6): 1041-1052.CrossRefPubMedPubMedCentral
43.
go back to reference Fedorova LV, Sodhi K, Gatto-Weis C, Puri N, Hinds TD, Shapiro JI, Malhotra D: Peroxisome proliferator-activated receptor delta agonist, HPP593, prevents renal necrosis under chronic ischemia. PloS one. 2013, 8 (5): e64436-CrossRefPubMedPubMedCentral Fedorova LV, Sodhi K, Gatto-Weis C, Puri N, Hinds TD, Shapiro JI, Malhotra D: Peroxisome proliferator-activated receptor delta agonist, HPP593, prevents renal necrosis under chronic ischemia. PloS one. 2013, 8 (5): e64436-CrossRefPubMedPubMedCentral
44.
45.
go back to reference Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012, 8 (4): 445-544.CrossRefPubMedPubMedCentral Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012, 8 (4): 445-544.CrossRefPubMedPubMedCentral
47.
go back to reference Nezis IP, Stenmark H: p62 at the Interface of Autophagy, Oxidative Stress Signaling, and Cancer. Antioxidants & redox signaling. 2012, 17 (5): 786-793.CrossRef Nezis IP, Stenmark H: p62 at the Interface of Autophagy, Oxidative Stress Signaling, and Cancer. Antioxidants & redox signaling. 2012, 17 (5): 786-793.CrossRef
48.
go back to reference Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, et al: Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 2011, 22 (5): 902-913.CrossRefPubMedPubMedCentral Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, et al: Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 2011, 22 (5): 902-913.CrossRefPubMedPubMedCentral
49.
go back to reference Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G, Huber TB: Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy. 2012, 8 (5): 826-837.CrossRefPubMed Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G, Huber TB: Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy. 2012, 8 (5): 826-837.CrossRefPubMed
50.
go back to reference Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D: Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010, 120 (4): 1043-1055.CrossRefPubMedPubMedCentral Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D: Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010, 120 (4): 1043-1055.CrossRefPubMedPubMedCentral
51.
go back to reference Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X: Age-related changes in the function of autophagy in rat kidneys. Age (Dordr). 2012, 34 (2): 329-339.CrossRef Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X: Age-related changes in the function of autophagy in rat kidneys. Age (Dordr). 2012, 34 (2): 329-339.CrossRef
52.
go back to reference Cui J, Shi S, Sun X, Cai G, Cui S, Hong Q, Chen X, Bai XY: Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PloS one. 2013, 8 (7): e69720-CrossRefPubMedPubMedCentral Cui J, Shi S, Sun X, Cai G, Cui S, Hong Q, Chen X, Bai XY: Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PloS one. 2013, 8 (7): e69720-CrossRefPubMedPubMedCentral
53.
go back to reference Herzog C, Yang C, Holmes A, Kaushal GP: zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am J Physiol Renal Physiol. 2012, 303 (8): F1239-F1250.CrossRefPubMedPubMedCentral Herzog C, Yang C, Holmes A, Kaushal GP: zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am J Physiol Renal Physiol. 2012, 303 (8): F1239-F1250.CrossRefPubMedPubMedCentral
54.
go back to reference Sansanwal P, Yen B, Gahl WA, Ma Y, Ying L, Wong LJ, Sarwal MM: Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J Am Soc Nephrol. 2010, 21 (2): 272-283.CrossRefPubMedPubMedCentral Sansanwal P, Yen B, Gahl WA, Ma Y, Ying L, Wong LJ, Sarwal MM: Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J Am Soc Nephrol. 2010, 21 (2): 272-283.CrossRefPubMedPubMedCentral
56.
go back to reference Ciechomska IA, Goemans CG, Tolkovsky AM: Why doesn’t Beclin 1, a BH3-only protein, suppress the anti-apoptotic function of Bcl-2?. Autophagy. 2009, 5 (6): 880-881.CrossRefPubMed Ciechomska IA, Goemans CG, Tolkovsky AM: Why doesn’t Beclin 1, a BH3-only protein, suppress the anti-apoptotic function of Bcl-2?. Autophagy. 2009, 5 (6): 880-881.CrossRefPubMed
57.
58.
go back to reference Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL: HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 2001, 61 (18): 6669-6673.PubMed Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL: HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 2001, 61 (18): 6669-6673.PubMed
59.
go back to reference Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB: Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007, 14 (1): 146-157.CrossRefPubMed Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB: Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007, 14 (1): 146-157.CrossRefPubMed
60.
go back to reference Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB: Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy. J Biol Chem. 2012, 287 (23): 19094-19104.CrossRefPubMedPubMedCentral Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB: Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy. J Biol Chem. 2012, 287 (23): 19094-19104.CrossRefPubMedPubMedCentral
61.
62.
go back to reference Quinsay MN, Lee Y, Rikka S, Sayen MR, Molkentin JD, Gottlieb RA, Gustafsson AB: Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. J Mol Cell Cardiol. 2010, 48 (6): 1146-1156.CrossRefPubMed Quinsay MN, Lee Y, Rikka S, Sayen MR, Molkentin JD, Gottlieb RA, Gustafsson AB: Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. J Mol Cell Cardiol. 2010, 48 (6): 1146-1156.CrossRefPubMed
63.
go back to reference Thomas GL, Yang B, Wagner BE, Savill J, El Nahas AM: Cellular apoptosis and proliferation in experimental renal fibrosis. Nephrol Dial Transplant. 1998, 13 (9): 2216-2226.CrossRefPubMed Thomas GL, Yang B, Wagner BE, Savill J, El Nahas AM: Cellular apoptosis and proliferation in experimental renal fibrosis. Nephrol Dial Transplant. 1998, 13 (9): 2216-2226.CrossRefPubMed
64.
go back to reference Miyamoto Y, Kitamura N, Nakamura Y, Futamura M, Miyamoto T, Yoshida M, Ono M, Ichinose S, Arakawa H: Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control. PloS one. 2011, 6 (1): e16054-CrossRefPubMedPubMedCentral Miyamoto Y, Kitamura N, Nakamura Y, Futamura M, Miyamoto T, Yoshida M, Ono M, Ichinose S, Arakawa H: Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control. PloS one. 2011, 6 (1): e16054-CrossRefPubMedPubMedCentral
65.
go back to reference Nakamura Y, Kitamura N, Shinogi D, Yoshida M, Goda O, Murai R, Kamino H, Arakawa H: BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria. PloS one. 2012, 7 (1): e30767-CrossRefPubMedPubMedCentral Nakamura Y, Kitamura N, Shinogi D, Yoshida M, Goda O, Murai R, Kamino H, Arakawa H: BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria. PloS one. 2012, 7 (1): e30767-CrossRefPubMedPubMedCentral
66.
go back to reference Regula KM, Ens K, Kirshenbaum LA: Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res. 2002, 91 (3): 226-231.CrossRefPubMed Regula KM, Ens K, Kirshenbaum LA: Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res. 2002, 91 (3): 226-231.CrossRefPubMed
67.
go back to reference Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirshenbaum LA, Hahn HS, Robbins J, et al: Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest. 2007, 117 (10): 2825-2833.CrossRefPubMedPubMedCentral Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirshenbaum LA, Hahn HS, Robbins J, et al: Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest. 2007, 117 (10): 2825-2833.CrossRefPubMedPubMedCentral
68.
go back to reference Mazure NM, Pouyssegur J: Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy. 2009, 5 (6): 868-869.CrossRefPubMed Mazure NM, Pouyssegur J: Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy. 2009, 5 (6): 868-869.CrossRefPubMed
69.
go back to reference Semenza GL: HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010, 20 (1): 51-56.CrossRefPubMed Semenza GL: HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010, 20 (1): 51-56.CrossRefPubMed
Metadata
Title
Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach
Authors
Larisa V Fedorova
Anita Tamirisa
David J Kennedy
Steven T Haller
Georgy Budnyy
Joseph I Shapiro
Deepak Malhotra
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2013
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/1471-2369-14-209

Other articles of this Issue 1/2013

BMC Nephrology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.