Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Mites | Research

Potassium ion channels as a molecular target to reduce virus infection and mortality of honey bee colonies

Authors: Christopher J. Fellows, Michael Simone-Finstrom, Troy D. Anderson, Daniel R. Swale

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Declines in managed honey bee populations are multifactorial but closely associated with reduced virus immunocompetence and thus, mechanisms to enhance immune function are likely to reduce viral infection rates and increase colony viability. However, gaps in knowledge regarding physiological mechanisms or ‘druggable’ target sites to enhance bee immunocompetence has prevented therapeutics development to reduce virus infection. Our data bridge this knowledge gap by identifying ATP-sensitive inward rectifier potassium (KATP) channels as a pharmacologically tractable target for reducing virus-mediated mortality and viral replication in bees, as well as increasing an aspect of colony-level immunity. Bees infected with Israeli acute paralysis virus and provided KATP channel activators had similar mortality rates as uninfected bees. Furthermore, we show that generation of reactive oxygen species (ROS) and regulation of ROS concentrations through pharmacological activation of KATP channels can stimulate antiviral responses, highlighting a functional framework for physiological regulation of the bee immune system. Next, we tested the influence of pharmacological activation of KATP channels on infection of 6 viruses at the colony level in the field. Data strongly support that KATP channels are a field-relevant target site as colonies treated with pinacidil, a KATP channel activator, had reduced titers of seven bee-relevant viruses by up to 75-fold and reduced them to levels comparable to non-inoculated colonies. Together, these data indicate a functional linkage between KATP channels, ROS, and antiviral defense mechanisms in bees and define a toxicologically relevant pathway that can be used for novel therapeutics development to enhance bee health and colony sustainability in the field.
Appendix
Available only for authorised users
Literature
2.
go back to reference Cox-Foster DL, et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science. 2007;318:283–7.PubMedCrossRef Cox-Foster DL, et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science. 2007;318:283–7.PubMedCrossRef
3.
go back to reference VanEngelsdorp D, et al. Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis. J Econ Entomol. 2010;103:1517–23.PubMedCrossRef VanEngelsdorp D, et al. Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis. J Econ Entomol. 2010;103:1517–23.PubMedCrossRef
4.
go back to reference Nazzi F, Pennacchio F. Honey bee antiviral immune barriers as affected by multiple stress factors: a novel paradigm to interpret colony health decline and collapse. Viruses. 2018;10:159.PubMedPubMedCentralCrossRef Nazzi F, Pennacchio F. Honey bee antiviral immune barriers as affected by multiple stress factors: a novel paradigm to interpret colony health decline and collapse. Viruses. 2018;10:159.PubMedPubMedCentralCrossRef
6.
go back to reference McMenamin AJ, Genersch E. Honey bee colony losses and associated viruses. Curr Opin Insect Sci. 2015;8:121–9.PubMedCrossRef McMenamin AJ, Genersch E. Honey bee colony losses and associated viruses. Curr Opin Insect Sci. 2015;8:121–9.PubMedCrossRef
8.
go back to reference Chen Y, et al. Multiple virus infections in the honey bee and genome divergence of honey bee viruses. J Invertebr Pathol. 2004;87:84–93.PubMedCrossRef Chen Y, et al. Multiple virus infections in the honey bee and genome divergence of honey bee viruses. J Invertebr Pathol. 2004;87:84–93.PubMedCrossRef
9.
go back to reference Chen Y, Pettis JS, Feldlaufer MF. Detection of multiple viruses in queens of the honey bee Apis mellifera L. J Invertebr Pathol. 2005;90:118–21.PubMedCrossRef Chen Y, Pettis JS, Feldlaufer MF. Detection of multiple viruses in queens of the honey bee Apis mellifera L. J Invertebr Pathol. 2005;90:118–21.PubMedCrossRef
10.
go back to reference Di Prisco G, et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc Natl Acad Sci USA. 2016;113:3203–8.PubMedPubMedCentralCrossRef Di Prisco G, et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc Natl Acad Sci USA. 2016;113:3203–8.PubMedPubMedCentralCrossRef
11.
13.
go back to reference Yang X, Cox-Foster DL. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci USA. 2005;102:7470–5.PubMedPubMedCentralCrossRef Yang X, Cox-Foster DL. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci USA. 2005;102:7470–5.PubMedPubMedCentralCrossRef
14.
go back to reference Maori E, et al. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol Biol. 2009;18:55–60.PubMedCrossRef Maori E, et al. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol Biol. 2009;18:55–60.PubMedCrossRef
15.
go back to reference Hunter W, et al. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog. 2010;6:e1001160.PubMedPubMedCentralCrossRef Hunter W, et al. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog. 2010;6:e1001160.PubMedPubMedCentralCrossRef
17.
go back to reference Bruckner S, et al. Honey bee colony losses 2018–2019: preliminary results. In: Bee informed partnership. 2019. Bruckner S, et al. Honey bee colony losses 2018–2019: preliminary results. In: Bee informed partnership. 2019.
18.
go back to reference Steinhauer N, et al. United States honey bee colony losses 2020–2021: preliminary results. In: Bee informed partnership. 2021. Steinhauer N, et al. United States honey bee colony losses 2020–2021: preliminary results. In: Bee informed partnership. 2021.
22.
go back to reference Croker B, et al. ATP-sensitive potassium channels mediate survival during infection in mammals and insects. Nat Genet. 2007;39:1453–60.PubMedCrossRef Croker B, et al. ATP-sensitive potassium channels mediate survival during infection in mammals and insects. Nat Genet. 2007;39:1453–60.PubMedCrossRef
23.
go back to reference Eleftherianos I, et al. ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections. Proc Natl Acad Sci USA. 2011;108:12024–9.PubMedPubMedCentralCrossRef Eleftherianos I, et al. ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections. Proc Natl Acad Sci USA. 2011;108:12024–9.PubMedPubMedCentralCrossRef
25.
go back to reference O’Neal ST, Swale DR, Anderson TD. ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees. Sci Rep. 2017;7:8668.PubMedPubMedCentralCrossRef O’Neal ST, Swale DR, Anderson TD. ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees. Sci Rep. 2017;7:8668.PubMedPubMedCentralCrossRef
26.
go back to reference O’Neal ST, Swale DR, Bloomquist JR, Anderson TD. ATP-sensitve inwardly rectifying potassium channel modulators alter cardiac function in honey bees. J Insect Physiol. 2017;99:95–100.PubMedCrossRef O’Neal ST, Swale DR, Bloomquist JR, Anderson TD. ATP-sensitve inwardly rectifying potassium channel modulators alter cardiac function in honey bees. J Insect Physiol. 2017;99:95–100.PubMedCrossRef
27.
go back to reference Chen R, Swale DR. Inwardly rectifying potassium (Kir) channels represent a critical ion conductance pathway in the nervous systems of insects. Sci Rep. 2018;8:1617.PubMedPubMedCentralCrossRef Chen R, Swale DR. Inwardly rectifying potassium (Kir) channels represent a critical ion conductance pathway in the nervous systems of insects. Sci Rep. 2018;8:1617.PubMedPubMedCentralCrossRef
29.
go back to reference Li Z, Guerrero F, Perez de Leon AA, Foil LD, Swale DR. Small-molecule inhibitors of inward rectifier potassium (Kir) channels reduce bloodmeal feeding and have insecticidal activity against the horn fly (Diptera: Muscidae). J Med Entomol. 2020;57:1131–40.PubMedCrossRef Li Z, Guerrero F, Perez de Leon AA, Foil LD, Swale DR. Small-molecule inhibitors of inward rectifier potassium (Kir) channels reduce bloodmeal feeding and have insecticidal activity against the horn fly (Diptera: Muscidae). J Med Entomol. 2020;57:1131–40.PubMedCrossRef
30.
go back to reference Li Z, Macaluso KR, Foil LD, Swale DR. Inward rectifier potassium (Kir) channels mediate salivary gland function and blood feeding in the lone star tick, Amblyomma americanum. PLoS Negl Trop Dis. 2019;13:e0007153.PubMedPubMedCentralCrossRef Li Z, Macaluso KR, Foil LD, Swale DR. Inward rectifier potassium (Kir) channels mediate salivary gland function and blood feeding in the lone star tick, Amblyomma americanum. PLoS Negl Trop Dis. 2019;13:e0007153.PubMedPubMedCentralCrossRef
31.
go back to reference Li Z, Soohoo-Hui A, O’Hara FM, Swale DR. ATP-sensitive inward rectifier potassium channels reveal functional linkage between salivary gland function and blood feeding in the mosquito, Aedes aegypti. Commun Biol. 2022;5:278.PubMedPubMedCentralCrossRef Li Z, Soohoo-Hui A, O’Hara FM, Swale DR. ATP-sensitive inward rectifier potassium channels reveal functional linkage between salivary gland function and blood feeding in the mosquito, Aedes aegypti. Commun Biol. 2022;5:278.PubMedPubMedCentralCrossRef
32.
go back to reference O’Hara FM, Liu Z, Davis JA, Swale DR. Catalyzing systemic movement of inward rectifier potassium channel inhibitors for antifeedant activity against the cotton aphid, Aphis gossypii (Glover). Pest Manag Sci. 2022;19:194–205. O’Hara FM, Liu Z, Davis JA, Swale DR. Catalyzing systemic movement of inward rectifier potassium channel inhibitors for antifeedant activity against the cotton aphid, Aphis gossypii (Glover). Pest Manag Sci. 2022;19:194–205.
33.
go back to reference Swale DR, Li Z, Guerrero F, Perez De Leon AA, Foil LD. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster. Pestic Biochem Physiol. 2017;141:41–9.PubMedCrossRef Swale DR, Li Z, Guerrero F, Perez De Leon AA, Foil LD. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster. Pestic Biochem Physiol. 2017;141:41–9.PubMedCrossRef
34.
go back to reference Raphemot R, et al. Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels. PLoS ONE. 2014;9:e110772.PubMedPubMedCentralCrossRef Raphemot R, et al. Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels. PLoS ONE. 2014;9:e110772.PubMedPubMedCentralCrossRef
35.
go back to reference Piermarini PM, et al. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines: functional characterization, pharmacology, and toxicology. J Insect Physiol. 2018;110:57–65.PubMedPubMedCentralCrossRef Piermarini PM, et al. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines: functional characterization, pharmacology, and toxicology. J Insect Physiol. 2018;110:57–65.PubMedPubMedCentralCrossRef
36.
go back to reference Raphemot R, et al. Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production. Insect Biochem Mol Biol. 2014;51:10–9.PubMedPubMedCentralCrossRef Raphemot R, et al. Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production. Insect Biochem Mol Biol. 2014;51:10–9.PubMedPubMedCentralCrossRef
37.
go back to reference Swale DR, et al. An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria. Sci Rep. 2016;6:36954.PubMedPubMedCentralCrossRef Swale DR, et al. An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria. Sci Rep. 2016;6:36954.PubMedPubMedCentralCrossRef
38.
go back to reference Liu Y, O’Rourke B. Opening of mitochondrial K(ATP) channels triggers cardioprotection. Are reactive oxygen species involved? Circ Res. 2001;88:750–2.PubMedCrossRef Liu Y, O’Rourke B. Opening of mitochondrial K(ATP) channels triggers cardioprotection. Are reactive oxygen species involved? Circ Res. 2001;88:750–2.PubMedCrossRef
39.
go back to reference Carroll R, Gant VA, Yellon DM. Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res. 2001;51:691–700.PubMedCrossRef Carroll R, Gant VA, Yellon DM. Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res. 2001;51:691–700.PubMedCrossRef
40.
go back to reference Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001;88:802–9.PubMedCrossRef Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001;88:802–9.PubMedCrossRef
41.
go back to reference Kimura S, et al. Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension. 2005;45:860–6.PubMedCrossRef Kimura S, et al. Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension. 2005;45:860–6.PubMedCrossRef
42.
go back to reference Queliconi BB, Wojtovich AP, Nadtochiy SM, Kowaltowski AJ, Brookes PS. Redox regulation of the mitochondrial K(ATP) channel in cardioprotection. Biochim Biophys Acta. 2011;1813:1309–15.PubMedCrossRef Queliconi BB, Wojtovich AP, Nadtochiy SM, Kowaltowski AJ, Brookes PS. Redox regulation of the mitochondrial K(ATP) channel in cardioprotection. Biochim Biophys Acta. 2011;1813:1309–15.PubMedCrossRef
43.
go back to reference Akasaka T, et al. The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman. Proc Natl Acad Sci USA. 2006;103:11999–2004.PubMedPubMedCentralCrossRef Akasaka T, et al. The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman. Proc Natl Acad Sci USA. 2006;103:11999–2004.PubMedPubMedCentralCrossRef
44.
go back to reference Slocinska M, Lubawy J, Jarmuszkiewicz W, Rosinski G. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect. J Insect Physiol. 2013;59:1125–32.PubMedCrossRef Slocinska M, Lubawy J, Jarmuszkiewicz W, Rosinski G. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect. J Insect Physiol. 2013;59:1125–32.PubMedCrossRef
45.
go back to reference Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013;32:249–70.PubMedCrossRef Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013;32:249–70.PubMedCrossRef
46.
go back to reference Aliyari R, et al. Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe. 2008;4:387–97.PubMedPubMedCentralCrossRef Aliyari R, et al. Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe. 2008;4:387–97.PubMedPubMedCentralCrossRef
47.
48.
go back to reference Li-Byarlay H, et al. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage. Exp Gerontol. 2016;83:15–21.PubMedPubMedCentralCrossRef Li-Byarlay H, et al. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage. Exp Gerontol. 2016;83:15–21.PubMedPubMedCentralCrossRef
49.
go back to reference Poljsak B, Suput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792.PubMedPubMedCentralCrossRef Poljsak B, Suput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792.PubMedPubMedCentralCrossRef
50.
go back to reference Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem. 2007;282:14186–93.PubMedCrossRef Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem. 2007;282:14186–93.PubMedCrossRef
51.
go back to reference Ali S, Jain SK, Abdulla M, Athar M. Paraquat induced DNA damage by reactive oxygen species. Biochem Mol Biol Int. 1996;39:63–7.PubMed Ali S, Jain SK, Abdulla M, Athar M. Paraquat induced DNA damage by reactive oxygen species. Biochem Mol Biol Int. 1996;39:63–7.PubMed
52.
go back to reference Langberg K, Phillips M, Rueppell O. Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera. Genetica. 2018;146:171–8.PubMedCrossRef Langberg K, Phillips M, Rueppell O. Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera. Genetica. 2018;146:171–8.PubMedCrossRef
54.
go back to reference O’Shea-Wheller TA, et al. A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission. Sci Rep. 2022;12:4852.PubMedPubMedCentralCrossRef O’Shea-Wheller TA, et al. A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission. Sci Rep. 2022;12:4852.PubMedPubMedCentralCrossRef
55.
go back to reference Lopez-Uribe MM, Fitzgerald A, Simone-Finstrom M. Inducible versus constitutive social immunity: examining effects of colony infection on glucose oxidase and defensin-1 production in honeybees. R Soc Open Sci. 2017;4:170224.PubMedPubMedCentralCrossRef Lopez-Uribe MM, Fitzgerald A, Simone-Finstrom M. Inducible versus constitutive social immunity: examining effects of colony infection on glucose oxidase and defensin-1 production in honeybees. R Soc Open Sci. 2017;4:170224.PubMedPubMedCentralCrossRef
56.
go back to reference Simone M, Evans JD, Spivak M. Resin collection and social immunity in honey bees. Evolution. 2009;63:3016–22.PubMedCrossRef Simone M, Evans JD, Spivak M. Resin collection and social immunity in honey bees. Evolution. 2009;63:3016–22.PubMedCrossRef
58.
59.
go back to reference Chejanovsky N, et al. Characterization of viral siRNA populations in honey bee colony collapse disorder. Virology. 2014;454–455:176–83.PubMedCrossRef Chejanovsky N, et al. Characterization of viral siRNA populations in honey bee colony collapse disorder. Virology. 2014;454–455:176–83.PubMedCrossRef
60.
go back to reference Desai SD, Eu YJ, Whyard S, Currie RW. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol Biol. 2012;21:446–55.PubMedCrossRef Desai SD, Eu YJ, Whyard S, Currie RW. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol Biol. 2012;21:446–55.PubMedCrossRef
61.
go back to reference Wang H, Meeus I, Smagghe G. Israeli acute paralysis virus associated paralysis symptoms, viral tissue distribution and Dicer-2 induction in bumblebee workers (Bombus terrestris). J Gen Virol. 2016;97:1981–9.PubMedCrossRef Wang H, Meeus I, Smagghe G. Israeli acute paralysis virus associated paralysis symptoms, viral tissue distribution and Dicer-2 induction in bumblebee workers (Bombus terrestris). J Gen Virol. 2016;97:1981–9.PubMedCrossRef
62.
go back to reference Poeck H, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol. 2010;11:63–9.PubMedCrossRef Poeck H, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol. 2010;11:63–9.PubMedCrossRef
63.
64.
go back to reference Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463–9.PubMedCrossRef Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463–9.PubMedCrossRef
67.
go back to reference Tassetto M, Kunitomi M, Andino R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell. 2017;169:314–25.PubMedPubMedCentralCrossRef Tassetto M, Kunitomi M, Andino R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell. 2017;169:314–25.PubMedPubMedCentralCrossRef
68.
go back to reference League GP, Hillyer JF. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts. BMC Biol. 2016;14:78.PubMedPubMedCentralCrossRef League GP, Hillyer JF. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts. BMC Biol. 2016;14:78.PubMedPubMedCentralCrossRef
69.
go back to reference Pan X, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2012;109:E23-31.PubMedCrossRef Pan X, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2012;109:E23-31.PubMedCrossRef
70.
go back to reference Schwarz KB. Oxidative stress during viral infection: a review. Free Radic Biol Med. 1996;21:641–9.PubMedCrossRef Schwarz KB. Oxidative stress during viral infection: a review. Free Radic Biol Med. 1996;21:641–9.PubMedCrossRef
71.
go back to reference Yang P, et al. The role of oxidative stress in hormesis induced by sodium arsenite in human embryo lung fibroblast (HELF) cellular proliferation model. J Toxicol Environ Health Part A. 2007;70:976–83.CrossRef Yang P, et al. The role of oxidative stress in hormesis induced by sodium arsenite in human embryo lung fibroblast (HELF) cellular proliferation model. J Toxicol Environ Health Part A. 2007;70:976–83.CrossRef
72.
go back to reference Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.PubMedCrossRef Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.PubMedCrossRef
73.
go back to reference Margotta JW, Roberts SP, Elekonich MM. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J Exp Biol. 2018;221:jeb183228.PubMedCrossRef Margotta JW, Roberts SP, Elekonich MM. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J Exp Biol. 2018;221:jeb183228.PubMedCrossRef
74.
go back to reference Molina-Cruz A, et al. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem. 2008;283:3217–23.PubMedCrossRef Molina-Cruz A, et al. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem. 2008;283:3217–23.PubMedCrossRef
75.
go back to reference Surachetpong W, Pakpour N, Cheung KW, Luckhart S. Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum. Antioxid Redox Signal. 2011;14:943–55.PubMedPubMedCentralCrossRef Surachetpong W, Pakpour N, Cheung KW, Luckhart S. Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum. Antioxid Redox Signal. 2011;14:943–55.PubMedPubMedCentralCrossRef
76.
go back to reference Reeves AM, O’Neal ST, Fell RD, Brewster CC, Anderson TD. In-hive acaricides alter biochemical and morphological indicators of honey bee nutrition, immunity, and development. J Insect Sci. 2018;18:8.PubMedPubMedCentralCrossRef Reeves AM, O’Neal ST, Fell RD, Brewster CC, Anderson TD. In-hive acaricides alter biochemical and morphological indicators of honey bee nutrition, immunity, and development. J Insect Sci. 2018;18:8.PubMedPubMedCentralCrossRef
77.
go back to reference Chan QW, Melathopoulos AP, Pernal SF, Foster LJ. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genom. 2009;10:387.CrossRef Chan QW, Melathopoulos AP, Pernal SF, Foster LJ. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genom. 2009;10:387.CrossRef
78.
go back to reference Schmid-Hempel P. Evolutionary ecology of insect immune defenses. Annu Rev Entomol. 2005;50:529–51.PubMedCrossRef Schmid-Hempel P. Evolutionary ecology of insect immune defenses. Annu Rev Entomol. 2005;50:529–51.PubMedCrossRef
79.
go back to reference Williams GR, et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J Apic Res. 2013;52:1–36.CrossRef Williams GR, et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J Apic Res. 2013;52:1–36.CrossRef
80.
go back to reference Organisation de Coopération et de Développement Économiques. Test no. 213: honeybees, acute oral toxicity test. Paris: OECD Publishing; 1998. Organisation de Coopération et de Développement Économiques. Test no. 213: honeybees, acute oral toxicity test. Paris: OECD Publishing; 1998.
81.
go back to reference Boncristiani HF, et al. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS ONE. 2013;8:e73429.PubMedPubMedCentralCrossRef Boncristiani HF, et al. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS ONE. 2013;8:e73429.PubMedPubMedCentralCrossRef
82.
go back to reference Boncristiani HF Jr, Di Prisco G, Pettis JS, Hamilton M, Chen YP. Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera. Virol J. 2009;6:221.PubMedPubMedCentralCrossRef Boncristiani HF Jr, Di Prisco G, Pettis JS, Hamilton M, Chen YP. Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera. Virol J. 2009;6:221.PubMedPubMedCentralCrossRef
83.
go back to reference Reeves AM, O’Neal ST, Fell RD, Brewster CC, Anderson TD. In-hive acaricides alter biochemical and morphological indicators of honey bee nutrition, immunity, and development. J Insect Sci. 2018;18:8.PubMedPubMedCentralCrossRef Reeves AM, O’Neal ST, Fell RD, Brewster CC, Anderson TD. In-hive acaricides alter biochemical and morphological indicators of honey bee nutrition, immunity, and development. J Insect Sci. 2018;18:8.PubMedPubMedCentralCrossRef
84.
go back to reference Mascari TM, Foil LD. Laboratory evaluation of the efficacy of fluorescent biomarkers for sugar-feeding sand flies (Diptera: Psychodidae). J Med Entomol. 2010;47:664–9.PubMedPubMedCentralCrossRef Mascari TM, Foil LD. Laboratory evaluation of the efficacy of fluorescent biomarkers for sugar-feeding sand flies (Diptera: Psychodidae). J Med Entomol. 2010;47:664–9.PubMedPubMedCentralCrossRef
85.
go back to reference Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Viral species differentially influence macronutrient preferences based on honey bee genotype. Biol Open. 2022;11:bio059039.PubMedPubMedCentralCrossRef Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Viral species differentially influence macronutrient preferences based on honey bee genotype. Biol Open. 2022;11:bio059039.PubMedPubMedCentralCrossRef
86.
go back to reference Simone-Finstrom M, Aronstein K, Goblirsch M, Rinkevich F, de Guzman L. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites. J Invertebr Pathol. 2018;153:57–64.PubMedCrossRef Simone-Finstrom M, Aronstein K, Goblirsch M, Rinkevich F, de Guzman L. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites. J Invertebr Pathol. 2018;153:57–64.PubMedCrossRef
Metadata
Title
Potassium ion channels as a molecular target to reduce virus infection and mortality of honey bee colonies
Authors
Christopher J. Fellows
Michael Simone-Finstrom
Troy D. Anderson
Daniel R. Swale
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Mites
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02104-0

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.