Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2024

Open Access 01-12-2024 | Review

Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases

Authors: Dillon J. Rinauro, Fabrizio Chiti, Michele Vendruscolo, Ryan Limbocker

Published in: Molecular Neurodegeneration | Issue 1/2024

Login to get access

Abstract

The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer’s and Parkinson’s diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Literature
1.
go back to reference Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem. 2017;86:27–68.PubMedCrossRef Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem. 2017;86:27–68.PubMedCrossRef
2.
go back to reference Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384–96.PubMedCrossRef Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384–96.PubMedCrossRef
5.
go back to reference Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science. 2022;375:167–72.ADSPubMedPubMedCentralCrossRef Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science. 2022;375:167–72.ADSPubMedPubMedCentralCrossRef
6.
go back to reference Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, et al. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 2022;29:213–9.PubMedCrossRef Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, et al. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 2022;29:213–9.PubMedCrossRef
7.
8.
go back to reference Wood JG, Mirra SS, Pollock NJ, Binder LI. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci. 1986;83:4040–3. Wood JG, Mirra SS, Pollock NJ, Binder LI. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci. 1986;83:4040–3.
9.
go back to reference Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084–9. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084–9.
10.
go back to reference Hardy JA, Higgins GA. Alzheimer’s Disease: The amyloid cascade hypothesis. Science. 1992;256:184–5. Hardy JA, Higgins GA. Alzheimer’s Disease: The amyloid cascade hypothesis. Science. 1992;256:184–5.
11.
go back to reference Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci. 1985;82:4245–9. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci. 1985;82:4245–9.
12.
go back to reference Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388:839–40. Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388:839–40.
13.
go back to reference Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A. 1998;95:6469–73. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A. 1998;95:6469–73.
14.
go back to reference Palato LM, Pilcher S, Oakes A, Lamba A, Torres J, Ledesma Monjaraz LI, et al. Amyloidogenicity of naturally occurring fulllength animal IAPP variants. J Pept Sci. 2019;25:e3199. Palato LM, Pilcher S, Oakes A, Lamba A, Torres J, Ledesma Monjaraz LI, et al. Amyloidogenicity of naturally occurring fulllength animal IAPP variants. J Pept Sci. 2019;25:e3199.
15.
go back to reference Westermark P, Wernstedt C, Wilander E, Sletten K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun. 1986;140:827–31. Westermark P, Wernstedt C, Wilander E, Sletten K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun. 1986;140:827–31.
16.
go back to reference van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.PubMedCrossRef van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.PubMedCrossRef
17.
go back to reference Sengupta U, Nilson AN, Kayed R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. eBioMedicine. 2016;6:42–9. Sengupta U, Nilson AN, Kayed R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. eBioMedicine. 2016;6:42–9.
18.
go back to reference Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener. 2011;6:39.PubMedPubMedCentralCrossRef Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener. 2011;6:39.PubMedPubMedCentralCrossRef
19.
go back to reference Du F, Yu Q, Kanaan NM, Yan SS. Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer’s disease. Hum Mol Genet. 2022;31:2498–507.PubMedPubMedCentralCrossRef Du F, Yu Q, Kanaan NM, Yan SS. Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer’s disease. Hum Mol Genet. 2022;31:2498–507.PubMedPubMedCentralCrossRef
21.
go back to reference Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci USA. 2013;110:9758–63.ADSPubMedPubMedCentralCrossRef Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci USA. 2013;110:9758–63.ADSPubMedPubMedCentralCrossRef
22.
go back to reference Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SIA, et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc Natl Acad Sci USA. 2014;111:9384–9.ADSPubMedPubMedCentralCrossRef Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SIA, et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc Natl Acad Sci USA. 2014;111:9384–9.ADSPubMedPubMedCentralCrossRef
23.
go back to reference Rodriguez Camargo DC, Sileikis E, Chia S, Axell E, Bernfur K, Cataldi RL, et al. Proliferation of Tau 304–380 fragment aggregates through autocatalytic secondary nucleation. ACS Chem Neurosci. 2021;12:4406–15.PubMedCrossRef Rodriguez Camargo DC, Sileikis E, Chia S, Axell E, Bernfur K, Cataldi RL, et al. Proliferation of Tau 304–380 fragment aggregates through autocatalytic secondary nucleation. ACS Chem Neurosci. 2021;12:4406–15.PubMedCrossRef
24.
go back to reference Sachse C, Fändrich M, Grigorieff N. Paired β-sheet structure of an Aβ(1–40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci USA. 2008;105:7462–6.ADSPubMedPubMedCentralCrossRef Sachse C, Fändrich M, Grigorieff N. Paired β-sheet structure of an Aβ(1–40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci USA. 2008;105:7462–6.ADSPubMedPubMedCentralCrossRef
25.
go back to reference Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, et al. Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science. 2017;358:116–9.ADSPubMedPubMedCentralCrossRef Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, et al. Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science. 2017;358:116–9.ADSPubMedPubMedCentralCrossRef
26.
go back to reference Lövestam S, Koh FA, van Knippenberg B, Kotecha A, Murzin AG, Goedert M, et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife. 2022;11:e76494. Lövestam S, Koh FA, van Knippenberg B, Kotecha A, Murzin AG, Goedert M, et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife. 2022;11:e76494.
27.
go back to reference Ghosh U, Thurber KR, Yau W-M, Tycko R. Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue. Proc Natl Acad Sci USA. 2021;118: e2023089118.PubMedPubMedCentralCrossRef Ghosh U, Thurber KR, Yau W-M, Tycko R. Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue. Proc Natl Acad Sci USA. 2021;118: e2023089118.PubMedPubMedCentralCrossRef
28.
go back to reference Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A, et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun. 2019;10:4760.ADSPubMedPubMedCentralCrossRef Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A, et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun. 2019;10:4760.ADSPubMedPubMedCentralCrossRef
29.
go back to reference Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547:185–90.ADSPubMedPubMedCentralCrossRef Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547:185–90.ADSPubMedPubMedCentralCrossRef
30.
go back to reference Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, et al. Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol (Berl). 2018;136:699–708.PubMedCrossRef Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, et al. Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol (Berl). 2018;136:699–708.PubMedCrossRef
31.
go back to reference Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA. 2011;108:4194–9.ADSPubMedPubMedCentralCrossRef Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA. 2011;108:4194–9.ADSPubMedPubMedCentralCrossRef
32.
go back to reference Emin D, Zhang YP, Lobanova E, Miller A, Li X, Xia Z, et al. Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease. Nat Commun. 2022;13:5512.ADSPubMedPubMedCentralCrossRef Emin D, Zhang YP, Lobanova E, Miller A, Li X, Xia Z, et al. Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease. Nat Commun. 2022;13:5512.ADSPubMedPubMedCentralCrossRef
33.
go back to reference Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science. 2017;358:1440–3.ADSPubMedCrossRef Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science. 2017;358:1440–3.ADSPubMedCrossRef
34.
go back to reference Horne RI, Metrick MAI, Man W, Rinauro DJ, Brotzakis ZF, Chia S, et al. Secondary processes dominate the quiescent, spontaneous aggregation of α-synuclein at physiological pH with sodium salts. ACS Chem Neurosci. 2023;14:3125–31. Horne RI, Metrick MAI, Man W, Rinauro DJ, Brotzakis ZF, Chia S, et al. Secondary processes dominate the quiescent, spontaneous aggregation of α-synuclein at physiological pH with sodium salts. ACS Chem Neurosci. 2023;14:3125–31.
35.
go back to reference Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TPJ, et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc Natl Acad Sci USA. 2014;111:7671–6.ADSPubMedPubMedCentralCrossRef Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TPJ, et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc Natl Acad Sci USA. 2014;111:7671–6.ADSPubMedPubMedCentralCrossRef
36.
37.
go back to reference Li Y, Zhao C, Luo F, Liu Z, Gui X, Luo Z, et al. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 2018;28:897–903.PubMedPubMedCentralCrossRef Li Y, Zhao C, Luo F, Liu Z, Gui X, Luo Z, et al. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 2018;28:897–903.PubMedPubMedCentralCrossRef
38.
go back to reference Boyer DR, Li B, Sun C, Fan W, Sawaya MR, Jiang L, et al. Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nat Struct Mol Biol. 2019;26:1044–52.PubMedPubMedCentralCrossRef Boyer DR, Li B, Sun C, Fan W, Sawaya MR, Jiang L, et al. Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nat Struct Mol Biol. 2019;26:1044–52.PubMedPubMedCentralCrossRef
39.
go back to reference Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD, et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol. 2016;23:409–15.PubMedPubMedCentralCrossRef Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD, et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol. 2016;23:409–15.PubMedPubMedCentralCrossRef
40.
go back to reference Yang Y, Shi Y, Schweighauser M, Zhang X, Kotecha A, Murzin AG, et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature. 2022;610:791–5.ADSPubMedCrossRef Yang Y, Shi Y, Schweighauser M, Zhang X, Kotecha A, Murzin AG, et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature. 2022;610:791–5.ADSPubMedCrossRef
42.
go back to reference Strohäker T, Jung BC, Liou S-H, Fernandez CO, Riedel D, Becker S, et al. Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nat Commun. 2019;10:5535.ADSPubMedPubMedCentralCrossRef Strohäker T, Jung BC, Liou S-H, Fernandez CO, Riedel D, Becker S, et al. Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nat Commun. 2019;10:5535.ADSPubMedPubMedCentralCrossRef
43.
go back to reference Kramer ML, Schulz-Schaeffer WJ. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci. 2007;27:1405–10.PubMedPubMedCentralCrossRef Kramer ML, Schulz-Schaeffer WJ. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci. 2007;27:1405–10.PubMedPubMedCentralCrossRef
44.
go back to reference Paleologou KE, Kragh CL, Mann DMA, Salem SA, Al-Shami R, Allsop D, et al. Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain J Neurol. 2009;132:1093–101.CrossRef Paleologou KE, Kragh CL, Mann DMA, Salem SA, Al-Shami R, Allsop D, et al. Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain J Neurol. 2009;132:1093–101.CrossRef
46.
go back to reference Bongianni M, Ladogana A, Capaldi S, Klotz S, Baiardi S, Cagnin A, et al. α-Synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann Clin Transl Neurol. 2019;6:2120–6.PubMedPubMedCentralCrossRef Bongianni M, Ladogana A, Capaldi S, Klotz S, Baiardi S, Cagnin A, et al. α-Synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann Clin Transl Neurol. 2019;6:2120–6.PubMedPubMedCentralCrossRef
48.
go back to reference Hansson O, Hall S, Ohrfelt A, Zetterberg H, Blennow K, Minthon L, et al. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res Ther. 2014;6:25.PubMedPubMedCentralCrossRef Hansson O, Hall S, Ohrfelt A, Zetterberg H, Blennow K, Minthon L, et al. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res Ther. 2014;6:25.PubMedPubMedCentralCrossRef
49.
go back to reference Pountney DL, Lowe R, Quilty M, Vickers JC, Voelcker NH, Gai WP. Annular α-synuclein species from purified multiple system atrophy inclusions. J Neurochem. 2004;90:502–12.PubMedCrossRef Pountney DL, Lowe R, Quilty M, Vickers JC, Voelcker NH, Gai WP. Annular α-synuclein species from purified multiple system atrophy inclusions. J Neurochem. 2004;90:502–12.PubMedCrossRef
50.
go back to reference Cascella R, Bigi A, Cremades N, Cecchi C. Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cell Mol Life Sci. 2022;79:174.PubMedPubMedCentralCrossRef Cascella R, Bigi A, Cremades N, Cecchi C. Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cell Mol Life Sci. 2022;79:174.PubMedPubMedCentralCrossRef
51.
go back to reference Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B, et al. Structures of α-synuclein filaments from multiple system atrophy. Nature. 2020;585:464–9.ADSPubMedPubMedCentralCrossRef Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B, et al. Structures of α-synuclein filaments from multiple system atrophy. Nature. 2020;585:464–9.ADSPubMedPubMedCentralCrossRef
52.
go back to reference Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16:529–46.PubMedCrossRef Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16:529–46.PubMedCrossRef
53.
go back to reference Wetzel R. Exploding the repeat length paradigm while exploring amyloid toxicity in Huntington’s disease. Acc Chem Res. 2020;53:2347–57.PubMedCrossRef Wetzel R. Exploding the repeat length paradigm while exploring amyloid toxicity in Huntington’s disease. Acc Chem Res. 2020;53:2347–57.PubMedCrossRef
54.
go back to reference Gropp MHM, Klaips CL, Hartl FU. Formation of toxic oligomers of polyQ-expanded Huntingtin by prion-mediated cross-seeding. Mol Cell. 2022;82:4290–4306.e11.PubMedCrossRef Gropp MHM, Klaips CL, Hartl FU. Formation of toxic oligomers of polyQ-expanded Huntingtin by prion-mediated cross-seeding. Mol Cell. 2022;82:4290–4306.e11.PubMedCrossRef
55.
go back to reference Sinnige T, Meisl G, Michaels TCT, Vendruscolo M, Knowles TPJ, Morimoto RI. Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in C. elegans. Proc Natl Acad Sci USA. 2021;118:e2021888118. Sinnige T, Meisl G, Michaels TCT, Vendruscolo M, Knowles TPJ, Morimoto RI. Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in C. elegans. Proc Natl Acad Sci USA. 2021;118:e2021888118.
56.
go back to reference Nazarov S, Chiki A, Boudeffa D, Lashuel HA. Structural basis of Huntingtin fibril polymorphism revealed by cryogenic electron microscopy of exon 1 HTT fibrils. J Am Chem Soc. 2022;144:10723–35.PubMedCrossRef Nazarov S, Chiki A, Boudeffa D, Lashuel HA. Structural basis of Huntingtin fibril polymorphism revealed by cryogenic electron microscopy of exon 1 HTT fibrils. J Am Chem Soc. 2022;144:10723–35.PubMedCrossRef
58.
go back to reference Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019;568:420–3.ADSPubMedPubMedCentralCrossRef Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019;568:420–3.ADSPubMedPubMedCentralCrossRef
59.
go back to reference Metrick MA, Ferreira N do C, Saijo E, Kraus A, Newell K, Zanusso G, et al. A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol Commun. 2020;8:22. Metrick MA, Ferreira N do C, Saijo E, Kraus A, Newell K, Zanusso G, et al. A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol Commun. 2020;8:22.
60.
go back to reference Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R, et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature. 2018;561:137.ADSPubMedPubMedCentralCrossRef Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R, et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature. 2018;561:137.ADSPubMedPubMedCentralCrossRef
61.
go back to reference Saijo E, Metrick MA, Koga S, Parchi P, Litvan I, Spina S, et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol (Berl). 2020;139:63–77.PubMedCrossRef Saijo E, Metrick MA, Koga S, Parchi P, Litvan I, Spina S, et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol (Berl). 2020;139:63–77.PubMedCrossRef
62.
63.
go back to reference Woerman AL, Aoyagi A, Patel S, Kazmi SA, Lobach I, Grinberg LT, et al. Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci USA. 2016;113:E8187–96.PubMedPubMedCentralCrossRef Woerman AL, Aoyagi A, Patel S, Kazmi SA, Lobach I, Grinberg LT, et al. Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci USA. 2016;113:E8187–96.PubMedPubMedCentralCrossRef
64.
go back to reference Chung DC, Carlomagno Y, Cook CN, Jansen-West K, Daughrity L, Lewis-Tuffin LJ, et al. Tau exhibits unique seeding properties in globular glial tauopathy. Acta Neuropathol Commun. 2019;7:36.PubMedPubMedCentralCrossRef Chung DC, Carlomagno Y, Cook CN, Jansen-West K, Daughrity L, Lewis-Tuffin LJ, et al. Tau exhibits unique seeding properties in globular glial tauopathy. Acta Neuropathol Commun. 2019;7:36.PubMedPubMedCentralCrossRef
66.
go back to reference Caughey B, Baron GS, Chesebro B, Jeffrey M. Getting a grip on prions: oligomers, amyloids and pathological membrane interactions. Annu Rev Biochem. 2009;78:177–204.PubMedPubMedCentralCrossRef Caughey B, Baron GS, Chesebro B, Jeffrey M. Getting a grip on prions: oligomers, amyloids and pathological membrane interactions. Annu Rev Biochem. 2009;78:177–204.PubMedPubMedCentralCrossRef
67.
go back to reference Sigurdson CJ, Bartz JC, Glatzel M. Cellular and molecular mechanisms of prion disease. Annu Rev Pathol. 2019;14:497–516.PubMedCrossRef Sigurdson CJ, Bartz JC, Glatzel M. Cellular and molecular mechanisms of prion disease. Annu Rev Pathol. 2019;14:497–516.PubMedCrossRef
68.
go back to reference Meisl G, Kurt T, Condado-Morales I, Bett C, Sorce S, Nuvolone M, et al. Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nat Struct Mol Biol. 2021;28:365–72.PubMedPubMedCentralCrossRef Meisl G, Kurt T, Condado-Morales I, Bett C, Sorce S, Nuvolone M, et al. Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nat Struct Mol Biol. 2021;28:365–72.PubMedPubMedCentralCrossRef
69.
go back to reference Wang L-Q, Zhao K, Yuan H-Y, Li X-N, Dang H-B, Ma Y, et al. Genetic prion disease–related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM. Sci Adv. 2021;7:eabg9676. Wang L-Q, Zhao K, Yuan H-Y, Li X-N, Dang H-B, Ma Y, et al. Genetic prion disease–related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM. Sci Adv. 2021;7:eabg9676.
70.
go back to reference Kraus A, Hoyt F, Schwartz CL, Hansen B, Artikis E, Hughson AG, et al. High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell. 2021;81:4540–4551.e6.PubMedCrossRef Kraus A, Hoyt F, Schwartz CL, Hansen B, Artikis E, Hughson AG, et al. High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell. 2021;81:4540–4551.e6.PubMedCrossRef
71.
go back to reference Wang L-Q, Zhao K, Yuan H-Y, Wang Q, Guan Z, Tao J, et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat Struct Mol Biol. 2020;27:598–602.PubMedCrossRef Wang L-Q, Zhao K, Yuan H-Y, Wang Q, Guan Z, Tao J, et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat Struct Mol Biol. 2020;27:598–602.PubMedCrossRef
72.
go back to reference Glynn C, Sawaya MR, Ge P, Gallagher-Jones M, Short CW, Bowman R, et al. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol. 2020;27:417–23.PubMedPubMedCentralCrossRef Glynn C, Sawaya MR, Ge P, Gallagher-Jones M, Short CW, Bowman R, et al. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol. 2020;27:417–23.PubMedPubMedCentralCrossRef
74.
go back to reference Manka SW, Zhang W, Wenborn A, Betts J, Joiner S, Saibil HR, et al. 2.7 Å cryo-EM structure of ex vivo RML prion fibrils. Nat Commun. 2022;13:4004. Manka SW, Zhang W, Wenborn A, Betts J, Joiner S, Saibil HR, et al. 2.7 Å cryo-EM structure of ex vivo RML prion fibrils. Nat Commun. 2022;13:4004.
75.
go back to reference Hoyt F, Standke HG, Artikis E, Schwartz CL, Hansen B, Li K, et al. Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains. Nat Commun. 2022;13:4005.ADSPubMedPubMedCentralCrossRef Hoyt F, Standke HG, Artikis E, Schwartz CL, Hansen B, Li K, et al. Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains. Nat Commun. 2022;13:4005.ADSPubMedPubMedCentralCrossRef
76.
go back to reference Kamali-Jamil R, Vázquez-Fernández E, Tancowny B, Rathod V, Amidian S, Wang X, et al. The ultrastructure of infectious L-type bovine spongiform encephalopathy prions constrains molecular models. PLOS Pathog. 2021;17:e1009628. Kamali-Jamil R, Vázquez-Fernández E, Tancowny B, Rathod V, Amidian S, Wang X, et al. The ultrastructure of infectious L-type bovine spongiform encephalopathy prions constrains molecular models. PLOS Pathog. 2021;17:e1009628.
77.
go back to reference Bram Y, Frydman-Marom A, Yanai I, Gilead S, Shaltiel-Karyo R, Amdursky N, et al. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci Rep. 2014;4:4267.ADSPubMedPubMedCentralCrossRef Bram Y, Frydman-Marom A, Yanai I, Gilead S, Shaltiel-Karyo R, Amdursky N, et al. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci Rep. 2014;4:4267.ADSPubMedPubMedCentralCrossRef
78.
go back to reference Gurlo T, Ryazantsev S, Huang C, Yeh MW, Reber HA, Hines OJ, et al. Evidence for proteotoxicity in β cells in Type 2 Diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol. 2010;176:861–9.PubMedPubMedCentralCrossRef Gurlo T, Ryazantsev S, Huang C, Yeh MW, Reber HA, Hines OJ, et al. Evidence for proteotoxicity in β cells in Type 2 Diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol. 2010;176:861–9.PubMedPubMedCentralCrossRef
80.
go back to reference Gallardo R, Iadanza MG, Xu Y, Heath GR, Foster R, Radford SE, et al. Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Nat Struct Mol Biol. 2020;27:1048–56.PubMedCrossRef Gallardo R, Iadanza MG, Xu Y, Heath GR, Foster R, Radford SE, et al. Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Nat Struct Mol Biol. 2020;27:1048–56.PubMedCrossRef
81.
go back to reference Cao Q, Boyer DR, Sawaya MR, Ge P, Eisenberg DS. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat Struct Mol Biol. 2020;27:653–9.PubMedPubMedCentralCrossRef Cao Q, Boyer DR, Sawaya MR, Ge P, Eisenberg DS. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat Struct Mol Biol. 2020;27:653–9.PubMedPubMedCentralCrossRef
82.
go back to reference Cao Q, Boyer DR, Sawaya MR, Abskharon R, Saelices L, Nguyen BA, et al. Cryo-EM structures of hIAPP fibrils seeded by patient-extracted fibrils reveal new polymorphs and conserved fibril cores. Nat Struct Mol Biol. 2021;28:724–30.PubMedPubMedCentralCrossRef Cao Q, Boyer DR, Sawaya MR, Abskharon R, Saelices L, Nguyen BA, et al. Cryo-EM structures of hIAPP fibrils seeded by patient-extracted fibrils reveal new polymorphs and conserved fibril cores. Nat Struct Mol Biol. 2021;28:724–30.PubMedPubMedCentralCrossRef
83.
go back to reference Meehan S, Berry Y, Luisi B, Dobson CM, Carver JA, MacPhee CE. Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. J Biol Chem. 2004;279:3413–9.PubMedCrossRef Meehan S, Berry Y, Luisi B, Dobson CM, Carver JA, MacPhee CE. Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. J Biol Chem. 2004;279:3413–9.PubMedCrossRef
85.
go back to reference Bansal A, Schmidt M, Rennegarbe M, Haupt C, Liberta F, Stecher S, et al. AA amyloid fibrils from diseased tissue are structurally different from in vitro formed SAA fibrils. Nat Commun. 2021;12:1013.ADSPubMedPubMedCentralCrossRef Bansal A, Schmidt M, Rennegarbe M, Haupt C, Liberta F, Stecher S, et al. AA amyloid fibrils from diseased tissue are structurally different from in vitro formed SAA fibrils. Nat Commun. 2021;12:1013.ADSPubMedPubMedCentralCrossRef
86.
go back to reference Jayaraman S, Gantz DL, Haupt C, Gursky O. Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc Natl Acad Sci USA. 2017;114:E6507–15.ADSPubMedPubMedCentralCrossRef Jayaraman S, Gantz DL, Haupt C, Gursky O. Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc Natl Acad Sci USA. 2017;114:E6507–15.ADSPubMedPubMedCentralCrossRef
87.
go back to reference Westermark GT, Westermark P. Serum amyloid A and protein AA: Molecular mechanisms of a transmissible amyloidosis. FEBS Lett. 2009;583:2685–90.PubMedCrossRef Westermark GT, Westermark P. Serum amyloid A and protein AA: Molecular mechanisms of a transmissible amyloidosis. FEBS Lett. 2009;583:2685–90.PubMedCrossRef
88.
go back to reference Heerde T, Rennegarbe M, Biedermann A, Savran D, Pfeiffer PB, Hitzenberger M, et al. Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Nat Commun. 2022;13:85.ADSPubMedPubMedCentralCrossRef Heerde T, Rennegarbe M, Biedermann A, Savran D, Pfeiffer PB, Hitzenberger M, et al. Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Nat Commun. 2022;13:85.ADSPubMedPubMedCentralCrossRef
89.
go back to reference Teixeira PF, Cerca F, Santos SD, Saraiva MJ. Endoplasmic reticulum stress associated with extracellular aggregates: evidence from transthyretin deposition in familial amyloid polyneuropathy. J Biol Chem. 2006;281:21998–2003.PubMedCrossRef Teixeira PF, Cerca F, Santos SD, Saraiva MJ. Endoplasmic reticulum stress associated with extracellular aggregates: evidence from transthyretin deposition in familial amyloid polyneuropathy. J Biol Chem. 2006;281:21998–2003.PubMedCrossRef
90.
go back to reference Andersson K, Olofsson A, Nielsen EH, Svehag S-E, Lundgren E. Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun. 2002;294:309–14.PubMedCrossRef Andersson K, Olofsson A, Nielsen EH, Svehag S-E, Lundgren E. Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun. 2002;294:309–14.PubMedCrossRef
91.
go back to reference Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN. Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA. 2004;101:2817–22.ADSPubMedPubMedCentralCrossRef Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN. Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA. 2004;101:2817–22.ADSPubMedPubMedCentralCrossRef
92.
go back to reference Steinebrei M, Gottwald J, Baur J, Röcken C, Hegenbart U, Schönland S, et al. Cryo-EM structure of an ATTRwt amyloid fibril from systemic non-hereditary transthyretin amyloidosis. Nat Commun. 2022;13:6398.ADSPubMedPubMedCentralCrossRef Steinebrei M, Gottwald J, Baur J, Röcken C, Hegenbart U, Schönland S, et al. Cryo-EM structure of an ATTRwt amyloid fibril from systemic non-hereditary transthyretin amyloidosis. Nat Commun. 2022;13:6398.ADSPubMedPubMedCentralCrossRef
93.
go back to reference Schmidt M, Wiese S, Adak V, Engler J, Agarwal S, Fritz G, et al. Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nat Commun. 2019;10:5008.ADSPubMedPubMedCentralCrossRef Schmidt M, Wiese S, Adak V, Engler J, Agarwal S, Fritz G, et al. Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nat Commun. 2019;10:5008.ADSPubMedPubMedCentralCrossRef
94.
go back to reference Merlini G, Dispenzieri A, Sanchorawala V, Schönland SO, Palladini G, Hawkins PN, et al. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primer. 2018;4:1–19.CrossRef Merlini G, Dispenzieri A, Sanchorawala V, Schönland SO, Palladini G, Hawkins PN, et al. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primer. 2018;4:1–19.CrossRef
95.
go back to reference Imperlini E, Gnecchi M, Rognoni P, Sabidò E, Ciuffreda MC, Palladini G, et al. Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci Rep. 2017;7:15661. Imperlini E, Gnecchi M, Rognoni P, Sabidò E, Ciuffreda MC, Palladini G, et al. Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci Rep. 2017;7:15661.
96.
go back to reference Blancas-Mejía LM, Ramirez-Alvarado M. Recruitment of light chains by homologous and heterologous fibrils shows distinctive kinetic and conformational specificity. Biochemistry. 2016;55:2967–78.PubMedCrossRef Blancas-Mejía LM, Ramirez-Alvarado M. Recruitment of light chains by homologous and heterologous fibrils shows distinctive kinetic and conformational specificity. Biochemistry. 2016;55:2967–78.PubMedCrossRef
97.
go back to reference Radamaker L, Baur J, Huhn S, Haupt C, Hegenbart U, Schönland S, et al. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat Commun. 2021;12:875.ADSPubMedPubMedCentralCrossRef Radamaker L, Baur J, Huhn S, Haupt C, Hegenbart U, Schönland S, et al. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat Commun. 2021;12:875.ADSPubMedPubMedCentralCrossRef
98.
go back to reference Swuec P, Lavatelli F, Tasaki M, Paissoni C, Rognoni P, Maritan M, et al. Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain AL amyloidosis patient. Nat Commun. 2019;10:1269.ADSPubMedPubMedCentralCrossRef Swuec P, Lavatelli F, Tasaki M, Paissoni C, Rognoni P, Maritan M, et al. Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain AL amyloidosis patient. Nat Commun. 2019;10:1269.ADSPubMedPubMedCentralCrossRef
99.
go back to reference Dasari AKR, Yi S, Coats MF, Wi S, Lim KH. Toxic Misfolded transthyretin oligomers with different molecular conformations formed through distinct oligomerization pathways. Biochemistry. 2022;61:2358–65.PubMedCrossRef Dasari AKR, Yi S, Coats MF, Wi S, Lim KH. Toxic Misfolded transthyretin oligomers with different molecular conformations formed through distinct oligomerization pathways. Biochemistry. 2022;61:2358–65.PubMedCrossRef
100.
go back to reference Bemporad F, Chiti F. Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol. 2012;19:315–27.PubMedCrossRef Bemporad F, Chiti F. Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol. 2012;19:315–27.PubMedCrossRef
101.
go back to reference Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, et al. Therapeutic strategies to reduce the toxicity of misfolded protein oligomers. Int J Mol Sci. 2020;21:8651.PubMedPubMedCentralCrossRef Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, et al. Therapeutic strategies to reduce the toxicity of misfolded protein oligomers. Int J Mol Sci. 2020;21:8651.PubMedPubMedCentralCrossRef
102.
go back to reference Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12.PubMedCrossRef Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12.PubMedCrossRef
103.
go back to reference Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15:349–57.PubMedCrossRef Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15:349–57.PubMedCrossRef
104.
105.
106.
go back to reference Pieri L, Madiona K, Bousset L, Melki R. Fibrillar α-synuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys J. 2012;102:2894–905.PubMedPubMedCentralCrossRef Pieri L, Madiona K, Bousset L, Melki R. Fibrillar α-synuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys J. 2012;102:2894–905.PubMedPubMedCentralCrossRef
107.
go back to reference Scheidt T, Łapińska U, Kumita JR, Whiten DR, Klenerman D, Wilson MR, et al. Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci Adv. 2019;5:eaau3112. Scheidt T, Łapińska U, Kumita JR, Whiten DR, Klenerman D, Wilson MR, et al. Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci Adv. 2019;5:eaau3112.
108.
go back to reference Cascella R, Chen SW, Bigi A, Camino JD, Xu CK, Dobson CM, et al. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat Commun. 2021;12:1814.ADSPubMedPubMedCentralCrossRef Cascella R, Chen SW, Bigi A, Camino JD, Xu CK, Dobson CM, et al. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat Commun. 2021;12:1814.ADSPubMedPubMedCentralCrossRef
109.
go back to reference Josephs KA, Ahlskog JE, Parisi JE, Boeve BF, Crum BA, Giannini C, et al. Rapidly progressive neurodegenerative dementias. Arch Neurol. 2009;66:201–7.PubMedPubMedCentralCrossRef Josephs KA, Ahlskog JE, Parisi JE, Boeve BF, Crum BA, Giannini C, et al. Rapidly progressive neurodegenerative dementias. Arch Neurol. 2009;66:201–7.PubMedPubMedCentralCrossRef
110.
go back to reference Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen N-P, Höllerhage M, Schwarz SC, et al. Four-repeat tauopathies. Prog Neurobiol. 2019;180: 101644.PubMedCrossRef Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen N-P, Höllerhage M, Schwarz SC, et al. Four-repeat tauopathies. Prog Neurobiol. 2019;180: 101644.PubMedCrossRef
111.
go back to reference Irwin DJ, Lee VM-Y, Trojanowski JQ. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013;14:626–36. Irwin DJ, Lee VM-Y, Trojanowski JQ. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013;14:626–36.
113.
go back to reference Chia S, Habchi J, Michaels TCT, Cohen SIA, Linse S, Dobson CM, et al. SAR by kinetics for drug discovery in protein misfolding diseases. Proc Natl Acad Sci USA. 2018;115:10245–50.ADSPubMedPubMedCentralCrossRef Chia S, Habchi J, Michaels TCT, Cohen SIA, Linse S, Dobson CM, et al. SAR by kinetics for drug discovery in protein misfolding diseases. Proc Natl Acad Sci USA. 2018;115:10245–50.ADSPubMedPubMedCentralCrossRef
114.
go back to reference Michaels TCT, Dear AJ, Cohen SIA, Vendruscolo M, Knowles TPJ. Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. J Chem Phys. 2022;156: 164904.PubMedCrossRef Michaels TCT, Dear AJ, Cohen SIA, Vendruscolo M, Knowles TPJ. Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. J Chem Phys. 2022;156: 164904.PubMedCrossRef
116.
go back to reference Limbocker R, Cremades N, Cascella R, Tessier PM, Vendruscolo M, Chiti F. Characterization of pairs of toxic and nontoxic misfolded protein oligomers elucidates the structural determinants of oligomer toxicity in protein misfolding diseases. Acc Chem Res. 2023;56:1395–405.PubMedPubMedCentralCrossRef Limbocker R, Cremades N, Cascella R, Tessier PM, Vendruscolo M, Chiti F. Characterization of pairs of toxic and nontoxic misfolded protein oligomers elucidates the structural determinants of oligomer toxicity in protein misfolding diseases. Acc Chem Res. 2023;56:1395–405.PubMedPubMedCentralCrossRef
117.
go back to reference McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol. 1999;46:860–6.PubMedCrossRef McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol. 1999;46:860–6.PubMedCrossRef
118.
go back to reference Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.ADSPubMedCrossRef Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.ADSPubMedCrossRef
119.
go back to reference Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27:796–807.PubMedPubMedCentralCrossRef Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27:796–807.PubMedPubMedCentralCrossRef
120.
go back to reference Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener. 2007;2:18.PubMedPubMedCentralCrossRef Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener. 2007;2:18.PubMedPubMedCentralCrossRef
121.
go back to reference Noguchi A, Matsumura S, Dezawa M, Tada M, Yanazawa M, Ito A, et al. Isolation and characterization of patient-derived, toxic, high mass amyloid beta-protein (Abeta) assembly from Alzheimer disease brains. J Biol Chem. 2009;284:32895–905.PubMedPubMedCentralCrossRef Noguchi A, Matsumura S, Dezawa M, Tada M, Yanazawa M, Ito A, et al. Isolation and characterization of patient-derived, toxic, high mass amyloid beta-protein (Abeta) assembly from Alzheimer disease brains. J Biol Chem. 2009;284:32895–905.PubMedPubMedCentralCrossRef
122.
go back to reference Hillen H, Barghorn S, Striebinger A, Labkovsky B, Müller R, Nimmrich V, et al. Generation and therapeutic efficacy of highly oligomer-specific β-amyloid antibodies. J Neurosci. 2010;30:10369–79.PubMedPubMedCentralCrossRef Hillen H, Barghorn S, Striebinger A, Labkovsky B, Müller R, Nimmrich V, et al. Generation and therapeutic efficacy of highly oligomer-specific β-amyloid antibodies. J Neurosci. 2010;30:10369–79.PubMedPubMedCentralCrossRef
123.
go back to reference Hölttä M, Hansson O, Andreasson U, Hertze J, Minthon L, Nägga K, et al. Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS ONE. 2013;8: e66381.ADSPubMedPubMedCentralCrossRef Hölttä M, Hansson O, Andreasson U, Hertze J, Minthon L, Nägga K, et al. Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS ONE. 2013;8: e66381.ADSPubMedPubMedCentralCrossRef
124.
go back to reference Savage MJ, Kalinina J, Wolfe A, Tugusheva K, Korn R, Cash-Mason T, et al. A sensitive aβ oligomer assay discriminates Alzheimer’s and aged control cerebrospinal fluid. J Neurosci. 2014;34:2884–97.PubMedPubMedCentralCrossRef Savage MJ, Kalinina J, Wolfe A, Tugusheva K, Korn R, Cash-Mason T, et al. A sensitive aβ oligomer assay discriminates Alzheimer’s and aged control cerebrospinal fluid. J Neurosci. 2014;34:2884–97.PubMedPubMedCentralCrossRef
125.
go back to reference Sengupta U, Portelius E, Hansson O, Farmer K, Castillo-Carranza D, Woltjer R, et al. Tau oligomers in cerebrospinal fluid in Alzheimer’s disease. Ann Clin Transl Neurol. 2017;4:226–35.PubMedPubMedCentralCrossRef Sengupta U, Portelius E, Hansson O, Farmer K, Castillo-Carranza D, Woltjer R, et al. Tau oligomers in cerebrospinal fluid in Alzheimer’s disease. Ann Clin Transl Neurol. 2017;4:226–35.PubMedPubMedCentralCrossRef
126.
go back to reference Vecchi G, Sormanni P, Mannini B, Vandelli A, Tartaglia GG, Dobson CM, et al. Proteome-wide observation of the phenomenon of life on the edge of solubility. Proc Natl Acad Sci USA. 2020;117:1015–20.ADSPubMedCrossRef Vecchi G, Sormanni P, Mannini B, Vandelli A, Tartaglia GG, Dobson CM, et al. Proteome-wide observation of the phenomenon of life on the edge of solubility. Proc Natl Acad Sci USA. 2020;117:1015–20.ADSPubMedCrossRef
127.
go back to reference Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M. Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem Sci. 2007;32:204–6.PubMedCrossRef Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M. Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem Sci. 2007;32:204–6.PubMedCrossRef
128.
go back to reference Baldwin AJ, Knowles TPJ, Tartaglia GG, Fitzpatrick AW, Devlin GL, Shammas SL, et al. Metastability of native proteins and the phenomenon of amyloid formation. J Am Chem Soc. 2011;133:14160–3.PubMedCrossRef Baldwin AJ, Knowles TPJ, Tartaglia GG, Fitzpatrick AW, Devlin GL, Shammas SL, et al. Metastability of native proteins and the phenomenon of amyloid formation. J Am Chem Soc. 2011;133:14160–3.PubMedCrossRef
130.
go back to reference Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997;273:729–39.PubMedCrossRef Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997;273:729–39.PubMedCrossRef
131.
132.
go back to reference Fuxreiter M, Vendruscolo M. Generic nature of the condensed states of proteins. Nat Cell Biol. 2021;23:587–94.PubMedCrossRef Fuxreiter M, Vendruscolo M. Generic nature of the condensed states of proteins. Nat Cell Biol. 2021;23:587–94.PubMedCrossRef
135.
go back to reference Scheres SH, Zhang W, Falcon B, Goedert M. Cryo-EM structures of tau filaments. Curr Opin Struct Biol. 2020;64:17–25.PubMedCrossRef Scheres SH, Zhang W, Falcon B, Goedert M. Cryo-EM structures of tau filaments. Curr Opin Struct Biol. 2020;64:17–25.PubMedCrossRef
136.
go back to reference Arseni D, Hasegawa M, Murzin AG, Kametani F, Arai M, Yoshida M, et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature. 2022;601:139–43.ADSPubMedCrossRef Arseni D, Hasegawa M, Murzin AG, Kametani F, Arai M, Yoshida M, et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature. 2022;601:139–43.ADSPubMedCrossRef
137.
go back to reference Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS. The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell. 2021;184:4857–73.PubMedPubMedCentralCrossRef Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS. The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell. 2021;184:4857–73.PubMedPubMedCentralCrossRef
138.
go back to reference Lu J-X, Qiang W, Yau W-M, Schwieters CD, Meredith SC, Tycko R. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell. 2013;154:1257–68.PubMedCrossRef Lu J-X, Qiang W, Yau W-M, Schwieters CD, Meredith SC, Tycko R. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell. 2013;154:1257–68.PubMedCrossRef
139.
140.
go back to reference Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.PubMedCrossRef Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.PubMedCrossRef
141.
go back to reference Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science. 2007;318:1900–3.ADSPubMedCrossRef Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science. 2007;318:1900–3.ADSPubMedCrossRef
142.
go back to reference Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid – from bacteria to humans. Trends Biochem Sci. 2007;32:217–24.PubMedCrossRef Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid – from bacteria to humans. Trends Biochem Sci. 2007;32:217–24.PubMedCrossRef
144.
go back to reference Hervas R, Rau MJ, Park Y, Zhang W, Murzin AG, Fitzpatrick JAJ, et al. Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Science. 2020;367:1230–4.ADSPubMedPubMedCentralCrossRef Hervas R, Rau MJ, Park Y, Zhang W, Murzin AG, Fitzpatrick JAJ, et al. Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Science. 2020;367:1230–4.ADSPubMedPubMedCentralCrossRef
145.
go back to reference Meisl G, Xu CK, Taylor JD, Michaels TCT, Levin A, Otzen D, et al. Uncovering the universality of self-replication in protein aggregation and its link to disease. Sci Adv. 2022;8:eabn6831. Meisl G, Xu CK, Taylor JD, Michaels TCT, Levin A, Otzen D, et al. Uncovering the universality of self-replication in protein aggregation and its link to disease. Sci Adv. 2022;8:eabn6831.
146.
go back to reference Shimanovich U, Ruggeri FS, Genst ED, Adamcik J, Barros TP, Porter D, et al. Silk micrococoons for protein stabilisation and molecular encapsulation. Nat Commun. 2017;8:15902.ADSPubMedPubMedCentralCrossRef Shimanovich U, Ruggeri FS, Genst ED, Adamcik J, Barros TP, Porter D, et al. Silk micrococoons for protein stabilisation and molecular encapsulation. Nat Commun. 2017;8:15902.ADSPubMedPubMedCentralCrossRef
147.
go back to reference Bolisetty S, Mezzenga R. Amyloid–carbon hybrid membranes for universal water purification. Nat Nanotechnol. 2016;11:365–71.ADSPubMedCrossRef Bolisetty S, Mezzenga R. Amyloid–carbon hybrid membranes for universal water purification. Nat Nanotechnol. 2016;11:365–71.ADSPubMedCrossRef
148.
go back to reference Horvath I, Wittung-Stafshede P. Amyloid fibers of α-synuclein catalyze chemical reactions. ACS Chem Neurosci. 2023;14:603–8.PubMedCrossRef Horvath I, Wittung-Stafshede P. Amyloid fibers of α-synuclein catalyze chemical reactions. ACS Chem Neurosci. 2023;14:603–8.PubMedCrossRef
149.
go back to reference Arad E, Baruch Leshem A, Rapaport H, Jelinek R. β-Amyloid fibrils catalyze neurotransmitter degradation. Chem Catal. 2021;1:908–22.CrossRef Arad E, Baruch Leshem A, Rapaport H, Jelinek R. β-Amyloid fibrils catalyze neurotransmitter degradation. Chem Catal. 2021;1:908–22.CrossRef
150.
go back to reference Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB. Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem. 1997;272:22364–72. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB. Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem. 1997;272:22364–72.
151.
go back to reference Harper JD, Wong SS, Lieber CM, Lansbury PT. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol. 1997;4:119–25.PubMedCrossRef Harper JD, Wong SS, Lieber CM, Lansbury PT. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol. 1997;4:119–25.PubMedCrossRef
152.
go back to reference Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydell RE, Teplow DB, et al. Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem. 1995;270:9564–70.PubMedCrossRef Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydell RE, Teplow DB, et al. Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem. 1995;270:9564–70.PubMedCrossRef
153.
go back to reference Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, et al. Structural conversion of neurotoxic amyloid-β1-42 oligomers to fibrils. Nat Struct Mol Biol. 2010;17:561–7.PubMedPubMedCentralCrossRef Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, et al. Structural conversion of neurotoxic amyloid-β1-42 oligomers to fibrils. Nat Struct Mol Biol. 2010;17:561–7.PubMedPubMedCentralCrossRef
154.
go back to reference Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol. 2007;14:1157–64.PubMedCrossRef Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol. 2007;14:1157–64.PubMedCrossRef
155.
go back to reference Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci USA. 2003;100:6370–5.ADSPubMedPubMedCentralCrossRef Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci USA. 2003;100:6370–5.ADSPubMedPubMedCentralCrossRef
156.
go back to reference Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem. 2005;95:834–47.PubMedCrossRef Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem. 2005;95:834–47.PubMedCrossRef
157.
go back to reference Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, et al. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem. 2009;284:4230–7.PubMedPubMedCentralCrossRef Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, et al. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem. 2009;284:4230–7.PubMedPubMedCentralCrossRef
158.
go back to reference Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998;95:6448–53.ADSPubMedPubMedCentralCrossRef Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998;95:6448–53.ADSPubMedPubMedCentralCrossRef
159.
go back to reference Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc Natl Acad Sci USA. 2003;100:330–5.ADSPubMedCrossRef Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc Natl Acad Sci USA. 2003;100:330–5.ADSPubMedCrossRef
160.
go back to reference Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY, Orte A, et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell. 2012;149:1048–59.PubMedPubMedCentralCrossRef Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY, Orte A, et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell. 2012;149:1048–59.PubMedPubMedCentralCrossRef
161.
go back to reference Chen SW, Drakulic S, Deas E, Ouberai M, Aprile FA, Arranz R, et al. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc Natl Acad Sci USA. 2015;112:E1994–2003.PubMedPubMedCentral Chen SW, Drakulic S, Deas E, Ouberai M, Aprile FA, Arranz R, et al. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc Natl Acad Sci USA. 2015;112:E1994–2003.PubMedPubMedCentral
162.
go back to reference Gallea JI, Celej MS. Structural insights into amyloid oligomers of the Parkinson disease-related protein α-synuclein. J Biol Chem. 2014;289:26733–42.PubMedPubMedCentralCrossRef Gallea JI, Celej MS. Structural insights into amyloid oligomers of the Parkinson disease-related protein α-synuclein. J Biol Chem. 2014;289:26733–42.PubMedPubMedCentralCrossRef
163.
go back to reference Lorenzen N, Nielsen SB, Buell AK, Kaspersen JD, Arosio P, Vad BS, et al. The role of stable α-Synuclein oligomers in the molecular events underlying amyloid formation. J Am Chem Soc. 2014;136:3859–68.PubMedCrossRef Lorenzen N, Nielsen SB, Buell AK, Kaspersen JD, Arosio P, Vad BS, et al. The role of stable α-Synuclein oligomers in the molecular events underlying amyloid formation. J Am Chem Soc. 2014;136:3859–68.PubMedCrossRef
164.
165.
go back to reference Parthasarathy S, Inoue M, Xiao Y, Matsumura Y, Nabeshima Y, Hoshi M, et al. Structural insight into an alzheimer’s brain-derived spherical assembly of amyloid β by solid-state NMR. J Am Chem Soc. 2015;137:6480–3.PubMedPubMedCentralCrossRef Parthasarathy S, Inoue M, Xiao Y, Matsumura Y, Nabeshima Y, Hoshi M, et al. Structural insight into an alzheimer’s brain-derived spherical assembly of amyloid β by solid-state NMR. J Am Chem Soc. 2015;137:6480–3.PubMedPubMedCentralCrossRef
166.
go back to reference O’Nuallain B, Freir DB, Nicoll AJ, Risse E, Ferguson N, Herron CE, et al. Amyloid β-protein dimers rapidly form stable synaptotoxic protofibrils. J Neurosci. 2010;30:14411–9.PubMedPubMedCentralCrossRef O’Nuallain B, Freir DB, Nicoll AJ, Risse E, Ferguson N, Herron CE, et al. Amyloid β-protein dimers rapidly form stable synaptotoxic protofibrils. J Neurosci. 2010;30:14411–9.PubMedPubMedCentralCrossRef
167.
go back to reference Carulla N, Zhou M, Arimon M, Gairí M, Giralt E, Robinson CV, et al. Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proc Natl Acad Sci USA. 2009;106:7828–33.ADSPubMedPubMedCentralCrossRef Carulla N, Zhou M, Arimon M, Gairí M, Giralt E, Robinson CV, et al. Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proc Natl Acad Sci USA. 2009;106:7828–33.ADSPubMedPubMedCentralCrossRef
168.
go back to reference Modler AJ, Gast K, Lutsch G, Damaschun G. Assembly of amyloid protofibrils via critical oligomers–a novel pathway of amyloid formation. J Mol Biol. 2003;325:135–48.PubMedCrossRef Modler AJ, Gast K, Lutsch G, Damaschun G. Assembly of amyloid protofibrils via critical oligomers–a novel pathway of amyloid formation. J Mol Biol. 2003;325:135–48.PubMedCrossRef
169.
go back to reference Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci Publ Protein Soc. 2000;9:1960–7.CrossRef Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci Publ Protein Soc. 2000;9:1960–7.CrossRef
170.
go back to reference Plakoutsi G, Bemporad F, Calamai M, Taddei N, Dobson CM, Chiti F. Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates. J Mol Biol. 2005;351:910–22.PubMedCrossRef Plakoutsi G, Bemporad F, Calamai M, Taddei N, Dobson CM, Chiti F. Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates. J Mol Biol. 2005;351:910–22.PubMedCrossRef
171.
go back to reference Matsumura S, Shinoda K, Yamada M, Yokojima S, Inoue M, Ohnishi T, et al. Two distinct amyloid β-protein (aβ) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. J Biol Chem. 2011;286:11555–62.PubMedPubMedCentralCrossRef Matsumura S, Shinoda K, Yamada M, Yokojima S, Inoue M, Ohnishi T, et al. Two distinct amyloid β-protein (aβ) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. J Biol Chem. 2011;286:11555–62.PubMedPubMedCentralCrossRef
172.
go back to reference Fu Z, Aucoin D, Davis J, Van Nostrand WE, Smith SO. Mechanism of nucleated conformational conversion of Aβ42. Biochemistry. 2015;54:4197–207.PubMedCrossRef Fu Z, Aucoin D, Davis J, Van Nostrand WE, Smith SO. Mechanism of nucleated conformational conversion of Aβ42. Biochemistry. 2015;54:4197–207.PubMedCrossRef
173.
go back to reference Lasagna-Reeves CA, Glabe CG, Kayed R. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain. J Biol Chem. 2011;286:22122–30.PubMedPubMedCentralCrossRef Lasagna-Reeves CA, Glabe CG, Kayed R. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain. J Biol Chem. 2011;286:22122–30.PubMedPubMedCentralCrossRef
174.
go back to reference Michaels TCT, Šarić A, Curk S, Bernfur K, Arosio P, Meisl G, et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat Chem. 2020;12:445–51.PubMedCrossRef Michaels TCT, Šarić A, Curk S, Bernfur K, Arosio P, Meisl G, et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat Chem. 2020;12:445–51.PubMedCrossRef
175.
go back to reference Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol. 2012;421:160–71.PubMedCrossRef Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol. 2012;421:160–71.PubMedCrossRef
176.
go back to reference Lee VM-Y. Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol Aging. 2002;23:1039–42. Lee VM-Y. Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol Aging. 2002;23:1039–42.
178.
179.
go back to reference Staats R, Michaels TCT, Flagmeier P, Chia S, Horne RI, Habchi J, et al. Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter. Commun Chem. 2020;3:1–9.CrossRef Staats R, Michaels TCT, Flagmeier P, Chia S, Horne RI, Habchi J, et al. Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter. Commun Chem. 2020;3:1–9.CrossRef
180.
go back to reference Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, et al. An Analytical solution to the kinetics of breakable filament assembly. Science. 2009;326:1533–7.ADSPubMedCrossRef Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, et al. An Analytical solution to the kinetics of breakable filament assembly. Science. 2009;326:1533–7.ADSPubMedCrossRef
181.
go back to reference Meisl G, Kirkegaard JB, Arosio P, Michaels TCT, Vendruscolo M, Dobson CM, et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc. 2016;11:252–72.PubMedCrossRef Meisl G, Kirkegaard JB, Arosio P, Michaels TCT, Vendruscolo M, Dobson CM, et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc. 2016;11:252–72.PubMedCrossRef
182.
go back to reference Cohen SIA, Vendruscolo M, Welland ME, Dobson CM, Terentjev EM, Knowles TPJ. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J Chem Phys. 2011;135:065105. Cohen SIA, Vendruscolo M, Welland ME, Dobson CM, Terentjev EM, Knowles TPJ. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J Chem Phys. 2011;135:065105.
183.
go back to reference Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. Nucleated polymerization with secondary pathways II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J Chem Phys. 2011;135:065106. Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. Nucleated polymerization with secondary pathways II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J Chem Phys. 2011;135:065106.
184.
go back to reference Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. Nucleated polymerization with secondary pathways III. Equilibrium behavior and oligomer populations. J Chem Phys. 2011;135:065107. Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. Nucleated polymerization with secondary pathways III. Equilibrium behavior and oligomer populations. J Chem Phys. 2011;135:065107.
185.
go back to reference Meisl G, Rajah L, I. Cohen SA, Pfammatter M, Šarić A, Hellstrand E, et al. Scaling behaviour and rate-determining steps in filamentous self-assembly. Chem Sci. 2017;8:7087–97. Meisl G, Rajah L, I. Cohen SA, Pfammatter M, Šarić A, Hellstrand E, et al. Scaling behaviour and rate-determining steps in filamentous self-assembly. Chem Sci. 2017;8:7087–97.
186.
187.
188.
go back to reference Young LJ, Schierle GSK, Kaminski CF. Imaging Aβ(1–42) fibril elongation reveals strongly polarised growth and growth incompetent states. Phys Chem Chem Phys. 2017;19:27987–96.PubMedPubMedCentralCrossRef Young LJ, Schierle GSK, Kaminski CF. Imaging Aβ(1–42) fibril elongation reveals strongly polarised growth and growth incompetent states. Phys Chem Chem Phys. 2017;19:27987–96.PubMedPubMedCentralCrossRef
189.
go back to reference Habchi J, Chia S, Galvagnion C, Michaels TCT, Bellaiche MMJ, Ruggeri FS, et al. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat Chem. 2018;10:673–83.PubMedCrossRef Habchi J, Chia S, Galvagnion C, Michaels TCT, Bellaiche MMJ, Ruggeri FS, et al. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat Chem. 2018;10:673–83.PubMedCrossRef
190.
go back to reference Galvagnion C, Buell AK, Meisl G, Michaels TCT, Vendruscolo M, Knowles TPJ, et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol. 2015;11:229–34.PubMedPubMedCentralCrossRef Galvagnion C, Buell AK, Meisl G, Michaels TCT, Vendruscolo M, Knowles TPJ, et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol. 2015;11:229–34.PubMedPubMedCentralCrossRef
191.
go back to reference Knowles TPJ, White DA, Abate AR, Agresti JJ, Cohen SIA, Sperling RA, et al. Observation of spatial propagation of amyloid assembly from single nuclei. Proc Natl Acad Sci USA. 2011;108:14746–51.ADSPubMedPubMedCentralCrossRef Knowles TPJ, White DA, Abate AR, Agresti JJ, Cohen SIA, Sperling RA, et al. Observation of spatial propagation of amyloid assembly from single nuclei. Proc Natl Acad Sci USA. 2011;108:14746–51.ADSPubMedPubMedCentralCrossRef
192.
go back to reference Törnquist M, T. Michaels TC, Sanagavarapu K, Yang X, Meisl G, A. Cohen SI, et al. Secondary nucleation in amyloid formation. Chem Commun. 2018;54:8667–84. Törnquist M, T. Michaels TC, Sanagavarapu K, Yang X, Meisl G, A. Cohen SI, et al. Secondary nucleation in amyloid formation. Chem Commun. 2018;54:8667–84.
194.
go back to reference Ferrone FA, Hofrichter J, Eaton WA. Kinetics of sickle hemoglobin polymerization: II. A double nucleation mechanism. J Mol Biol. 1985;183:611–31. Ferrone FA, Hofrichter J, Eaton WA. Kinetics of sickle hemoglobin polymerization: II. A double nucleation mechanism. J Mol Biol. 1985;183:611–31.
195.
196.
go back to reference Foderà V, Librizzi F, Groenning M, van de Weert M, Leone M. Secondary nucleation and accessible surface in insulin amyloid fibril formation. J Phys Chem B. 2008;112:3853–8.PubMedCrossRef Foderà V, Librizzi F, Groenning M, van de Weert M, Leone M. Secondary nucleation and accessible surface in insulin amyloid fibril formation. J Phys Chem B. 2008;112:3853–8.PubMedCrossRef
198.
go back to reference Thacker D, Barghouth M, Bless M, Zhang E, Linse S. Direct observation of secondary nucleation along the fibril surface of the amyloid β 42 peptide. Proc Natl Acad Sci USA. 2023;120: e2220664120.PubMedPubMedCentralCrossRef Thacker D, Barghouth M, Bless M, Zhang E, Linse S. Direct observation of secondary nucleation along the fibril surface of the amyloid β 42 peptide. Proc Natl Acad Sci USA. 2023;120: e2220664120.PubMedPubMedCentralCrossRef
199.
go back to reference Zimmermann MR, Bera SC, Meisl G, Dasadhikari S, Ghosh S, Linse S, et al. Mechanism of secondary nucleation at the single fibril level from direct observations of Aβ42 aggregation. J Am Chem Soc. 2021;143:16621–9.PubMedCrossRef Zimmermann MR, Bera SC, Meisl G, Dasadhikari S, Ghosh S, Linse S, et al. Mechanism of secondary nucleation at the single fibril level from direct observations of Aβ42 aggregation. J Am Chem Soc. 2021;143:16621–9.PubMedCrossRef
200.
go back to reference Jan A, Adolfsson O, Allaman I, Buccarello A-L, Magistretti PJ, Pfeifer A, et al. Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species. J Biol Chem. 2011;286:8585–96.PubMedCrossRef Jan A, Adolfsson O, Allaman I, Buccarello A-L, Magistretti PJ, Pfeifer A, et al. Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species. J Biol Chem. 2011;286:8585–96.PubMedCrossRef
201.
go back to reference Hill EK, Krebs B, Goodall DG, Howlett GJ, Dunstan DE. Shear flow induces amyloid fibril formation. Biomacromol. 2006;7:10–3.CrossRef Hill EK, Krebs B, Goodall DG, Howlett GJ, Dunstan DE. Shear flow induces amyloid fibril formation. Biomacromol. 2006;7:10–3.CrossRef
202.
go back to reference Xue W-F, Homans SW, Radford SE. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA. 2008;105:8926–31.ADSPubMedPubMedCentralCrossRef Xue W-F, Homans SW, Radford SE. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA. 2008;105:8926–31.ADSPubMedPubMedCentralCrossRef
203.
go back to reference Bett C, Joshi-Barr S, Lucero M, Trejo M, Liberski P, Kelly JW, et al. Biochemical properties of highly neuroinvasive prion strains. PLOS Pathog. 2012;8: e1002522.PubMedPubMedCentralCrossRef Bett C, Joshi-Barr S, Lucero M, Trejo M, Liberski P, Kelly JW, et al. Biochemical properties of highly neuroinvasive prion strains. PLOS Pathog. 2012;8: e1002522.PubMedPubMedCentralCrossRef
204.
go back to reference Kundel F, Hong L, Falcon B, McEwan WA, Michaels TCT, Meisl G, et al. Measurement of tau filament fragmentation provides insights into prion-like spreading. ACS Chem Neurosci. 2018;9:1276–82.PubMedCrossRef Kundel F, Hong L, Falcon B, McEwan WA, Michaels TCT, Meisl G, et al. Measurement of tau filament fragmentation provides insights into prion-like spreading. ACS Chem Neurosci. 2018;9:1276–82.PubMedCrossRef
205.
go back to reference Shorter J, Lindquist S. Hsp104 catalyzes formation and elimination of self-replicating sup35 prion conformers. Science. 2004;304:1793–7.ADSPubMedCrossRef Shorter J, Lindquist S. Hsp104 catalyzes formation and elimination of self-replicating sup35 prion conformers. Science. 2004;304:1793–7.ADSPubMedCrossRef
206.
go back to reference Kraus A, Saijo E, Metrick MA, Newell K, Sigurdson CJ, Zanusso G, et al. Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer disease. Acta Neuropathol (Berl). 2019;137:585–98.PubMedCrossRef Kraus A, Saijo E, Metrick MA, Newell K, Sigurdson CJ, Zanusso G, et al. Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer disease. Acta Neuropathol (Berl). 2019;137:585–98.PubMedCrossRef
207.
208.
go back to reference Xue W-F, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE. Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem. 2009;284:34272–82.PubMedPubMedCentralCrossRef Xue W-F, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE. Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem. 2009;284:34272–82.PubMedPubMedCentralCrossRef
209.
go back to reference Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009;106:4012–7.ADSPubMedPubMedCentralCrossRef Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009;106:4012–7.ADSPubMedPubMedCentralCrossRef
210.
go back to reference Zhang X, Wesén E, Kumar R, Bernson D, Gallud A, Paul A, et al. Correlation between cellular uptake and cytotoxicity of fragmented α-synuclein amyloid fibrils suggests intracellular basis for toxicity. ACS Chem Neurosci. 2020;11:233–41.PubMedCrossRef Zhang X, Wesén E, Kumar R, Bernson D, Gallud A, Paul A, et al. Correlation between cellular uptake and cytotoxicity of fragmented α-synuclein amyloid fibrils suggests intracellular basis for toxicity. ACS Chem Neurosci. 2020;11:233–41.PubMedCrossRef
211.
go back to reference Bett C, Lawrence J, Kurt TD, Orru C, Aguilar-Calvo P, Kincaid AE, et al. Enhanced neuroinvasion by smaller, soluble prions. Acta Neuropathol Commun. 2017;5:32.PubMedPubMedCentralCrossRef Bett C, Lawrence J, Kurt TD, Orru C, Aguilar-Calvo P, Kincaid AE, et al. Enhanced neuroinvasion by smaller, soluble prions. Acta Neuropathol Commun. 2017;5:32.PubMedPubMedCentralCrossRef
212.
go back to reference Michaels TCT, Lazell HW, Arosio P, Knowles TPJ. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. J Chem Phys. 2015;143: 054901.ADSPubMedCrossRef Michaels TCT, Lazell HW, Arosio P, Knowles TPJ. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. J Chem Phys. 2015;143: 054901.ADSPubMedCrossRef
213.
go back to reference Yang J, Dear AJ, Michaels TCT, Dobson CM, Knowles TPJ, Wu S, et al. Direct observation of oligomerization by single molecule fluorescence reveals a multistep aggregation mechanism for the yeast prion protein Ure2. J Am Chem Soc. 2018;140:2493–503.PubMedPubMedCentralCrossRef Yang J, Dear AJ, Michaels TCT, Dobson CM, Knowles TPJ, Wu S, et al. Direct observation of oligomerization by single molecule fluorescence reveals a multistep aggregation mechanism for the yeast prion protein Ure2. J Am Chem Soc. 2018;140:2493–503.PubMedPubMedCentralCrossRef
214.
go back to reference Iljina M, Garcia GA, Horrocks MH, Tosatto L, Choi ML, Ganzinger KA, et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc Natl Acad Sci USA. 2016;113:E1206–15.PubMedPubMedCentralCrossRef Iljina M, Garcia GA, Horrocks MH, Tosatto L, Choi ML, Ganzinger KA, et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc Natl Acad Sci USA. 2016;113:E1206–15.PubMedPubMedCentralCrossRef
215.
go back to reference Babinchak WM, Surewicz WK. Liquid–liquid phase separation and its mechanistic role in pathological protein aggregation. J Mol Biol. 2020;432:1910–25.PubMedPubMedCentralCrossRef Babinchak WM, Surewicz WK. Liquid–liquid phase separation and its mechanistic role in pathological protein aggregation. J Mol Biol. 2020;432:1910–25.PubMedPubMedCentralCrossRef
216.
go back to reference Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019;176:419–34.PubMedPubMedCentralCrossRef Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019;176:419–34.PubMedPubMedCentralCrossRef
217.
218.
go back to reference Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov. 2022;21:841–62.PubMedPubMedCentralCrossRef Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov. 2022;21:841–62.PubMedPubMedCentralCrossRef
220.
go back to reference Farahi N, Lazar T, Wodak SJ, Tompa P, Pancsa R. Integration of data from liquid–liquid phase separation databases highlights concentration and dosage sensitivity of LLPS drivers. Int J Mol Sci. 2021;22:3017.PubMedPubMedCentralCrossRef Farahi N, Lazar T, Wodak SJ, Tompa P, Pancsa R. Integration of data from liquid–liquid phase separation databases highlights concentration and dosage sensitivity of LLPS drivers. Int J Mol Sci. 2021;22:3017.PubMedPubMedCentralCrossRef
221.
go back to reference Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csilléry E, et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun. 2021;12:1085.ADSPubMedPubMedCentralCrossRef Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csilléry E, et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun. 2021;12:1085.ADSPubMedPubMedCentralCrossRef
222.
go back to reference Martin EW, Mittag T. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry. 2018;57:2478–87.PubMedCrossRef Martin EW, Mittag T. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry. 2018;57:2478–87.PubMedCrossRef
223.
go back to reference Vendruscolo M, Fuxreiter M. Towards sequence-based principles for protein phase separation predictions. Curr Opin Chem Biol. 2023;75: 102317.PubMedCrossRef Vendruscolo M, Fuxreiter M. Towards sequence-based principles for protein phase separation predictions. Curr Opin Chem Biol. 2023;75: 102317.PubMedCrossRef
224.
go back to reference Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 2009;137:146–58.PubMedPubMedCentralCrossRef Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 2009;137:146–58.PubMedPubMedCentralCrossRef
225.
go back to reference Franzmann TM, Alberti S. Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior. J Biol Chem. 2019;294:7128–36.PubMedCrossRef Franzmann TM, Alberti S. Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior. J Biol Chem. 2019;294:7128–36.PubMedCrossRef
226.
go back to reference Vendruscolo M, Fuxreiter M. Sequence determinants of the aggregation of proteins within condensates generated by liquid-liquid phase separation. J Mol Biol. 2022;434: 167201.PubMedCrossRef Vendruscolo M, Fuxreiter M. Sequence determinants of the aggregation of proteins within condensates generated by liquid-liquid phase separation. J Mol Biol. 2022;434: 167201.PubMedCrossRef
228.
go back to reference Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci USA. 2013;110:13392–7.ADSPubMedPubMedCentralCrossRef Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci USA. 2013;110:13392–7.ADSPubMedPubMedCentralCrossRef
229.
go back to reference Cascella R, Bigi A, Riffert DG, Gagliani MC, Ermini E, Moretti M, et al. A quantitative biology approach correlates neuronal toxicity with the largest inclusions of TDP-43. Sci Adv. 2022;8:eabm6376. Cascella R, Bigi A, Riffert DG, Gagliani MC, Ermini E, Moretti M, et al. A quantitative biology approach correlates neuronal toxicity with the largest inclusions of TDP-43. Sci Adv. 2022;8:eabm6376.
230.
go back to reference Chen Y, Cohen TJ. Aggregation of the nucleic acid-binding protein TDP-43 occurs via distinct routes that are coordinated with stress granule formation. J Biol Chem. 2019;294:3696–706.PubMedPubMedCentralCrossRef Chen Y, Cohen TJ. Aggregation of the nucleic acid-binding protein TDP-43 occurs via distinct routes that are coordinated with stress granule formation. J Biol Chem. 2019;294:3696–706.PubMedPubMedCentralCrossRef
231.
go back to reference Hans F, Glasebach H, Kahle PJ. Multiple distinct pathways lead to hyperubiquitylated insoluble TDP-43 protein independent of its translocation into stress granules. J Biol Chem. 2020;295:673–89.PubMedCrossRef Hans F, Glasebach H, Kahle PJ. Multiple distinct pathways lead to hyperubiquitylated insoluble TDP-43 protein independent of its translocation into stress granules. J Biol Chem. 2020;295:673–89.PubMedCrossRef
232.
go back to reference Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci USA. 2020;117:33254–62.ADSPubMedPubMedCentralCrossRef Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci USA. 2020;117:33254–62.ADSPubMedPubMedCentralCrossRef
233.
go back to reference French RL, Grese ZR, Aligireddy H, Dhavale DD, Reeb AN, Kedia N, et al. Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. J Biol Chem. 2019;294:6696–709.PubMedPubMedCentralCrossRef French RL, Grese ZR, Aligireddy H, Dhavale DD, Reeb AN, Kedia N, et al. Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. J Biol Chem. 2019;294:6696–709.PubMedPubMedCentralCrossRef
234.
go back to reference Kumar R, Das S, Mohite GM, Rout SK, Halder S, Jha NN, et al. Cytotoxic oligomers and fibrils trapped in a gel-like state of α-synuclein assemblies. Angew Chem Int Ed. 2018;57:5262–6.CrossRef Kumar R, Das S, Mohite GM, Rout SK, Halder S, Jha NN, et al. Cytotoxic oligomers and fibrils trapped in a gel-like state of α-synuclein assemblies. Angew Chem Int Ed. 2018;57:5262–6.CrossRef
235.
go back to reference Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE, Dujardin S, et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 2018;37: e98049.PubMedPubMedCentralCrossRef Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE, Dujardin S, et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 2018;37: e98049.PubMedPubMedCentralCrossRef
237.
go back to reference Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, et al. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci USA. 2021;118: e2014188118.PubMedPubMedCentralCrossRef Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, et al. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci USA. 2021;118: e2014188118.PubMedPubMedCentralCrossRef
238.
go back to reference Xing Y, Nandakumar A, Kakinen A, Sun Y, Davis TP, Ke PC, et al. Amyloid Aggregation under the Lens of Liquid-Liquid Phase Separation. J Phys Chem Lett. 2021;12:368–78.PubMedCrossRef Xing Y, Nandakumar A, Kakinen A, Sun Y, Davis TP, Ke PC, et al. Amyloid Aggregation under the Lens of Liquid-Liquid Phase Separation. J Phys Chem Lett. 2021;12:368–78.PubMedCrossRef
239.
go back to reference Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, et al. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem. 1999;274:25945–52. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, et al. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem. 1999;274:25945–52.
240.
go back to reference Campioni S, Mannini B, Zampagni M, Pensalfini A, Parrini C, Evangelisti E, et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat Chem Biol. 2010;6:140–7.PubMedCrossRef Campioni S, Mannini B, Zampagni M, Pensalfini A, Parrini C, Evangelisti E, et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat Chem Biol. 2010;6:140–7.PubMedCrossRef
241.
go back to reference Mannini B, Habchi J, Chia S, Ruggeri FS, Perni M, Knowles TPJ, et al. Stabilization and characterization of cytotoxic Aβ40 oligomers isolated from an aggregation reaction in the presence of zinc ions. ACS Chem Neurosci. 2018;9:2959–71.PubMedCrossRef Mannini B, Habchi J, Chia S, Ruggeri FS, Perni M, Knowles TPJ, et al. Stabilization and characterization of cytotoxic Aβ40 oligomers isolated from an aggregation reaction in the presence of zinc ions. ACS Chem Neurosci. 2018;9:2959–71.PubMedCrossRef
242.
go back to reference Lassen LB, Gregersen E, Isager AK, Betzer C, Kofoed RH, Jensen PH. ELISA method to detect α-synuclein oligomers in cell and animal models. PLoS ONE. 2018;13: e0196056.PubMedPubMedCentralCrossRef Lassen LB, Gregersen E, Isager AK, Betzer C, Kofoed RH, Jensen PH. ELISA method to detect α-synuclein oligomers in cell and animal models. PLoS ONE. 2018;13: e0196056.PubMedPubMedCentralCrossRef
243.
go back to reference Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, et al. Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA. 2003;100:10417–22.ADSPubMedPubMedCentralCrossRef Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, et al. Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA. 2003;100:10417–22.ADSPubMedPubMedCentralCrossRef
244.
go back to reference Brännström K, Lindhagen-Persson M, Gharibyan AL, Iakovleva I, Vestling M, Sellin ME, et al. A generic method for design of oligomer-specific antibodies. PLoS ONE. 2014;9: e90857.ADSPubMedPubMedCentralCrossRef Brännström K, Lindhagen-Persson M, Gharibyan AL, Iakovleva I, Vestling M, Sellin ME, et al. A generic method for design of oligomer-specific antibodies. PLoS ONE. 2014;9: e90857.ADSPubMedPubMedCentralCrossRef
245.
go back to reference Liu L, Kwak H, Lawton TL, Jin S-X, Meunier AL, Dang Y, et al. An ultra-sensitive immunoassay detects and quantifies soluble Aβ oligomers in human plasma. Alzheimers Dement. 2022;18:1186–202.PubMedCrossRef Liu L, Kwak H, Lawton TL, Jin S-X, Meunier AL, Dang Y, et al. An ultra-sensitive immunoassay detects and quantifies soluble Aβ oligomers in human plasma. Alzheimers Dement. 2022;18:1186–202.PubMedCrossRef
246.
go back to reference Aprile FA, Sormanni P, Podpolny M, Chhangur S, Needham L-M, Ruggeri FS, et al. Rational design of a conformation-specific antibody for the quantification of Aβ oligomers. Proc Natl Acad Sci USA. 2020;117(24):13509–18.ADSPubMedPubMedCentralCrossRef Aprile FA, Sormanni P, Podpolny M, Chhangur S, Needham L-M, Ruggeri FS, et al. Rational design of a conformation-specific antibody for the quantification of Aβ oligomers. Proc Natl Acad Sci USA. 2020;117(24):13509–18.ADSPubMedPubMedCentralCrossRef
247.
go back to reference Majbour NK, Vaikath NN, van Dijk KD, Ardah MT, Varghese S, Vesterager LB, et al. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol Neurodegener. 2016;11:7.PubMedPubMedCentralCrossRef Majbour NK, Vaikath NN, van Dijk KD, Ardah MT, Varghese S, Vesterager LB, et al. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol Neurodegener. 2016;11:7.PubMedPubMedCentralCrossRef
248.
go back to reference Kumar ST, Jagannath S, Francois C, Vanderstichele H, Stoops E, Lashuel HA. How specific are the conformation-specific α-synuclein antibodies? Characterization and validation of 16 α-synuclein conformation-specific antibodies using well-characterized preparations of α-synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiol Dis. 2020;146: 105086.PubMedCrossRef Kumar ST, Jagannath S, Francois C, Vanderstichele H, Stoops E, Lashuel HA. How specific are the conformation-specific α-synuclein antibodies? Characterization and validation of 16 α-synuclein conformation-specific antibodies using well-characterized preparations of α-synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiol Dis. 2020;146: 105086.PubMedCrossRef
249.
go back to reference Chatterjee T, Knappik A, Sandford E, Tewari M, Choi SW, Strong WB, et al. Direct kinetic fingerprinting and digital counting of single protein molecules. Proc Natl Acad Sci USA. 2020;117:22815–22.ADSPubMedPubMedCentralCrossRef Chatterjee T, Knappik A, Sandford E, Tewari M, Choi SW, Strong WB, et al. Direct kinetic fingerprinting and digital counting of single protein molecules. Proc Natl Acad Sci USA. 2020;117:22815–22.ADSPubMedPubMedCentralCrossRef
250.
go back to reference Kool J, Jonker N, Irth H, Niessen WMA. Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods. Anal Bioanal Chem. 2011;401:1109.PubMedPubMedCentralCrossRef Kool J, Jonker N, Irth H, Niessen WMA. Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods. Anal Bioanal Chem. 2011;401:1109.PubMedPubMedCentralCrossRef
251.
go back to reference Borch J, Jørgensen TJ, Roepstorff P. Mass spectrometric analysis of protein interactions. Curr Opin Chem Biol. 2005;9:509–16.PubMedCrossRef Borch J, Jørgensen TJ, Roepstorff P. Mass spectrometric analysis of protein interactions. Curr Opin Chem Biol. 2005;9:509–16.PubMedCrossRef
252.
go back to reference Buijs J, Franklin GC. SPR-MS in functional proteomics. Brief Funct Genomic Proteomic. 2005;4:39–47.PubMedCrossRef Buijs J, Franklin GC. SPR-MS in functional proteomics. Brief Funct Genomic Proteomic. 2005;4:39–47.PubMedCrossRef
253.
go back to reference Zhang G, Ueberheide BM, Waldemarson S, Myung S, Molloy K, Eriksson J, et al. Protein quantitation using mass spectrometry. Methods Mol Biol. 2010;673:211–22.PubMedPubMedCentralCrossRef Zhang G, Ueberheide BM, Waldemarson S, Myung S, Molloy K, Eriksson J, et al. Protein quantitation using mass spectrometry. Methods Mol Biol. 2010;673:211–22.PubMedPubMedCentralCrossRef
254.
go back to reference Heck AJR. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008;5:927–33.PubMedCrossRef Heck AJR. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008;5:927–33.PubMedCrossRef
255.
go back to reference Mannini B, Mulvihill E, Sgromo C, Cascella R, Khodarahmi R, Ramazzotti M, et al. Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chem Biol. 2014;9:2309–17.PubMedCrossRef Mannini B, Mulvihill E, Sgromo C, Cascella R, Khodarahmi R, Ramazzotti M, et al. Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chem Biol. 2014;9:2309–17.PubMedCrossRef
256.
go back to reference Horrocks MH, Tosatto L, Dear AJ, Garcia GA, Iljina M, Cremades N, et al. Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers. Anal Chem. 2015;87:8818–26.PubMedCrossRef Horrocks MH, Tosatto L, Dear AJ, Garcia GA, Iljina M, Cremades N, et al. Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers. Anal Chem. 2015;87:8818–26.PubMedCrossRef
257.
go back to reference Limbocker R, Chia S, Ruggeri FS, Perni M, Cascella R, Heller GT, et al. Trodusquemine enhances Aβ 42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nat Commun. 2019;10:225.ADSPubMedPubMedCentralCrossRef Limbocker R, Chia S, Ruggeri FS, Perni M, Cascella R, Heller GT, et al. Trodusquemine enhances Aβ 42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nat Commun. 2019;10:225.ADSPubMedPubMedCentralCrossRef
258.
go back to reference Limbocker R, Mannini B, Ruggeri FS, Cascella R, Xu CK, Perni M, et al. Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Commun Biol. 2020;3:1–10.CrossRef Limbocker R, Mannini B, Ruggeri FS, Cascella R, Xu CK, Perni M, et al. Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Commun Biol. 2020;3:1–10.CrossRef
259.
go back to reference Modler AJ, Fabian H, Sokolowski F, Lutsch G, Gast K, Damaschun G. Polymerization of proteins into amyloid protofibrils shares common critical oligomeric states but differs in the mechanisms of their formation. Amyloid. 2004;11:215–31.PubMedCrossRef Modler AJ, Fabian H, Sokolowski F, Lutsch G, Gast K, Damaschun G. Polymerization of proteins into amyloid protofibrils shares common critical oligomeric states but differs in the mechanisms of their formation. Amyloid. 2004;11:215–31.PubMedCrossRef
260.
go back to reference Upadhaya AR, Lungrin I, Yamaguchi H, Fändrich M, Thal DR. High-molecular weight Aβ oligomers and protofibrils are the predominant Aβ species in the native soluble protein fraction of the AD brain. J Cell Mol Med. 2012;16:287–95.PubMedPubMedCentralCrossRef Upadhaya AR, Lungrin I, Yamaguchi H, Fändrich M, Thal DR. High-molecular weight Aβ oligomers and protofibrils are the predominant Aβ species in the native soluble protein fraction of the AD brain. J Cell Mol Med. 2012;16:287–95.PubMedPubMedCentralCrossRef
261.
go back to reference Bitan G, Lomakin A, Teplow DB. Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem. 2001;276:35176–84.PubMedCrossRef Bitan G, Lomakin A, Teplow DB. Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem. 2001;276:35176–84.PubMedCrossRef
262.
go back to reference Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys. 2019;664:134–48.PubMedPubMedCentralCrossRef Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys. 2019;664:134–48.PubMedPubMedCentralCrossRef
263.
go back to reference Vivoli Vega M, Cascella R, Chen SW, Fusco G, De Simone A, Dobson CM, et al. The toxicity of misfolded protein oligomers is independent of their secondary structure. ACS Chem Biol. 2019;14:1593–600.PubMedCrossRef Vivoli Vega M, Cascella R, Chen SW, Fusco G, De Simone A, Dobson CM, et al. The toxicity of misfolded protein oligomers is independent of their secondary structure. ACS Chem Biol. 2019;14:1593–600.PubMedCrossRef
264.
go back to reference Capitini C, Patel JR, Natalello A, D’Andrea C, Relini A, Jarvis JA, et al. Structural differences between toxic and nontoxic HypF-N oligomers. Chem Commun. 2018;54:8637–40.CrossRef Capitini C, Patel JR, Natalello A, D’Andrea C, Relini A, Jarvis JA, et al. Structural differences between toxic and nontoxic HypF-N oligomers. Chem Commun. 2018;54:8637–40.CrossRef
265.
go back to reference Wu JW, Breydo L, Isas JM, Lee J, Kuznetsov YG, Langen R, et al. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation. J Biol Chem. 2010;285:6071–9.PubMedCrossRef Wu JW, Breydo L, Isas JM, Lee J, Kuznetsov YG, Langen R, et al. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation. J Biol Chem. 2010;285:6071–9.PubMedCrossRef
267.
go back to reference Williams AD, Sega M, Chen M, Kheterpal I, Geva M, Berthelier V, et al. Structural properties of Abeta protofibrils stabilized by a small molecule. Proc Natl Acad Sci USA. 2005;102:7115–20.ADSPubMedPubMedCentralCrossRef Williams AD, Sega M, Chen M, Kheterpal I, Geva M, Berthelier V, et al. Structural properties of Abeta protofibrils stabilized by a small molecule. Proc Natl Acad Sci USA. 2005;102:7115–20.ADSPubMedPubMedCentralCrossRef
268.
go back to reference Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther. 2021;13:80.PubMedPubMedCentralCrossRef Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther. 2021;13:80.PubMedPubMedCentralCrossRef
269.
go back to reference Tucker S, Möller C, Tegerstedt K, Lord A, Laudon H, Sjödahl J, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis. 2015;43:575–88.PubMedCrossRef Tucker S, Möller C, Tegerstedt K, Lord A, Laudon H, Sjödahl J, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis. 2015;43:575–88.PubMedCrossRef
270.
go back to reference Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther. 2021;13:98.PubMedPubMedCentralCrossRef Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther. 2021;13:98.PubMedPubMedCentralCrossRef
271.
go back to reference Cummings J, Aisen P, Apostolova LG, Atri A, Salloway S, Weiner M. Aducanumab: appropriate use recommendations. J Prev Alzheimers Dis. 2021;8:398–410.PubMedPubMedCentral Cummings J, Aisen P, Apostolova LG, Atri A, Salloway S, Weiner M. Aducanumab: appropriate use recommendations. J Prev Alzheimers Dis. 2021;8:398–410.PubMedPubMedCentral
273.
go back to reference Söderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, et al. Lecanemab, Aducanumab, and Gantenerumab — binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s Disease. Neurotherapeutics. 2023;20:195–206. Söderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, et al. Lecanemab, Aducanumab, and Gantenerumab — binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s Disease. Neurotherapeutics. 2023;20:195–206.
274.
go back to reference Tatini F, Pugliese AM, Traini C, Niccoli S, Maraula G, Ed Dami T, et al. Amyloid-β oligomer synaptotoxicity is mimicked by oligomers of the model protein HypF-N. Neurobiol Aging. 2013;34:2100–9. Tatini F, Pugliese AM, Traini C, Niccoli S, Maraula G, Ed Dami T, et al. Amyloid-β oligomer synaptotoxicity is mimicked by oligomers of the model protein HypF-N. Neurobiol Aging. 2013;34:2100–9.
275.
go back to reference Baerends E, Soud K, Folke J, Pedersen A-K, Henmar S, Konrad L, et al. Modeling the early stages of Alzheimer’s disease by administering intracerebroventricular injections of human native Aβ oligomers to rats. Acta Neuropathol Commun. 2022;10:113.PubMedPubMedCentralCrossRef Baerends E, Soud K, Folke J, Pedersen A-K, Henmar S, Konrad L, et al. Modeling the early stages of Alzheimer’s disease by administering intracerebroventricular injections of human native Aβ oligomers to rats. Acta Neuropathol Commun. 2022;10:113.PubMedPubMedCentralCrossRef
276.
go back to reference Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155:853–62.PubMedPubMedCentralCrossRef Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155:853–62.PubMedPubMedCentralCrossRef
277.
go back to reference Kitazawa M, Medeiros R, LaFerla FM. Transgenic mouse models of alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des. 2012;18:1131–47.PubMedPubMedCentralCrossRef Kitazawa M, Medeiros R, LaFerla FM. Transgenic mouse models of alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des. 2012;18:1131–47.PubMedPubMedCentralCrossRef
278.
go back to reference Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, et al. The “Arctic” APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci. 2001;4:887–93.PubMedCrossRef Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, et al. The “Arctic” APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci. 2001;4:887–93.PubMedCrossRef
281.
go back to reference Tomic JL, Pensalfini A, Head E, Glabe CG. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis. 2009;35:352–8.PubMedPubMedCentralCrossRef Tomic JL, Pensalfini A, Head E, Glabe CG. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis. 2009;35:352–8.PubMedPubMedCentralCrossRef
282.
go back to reference Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, et al. Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol. 2013;73:104–19.PubMedCrossRef Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, et al. Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol. 2013;73:104–19.PubMedCrossRef
283.
go back to reference McDonald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM, et al. The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain J Neurol. 2010;133:1328–41.CrossRef McDonald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM, et al. The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain J Neurol. 2010;133:1328–41.CrossRef
284.
285.
go back to reference Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, et al. Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J. 2010;277:3051–67.PubMedPubMedCentralCrossRef Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, et al. Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J. 2010;277:3051–67.PubMedPubMedCentralCrossRef
287.
go back to reference Georganopoulou DG, Chang L, Nam J-M, Thaxton CS, Mufson EJ, Klein WL, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA. 2005;102:2273–6.ADSPubMedPubMedCentralCrossRef Georganopoulou DG, Chang L, Nam J-M, Thaxton CS, Mufson EJ, Klein WL, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA. 2005;102:2273–6.ADSPubMedPubMedCentralCrossRef
288.
go back to reference Park MJ, Cheon S-M, Bae H-R, Kim S-H, Kim JW. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J Clin Neurol. 2011;7:215–22.PubMedPubMedCentralCrossRef Park MJ, Cheon S-M, Bae H-R, Kim S-H, Kim JW. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J Clin Neurol. 2011;7:215–22.PubMedPubMedCentralCrossRef
289.
go back to reference Tokuda T, Qureshi MM, Ardah MT, Varghese S, Shehab S a. S, Kasai T, et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology. 2010;75:1766–72. Tokuda T, Qureshi MM, Ardah MT, Varghese S, Shehab S a. S, Kasai T, et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology. 2010;75:1766–72.
290.
go back to reference Sideris DI, Danial JSH, Emin D, Ruggeri FS, Xia Z, Zhang YP, et al. Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer’s disease. Brain Commun. 2021;3:fcab147. Sideris DI, Danial JSH, Emin D, Ruggeri FS, Xia Z, Zhang YP, et al. Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer’s disease. Brain Commun. 2021;3:fcab147.
291.
go back to reference Hong W, Wang Z, Liu W, O’Malley TT, Jin M, Willem M, et al. Diffusible, highly bioactive oligomers represent a critical minority of soluble Aβ in Alzheimer’s disease brain. Acta Neuropathol (Berl). 2018;136:19–40.PubMedCrossRef Hong W, Wang Z, Liu W, O’Malley TT, Jin M, Willem M, et al. Diffusible, highly bioactive oligomers represent a critical minority of soluble Aβ in Alzheimer’s disease brain. Acta Neuropathol (Berl). 2018;136:19–40.PubMedCrossRef
292.
go back to reference De S, Whiten DR, Ruggeri FS, Hughes C, Rodrigues M, Sideris DI, et al. Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer’s disease progression. Acta Neuropathol Commun. 2019;7:120.PubMedPubMedCentralCrossRef De S, Whiten DR, Ruggeri FS, Hughes C, Rodrigues M, Sideris DI, et al. Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer’s disease progression. Acta Neuropathol Commun. 2019;7:120.PubMedPubMedCentralCrossRef
293.
go back to reference Ochiishi T, Kaku M, Kiyosue K, Doi M, Urabe T, Hattori N, et al. New Alzheimer’s disease model mouse specialized for analyzing the function and toxicity of intraneuronal Amyloid β oligomers. Sci Rep. 2019;9:17368.ADSPubMedPubMedCentralCrossRef Ochiishi T, Kaku M, Kiyosue K, Doi M, Urabe T, Hattori N, et al. New Alzheimer’s disease model mouse specialized for analyzing the function and toxicity of intraneuronal Amyloid β oligomers. Sci Rep. 2019;9:17368.ADSPubMedPubMedCentralCrossRef
294.
go back to reference Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, et al. A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci. 2010;30:4845–56.PubMedPubMedCentralCrossRef Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, et al. A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci. 2010;30:4845–56.PubMedPubMedCentralCrossRef
295.
go back to reference Kass B, Schemmert S, Zafiu C, Pils M, Bannach O, Kutzsche J, et al. Aβ oligomer concentration in mouse and human brain and its drug-induced reduction ex vivo. Cell Rep Med. 2022;3: 100630.PubMedPubMedCentralCrossRef Kass B, Schemmert S, Zafiu C, Pils M, Bannach O, Kutzsche J, et al. Aβ oligomer concentration in mouse and human brain and its drug-induced reduction ex vivo. Cell Rep Med. 2022;3: 100630.PubMedPubMedCentralCrossRef
296.
go back to reference Kiechle M, von Einem B, Höfs L, Voehringer P, Grozdanov V, Markx D, et al. In vivo protein complementation demonstrates presynaptic α-synuclein oligomerization and age-dependent accumulation of 8–16-mer oligomer species. Cell Rep. 2019;29:2862–2874.e9.PubMedCrossRef Kiechle M, von Einem B, Höfs L, Voehringer P, Grozdanov V, Markx D, et al. In vivo protein complementation demonstrates presynaptic α-synuclein oligomerization and age-dependent accumulation of 8–16-mer oligomer species. Cell Rep. 2019;29:2862–2874.e9.PubMedCrossRef
297.
go back to reference Tsika E, Moysidou M, Guo J, Cushman M, Gannon P, Sandaltzopoulos R, et al. Distinct region-specific α-synuclein oligomers in A53T transgenic mice: implications for neurodegeneration. J Neurosci. 2010;30:3409–18.PubMedPubMedCentralCrossRef Tsika E, Moysidou M, Guo J, Cushman M, Gannon P, Sandaltzopoulos R, et al. Distinct region-specific α-synuclein oligomers in A53T transgenic mice: implications for neurodegeneration. J Neurosci. 2010;30:3409–18.PubMedPubMedCentralCrossRef
298.
go back to reference Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416:507–11.ADSPubMedCrossRef Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416:507–11.ADSPubMedCrossRef
299.
go back to reference Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8:79–84.PubMedCrossRef Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8:79–84.PubMedCrossRef
300.
go back to reference Zampagni M, Cascella R, Casamenti F, Grossi C, Evangelisti E, Wright D, et al. A comparison of the biochemical modifications caused by toxic and non-toxic protein oligomers in cells. J Cell Mol Med. 2011;15:2106–16.PubMedPubMedCentralCrossRef Zampagni M, Cascella R, Casamenti F, Grossi C, Evangelisti E, Wright D, et al. A comparison of the biochemical modifications caused by toxic and non-toxic protein oligomers in cells. J Cell Mol Med. 2011;15:2106–16.PubMedPubMedCentralCrossRef
301.
go back to reference Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–9.ADSPubMedCrossRef Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–9.ADSPubMedCrossRef
302.
go back to reference Arbel-Ornath M, Hudry E, Boivin JR, Hashimoto T, Takeda S, Kuchibhotla KV, et al. Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener. 2017;12:27.PubMedPubMedCentralCrossRef Arbel-Ornath M, Hudry E, Boivin JR, Hashimoto T, Takeda S, Kuchibhotla KV, et al. Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener. 2017;12:27.PubMedPubMedCentralCrossRef
303.
go back to reference Cline EN, Das A, Bicca MA, Mohammad SN, Schachner LF, Kamel JM, et al. A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer’s-associated pathologies. J Neurochem. 2019;148:822–36.PubMedPubMedCentralCrossRef Cline EN, Das A, Bicca MA, Mohammad SN, Schachner LF, Kamel JM, et al. A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer’s-associated pathologies. J Neurochem. 2019;148:822–36.PubMedPubMedCentralCrossRef
304.
go back to reference Froula JM, Castellana-Cruz M, Anabtawi NM, Camino JD, Chen SW, Thrasher DR, et al. Defining α-synuclein species responsible for Parkinson’s disease phenotypes in mice. J Biol Chem. 2019;294:10392–406.PubMedPubMedCentralCrossRef Froula JM, Castellana-Cruz M, Anabtawi NM, Camino JD, Chen SW, Thrasher DR, et al. Defining α-synuclein species responsible for Parkinson’s disease phenotypes in mice. J Biol Chem. 2019;294:10392–406.PubMedPubMedCentralCrossRef
305.
go back to reference Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid Med Cell Longev. 2019;2019: e2105607.CrossRef Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid Med Cell Longev. 2019;2019: e2105607.CrossRef
306.
go back to reference Evangelisti E, Cascella R, Becatti M, Marrazza G, Dobson CM, Chiti F, et al. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Sci Rep. 2016;6:32721.ADSPubMedPubMedCentralCrossRef Evangelisti E, Cascella R, Becatti M, Marrazza G, Dobson CM, Chiti F, et al. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Sci Rep. 2016;6:32721.ADSPubMedPubMedCentralCrossRef
307.
308.
go back to reference Mannini B, Cascella R, Zampagni M, van Waarde-Verhagen M, Meehan S, Roodveldt C, et al. Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proc Natl Acad Sci USA. 2012;109:12479–84.ADSPubMedPubMedCentralCrossRef Mannini B, Cascella R, Zampagni M, van Waarde-Verhagen M, Meehan S, Roodveldt C, et al. Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proc Natl Acad Sci USA. 2012;109:12479–84.ADSPubMedPubMedCentralCrossRef
310.
go back to reference Ladiwala ARA, Litt J, Kane RS, Aucoin DS, Smith SO, Ranjan S, et al. Conformational Differences between two amyloid β oligomers of similar size and dissimilar toxicity. J Biol Chem. 2012;287:24765–73.PubMedPubMedCentralCrossRef Ladiwala ARA, Litt J, Kane RS, Aucoin DS, Smith SO, Ranjan S, et al. Conformational Differences between two amyloid β oligomers of similar size and dissimilar toxicity. J Biol Chem. 2012;287:24765–73.PubMedPubMedCentralCrossRef
311.
go back to reference Krishnan R, Goodman JL, Mukhopadhyay S, Pacheco CD, Lemke EA, Deniz AA, et al. Conserved features of intermediates in amyloid assembly determine their benign or toxic states. Proc Natl Acad Sci USA. 2012;109:11172–7.ADSPubMedPubMedCentralCrossRef Krishnan R, Goodman JL, Mukhopadhyay S, Pacheco CD, Lemke EA, Deniz AA, et al. Conserved features of intermediates in amyloid assembly determine their benign or toxic states. Proc Natl Acad Sci USA. 2012;109:11172–7.ADSPubMedPubMedCentralCrossRef
312.
go back to reference Yang T, Li S, Xu H, Walsh DM, Selkoe DJ. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci. 2017;37:152–63.PubMedPubMedCentralCrossRef Yang T, Li S, Xu H, Walsh DM, Selkoe DJ. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci. 2017;37:152–63.PubMedPubMedCentralCrossRef
313.
go back to reference De S, Wirthensohn DC, Flagmeier P, Hughes C, Aprile FA, Ruggeri FS, et al. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat Commun. 2019;10:1541.ADSPubMedPubMedCentralCrossRef De S, Wirthensohn DC, Flagmeier P, Hughes C, Aprile FA, Ruggeri FS, et al. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat Commun. 2019;10:1541.ADSPubMedPubMedCentralCrossRef
314.
go back to reference Evangelisti E, Cecchi C, Cascella R, Sgromo C, Becatti M, Dobson CM, et al. Membrane lipid composition and its physicochemical properties define cell vulnerability to aberrant protein oligomers. J Cell Sci. 2012;125(10):2416–2427. Evangelisti E, Cecchi C, Cascella R, Sgromo C, Becatti M, Dobson CM, et al. Membrane lipid composition and its physicochemical properties define cell vulnerability to aberrant protein oligomers. J Cell Sci. 2012;125(10):2416–2427.
315.
go back to reference Rushworth JV, Griffiths HH, Watt NT, Hooper NM. Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem. 2013;288:8935–51.PubMedPubMedCentralCrossRef Rushworth JV, Griffiths HH, Watt NT, Hooper NM. Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem. 2013;288:8935–51.PubMedPubMedCentralCrossRef
316.
go back to reference Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB. beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem. 2000;275:5626–32. Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB. beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem. 2000;275:5626–32.
317.
go back to reference Mroczko B, Groblewska M, Litman-Zawadzka A, Kornhuber J, Lewczuk P. Cellular receptors of amyloid β oligomers (AβOs) in Alzheimer’s disease. Int J Mol Sci. 2018;19:1884.PubMedPubMedCentralCrossRef Mroczko B, Groblewska M, Litman-Zawadzka A, Kornhuber J, Lewczuk P. Cellular receptors of amyloid β oligomers (AβOs) in Alzheimer’s disease. Int J Mol Sci. 2018;19:1884.PubMedPubMedCentralCrossRef
318.
go back to reference Benoit ME, Hernandez MX, Dinh ML, Benavente F, Vasquez O, Tenner AJ. C1q-induced LRP1B and GPR6 proteins expressed early in Alzheimer disease mouse models, are essential for the C1q-mediated protection against amyloid-β neurotoxicity. J Biol Chem. 2013;288:654–65.PubMedCrossRef Benoit ME, Hernandez MX, Dinh ML, Benavente F, Vasquez O, Tenner AJ. C1q-induced LRP1B and GPR6 proteins expressed early in Alzheimer disease mouse models, are essential for the C1q-mediated protection against amyloid-β neurotoxicity. J Biol Chem. 2013;288:654–65.PubMedCrossRef
321.
go back to reference Fani G, Mannini B, Vecchi G, Cascella R, Cecchi C, Dobson CM, et al. Aβ oligomers dysregulate calcium homeostasis by mechanosensitive activation of AMPA and NMDA receptors. ACS Chem Neurosci. 2021;12:766–81.PubMedCrossRef Fani G, Mannini B, Vecchi G, Cascella R, Cecchi C, Dobson CM, et al. Aβ oligomers dysregulate calcium homeostasis by mechanosensitive activation of AMPA and NMDA receptors. ACS Chem Neurosci. 2021;12:766–81.PubMedCrossRef
322.
323.
go back to reference Friedrich RP, Tepper K, Rönicke R, Soom M, Westermann M, Reymann K, et al. Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci USA. 2010;107:1942–7.ADSPubMedPubMedCentralCrossRef Friedrich RP, Tepper K, Rönicke R, Soom M, Westermann M, Reymann K, et al. Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci USA. 2010;107:1942–7.ADSPubMedPubMedCentralCrossRef
324.
go back to reference Serra-Batiste M, Ninot-Pedrosa M, Bayoumi M, Gairí M, Maglia G, Carulla N. Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments. Proc Natl Acad Sci USA. 2016;113:10866–71.ADSPubMedPubMedCentralCrossRef Serra-Batiste M, Ninot-Pedrosa M, Bayoumi M, Gairí M, Maglia G, Carulla N. Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments. Proc Natl Acad Sci USA. 2016;113:10866–71.ADSPubMedPubMedCentralCrossRef
325.
go back to reference Wesén E, Jeffries GDM, Matson Dzebo M, Esbjörner EK. Endocytic uptake of monomeric amyloid-β peptides is clathrin- and dynamin-independent and results in selective accumulation of Aβ(1–42) compared to Aβ(1–40). Sci Rep. 2017;7:2021.ADSPubMedPubMedCentralCrossRef Wesén E, Jeffries GDM, Matson Dzebo M, Esbjörner EK. Endocytic uptake of monomeric amyloid-β peptides is clathrin- and dynamin-independent and results in selective accumulation of Aβ(1–42) compared to Aβ(1–40). Sci Rep. 2017;7:2021.ADSPubMedPubMedCentralCrossRef
326.
go back to reference Jarosz-Griffiths HH, Noble E, Rushworth JV, Hooper NM. Amyloid-β receptors: the good, the bad, and the prion protein. J Biol Chem. 2016;291:3174–83.PubMedCrossRef Jarosz-Griffiths HH, Noble E, Rushworth JV, Hooper NM. Amyloid-β receptors: the good, the bad, and the prion protein. J Biol Chem. 2016;291:3174–83.PubMedCrossRef
327.
go back to reference Miller EC, Teravskis PJ, Dummer BW, Zhao X, Huganir RL, Liao D. Tau phosphorylation and tau mislocalization mediate soluble Aβ oligomer-induced AMPA glutamate receptor signaling deficits. Eur J Neurosci. 2014;39:1214–24.PubMedPubMedCentralCrossRef Miller EC, Teravskis PJ, Dummer BW, Zhao X, Huganir RL, Liao D. Tau phosphorylation and tau mislocalization mediate soluble Aβ oligomer-induced AMPA glutamate receptor signaling deficits. Eur J Neurosci. 2014;39:1214–24.PubMedPubMedCentralCrossRef
328.
go back to reference Shin WS, Di J, Cao Q, Li B, Seidler PM, Murray KA, et al. Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation. Alzheimers Res Ther. 2019;11:86.PubMedPubMedCentralCrossRef Shin WS, Di J, Cao Q, Li B, Seidler PM, Murray KA, et al. Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation. Alzheimers Res Ther. 2019;11:86.PubMedPubMedCentralCrossRef
329.
go back to reference Chia S, Flagmeier P, Habchi J, Lattanzi V, Linse S, Dobson CM, et al. Monomeric and fibrillar α-synuclein exert opposite effects on the catalytic cycle that promotes the proliferation of Aβ42 aggregates. Proc Natl Acad Sci USA. 2017;114(30):8005–10. Chia S, Flagmeier P, Habchi J, Lattanzi V, Linse S, Dobson CM, et al. Monomeric and fibrillar α-synuclein exert opposite effects on the catalytic cycle that promotes the proliferation of Aβ42 aggregates. Proc Natl Acad Sci USA. 2017;114(30):8005–10.
330.
go back to reference Hallacli E, Kayatekin C, Nazeen S, Wang XH, Sheinkopf Z, Sathyakumar S, et al. The Parkinson’s disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell. 2022;185:2035–2056.e33.PubMedPubMedCentralCrossRef Hallacli E, Kayatekin C, Nazeen S, Wang XH, Sheinkopf Z, Sathyakumar S, et al. The Parkinson’s disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell. 2022;185:2035–2056.e33.PubMedPubMedCentralCrossRef
331.
go back to reference Bucciantini M, Rigacci S, Berti A, Pieri L, Cecchi C, Nosi D, et al. Patterns of cell death triggered in two different cell lines by HypF-N prefibrillar aggregates. FASEB J. 2005;19:437–9.PubMedCrossRef Bucciantini M, Rigacci S, Berti A, Pieri L, Cecchi C, Nosi D, et al. Patterns of cell death triggered in two different cell lines by HypF-N prefibrillar aggregates. FASEB J. 2005;19:437–9.PubMedCrossRef
332.
go back to reference Perni M, Galvagnion C, Maltsev A, Meisl G, Müller MBD, Challa PK, et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci USA. 2017;114:E1009–17.PubMedPubMedCentralCrossRef Perni M, Galvagnion C, Maltsev A, Meisl G, Müller MBD, Challa PK, et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci USA. 2017;114:E1009–17.PubMedPubMedCentralCrossRef
333.
go back to reference Errico S, Ramshini H, Capitini C, Canale C, Spaziano M, Barbut D, et al. Quantitative measurement of the affinity of toxic and nontoxic misfolded protein oligomers for lipid bilayers and of its modulation by lipid composition and trodusquemine. ACS Chem Neurosci. 2021;12:3189–202.PubMedCrossRef Errico S, Ramshini H, Capitini C, Canale C, Spaziano M, Barbut D, et al. Quantitative measurement of the affinity of toxic and nontoxic misfolded protein oligomers for lipid bilayers and of its modulation by lipid composition and trodusquemine. ACS Chem Neurosci. 2021;12:3189–202.PubMedCrossRef
334.
go back to reference Nguyen PT, Zottig X, Sebastiao M, Arnold AA, Marcotte I, Bourgault S. Identification of transmissible proteotoxic oligomer-like fibrils that expand conformational diversity of amyloid assemblies. Commun Biol. 2021;4:1–14.CrossRef Nguyen PT, Zottig X, Sebastiao M, Arnold AA, Marcotte I, Bourgault S. Identification of transmissible proteotoxic oligomer-like fibrils that expand conformational diversity of amyloid assemblies. Commun Biol. 2021;4:1–14.CrossRef
335.
go back to reference Fani G, La Torre CE, Cascella R, Cecchi C, Vendruscolo M, Chiti F. Misfolded protein oligomers induce an increase of intracellular Ca2+ causing an escalation of reactive oxidative species. Cell Mol Life Sci. 2022;79:500.PubMedPubMedCentralCrossRef Fani G, La Torre CE, Cascella R, Cecchi C, Vendruscolo M, Chiti F. Misfolded protein oligomers induce an increase of intracellular Ca2+ causing an escalation of reactive oxidative species. Cell Mol Life Sci. 2022;79:500.PubMedPubMedCentralCrossRef
336.
go back to reference Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem. 2005;280:17294–300.PubMedCrossRef Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem. 2005;280:17294–300.PubMedCrossRef
337.
go back to reference Limbocker R, Mannini B, Cataldi R, Chhangur S, Wright AK, Kreiser RP, et al. Rationally designed antibodies as research tools to study the structure–toxicity relationship of amyloid-β oligomers. Int J Mol Sci. 2020;21:4542. Limbocker R, Mannini B, Cataldi R, Chhangur S, Wright AK, Kreiser RP, et al. Rationally designed antibodies as research tools to study the structure–toxicity relationship of amyloid-β oligomers. Int J Mol Sci. 2020;21:4542.
339.
go back to reference Patten DA, Germain M, Kelly MA, Slack RS. Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis. 2010;20(Suppl 2):S357–367.PubMedCrossRef Patten DA, Germain M, Kelly MA, Slack RS. Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis. 2010;20(Suppl 2):S357–367.PubMedCrossRef
340.
go back to reference Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, et al. Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12:19–24.PubMedCrossRef Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, et al. Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12:19–24.PubMedCrossRef
342.
go back to reference Hou X, Parkington HC, Coleman HA, Mechler A, Martin LL, Aguilar M-I, et al. Transthyretin oligomers induce calcium influx via voltage-gated calcium channels. J Neurochem. 2007;100:446–57.PubMedCrossRef Hou X, Parkington HC, Coleman HA, Mechler A, Martin LL, Aguilar M-I, et al. Transthyretin oligomers induce calcium influx via voltage-gated calcium channels. J Neurochem. 2007;100:446–57.PubMedCrossRef
343.
go back to reference Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D, et al. Biochemical and electrophysiological modification of amyloid transthyretin on cardiomyocytes. Biophys J. 2016;111:2024–38.PubMedPubMedCentralCrossRef Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D, et al. Biochemical and electrophysiological modification of amyloid transthyretin on cardiomyocytes. Biophys J. 2016;111:2024–38.PubMedPubMedCentralCrossRef
344.
go back to reference Nakano T, Onoue K, Terada C, Terasaki S, Ishihara S, Hashimoto Y, et al. Transthyretin amyloid cardiomyopathy: impact of transthyretin amyloid deposition in myocardium on cardiac morphology and function. J Pers Med. 2022;12:792.PubMedPubMedCentralCrossRef Nakano T, Onoue K, Terada C, Terasaki S, Ishihara S, Hashimoto Y, et al. Transthyretin amyloid cardiomyopathy: impact of transthyretin amyloid deposition in myocardium on cardiac morphology and function. J Pers Med. 2022;12:792.PubMedPubMedCentralCrossRef
346.
go back to reference Guglielmotto M, Monteleone D, Piras A, Valsecchi V, Tropiano M, Ariano S, et al. Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy. 2014;10:1827–43.PubMedPubMedCentralCrossRef Guglielmotto M, Monteleone D, Piras A, Valsecchi V, Tropiano M, Ariano S, et al. Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy. 2014;10:1827–43.PubMedPubMedCentralCrossRef
347.
go back to reference Söllvander S, Nikitidou E, Brolin R, Söderberg L, Sehlin D, Lannfelt L, et al. Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol Neurodegener. 2016;11:38.PubMedPubMedCentralCrossRef Söllvander S, Nikitidou E, Brolin R, Söderberg L, Sehlin D, Lannfelt L, et al. Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol Neurodegener. 2016;11:38.PubMedPubMedCentralCrossRef
348.
go back to reference Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging. 2012;33:1329–42.PubMedCrossRef Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging. 2012;33:1329–42.PubMedCrossRef
349.
go back to reference Richter M, Vidovic N, Biber K, Dolga A, Culmsee C, Dodel R. The neuroprotective role of microglial cells against amyloid beta-mediated toxicity in organotypic hippocampal slice cultures. Brain Pathol Zurich Switz. 2020;30:589–602.CrossRef Richter M, Vidovic N, Biber K, Dolga A, Culmsee C, Dodel R. The neuroprotective role of microglial cells against amyloid beta-mediated toxicity in organotypic hippocampal slice cultures. Brain Pathol Zurich Switz. 2020;30:589–602.CrossRef
350.
go back to reference Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21:306–18.PubMedCrossRef Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21:306–18.PubMedCrossRef
351.
go back to reference Waudby CA, Knowles TPJ, Devlin GL, Skepper JN, Ecroyd H, Carver JA, et al. The interaction of αb-crystallin with mature α-synuclein amyloid fibrils inhibits their elongation. Biophys J. 2010;98:843–51.PubMedPubMedCentralCrossRef Waudby CA, Knowles TPJ, Devlin GL, Skepper JN, Ecroyd H, Carver JA, et al. The interaction of αb-crystallin with mature α-synuclein amyloid fibrils inhibits their elongation. Biophys J. 2010;98:843–51.PubMedPubMedCentralCrossRef
352.
go back to reference Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TPJ, Ecroyd H, et al. Binding of the molecular chaperone αB-Crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J. 2011;101:1681–9.PubMedPubMedCentralCrossRef Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TPJ, Ecroyd H, et al. Binding of the molecular chaperone αB-Crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J. 2011;101:1681–9.PubMedPubMedCentralCrossRef
353.
go back to reference Kundel F, De S, Flagmeier P, Horrocks MH, Kjaergaard M, Shammas SL, et al. Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem Biol. 2018;13:636–46.PubMedPubMedCentralCrossRef Kundel F, De S, Flagmeier P, Horrocks MH, Kjaergaard M, Shammas SL, et al. Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem Biol. 2018;13:636–46.PubMedPubMedCentralCrossRef
354.
go back to reference Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstål H, Dolfe L, et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol. 2015;22:207–13.PubMedPubMedCentralCrossRef Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstål H, Dolfe L, et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol. 2015;22:207–13.PubMedPubMedCentralCrossRef
355.
go back to reference Kiuchi Y, Isobe Y, Fukushima K. Entactin-induced inhibition of human amyloid β-protein fibril formation in vitro. Neurosci Lett. 2001;305:119–22.PubMedCrossRef Kiuchi Y, Isobe Y, Fukushima K. Entactin-induced inhibition of human amyloid β-protein fibril formation in vitro. Neurosci Lett. 2001;305:119–22.PubMedCrossRef
356.
go back to reference Dandanell Agerschou E, Borgmann V, M. Wördehoff M, Hoyer W. Inhibitor and substrate cooperate to inhibit amyloid fibril elongation of α-synuclein. Chem Sci. 2020;11:11331–7. Dandanell Agerschou E, Borgmann V, M. Wördehoff M, Hoyer W. Inhibitor and substrate cooperate to inhibit amyloid fibril elongation of α-synuclein. Chem Sci. 2020;11:11331–7.
357.
go back to reference Doytchinova I, Atanasova M, Salamanova E, Ivanov S, Dimitrov I. Curcumin inhibits the primary nucleation of amyloid-beta peptide: a molecular dynamics study. Biomolecules. 2020;10:1323.PubMedPubMedCentralCrossRef Doytchinova I, Atanasova M, Salamanova E, Ivanov S, Dimitrov I. Curcumin inhibits the primary nucleation of amyloid-beta peptide: a molecular dynamics study. Biomolecules. 2020;10:1323.PubMedPubMedCentralCrossRef
358.
go back to reference Du W-J, Guo J-J, Gao M-T, Hu S-Q, Dong X-Y, Han Y-F, et al. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Sci Rep. 2015;5:7992.PubMedPubMedCentralCrossRef Du W-J, Guo J-J, Gao M-T, Hu S-Q, Dong X-Y, Han Y-F, et al. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Sci Rep. 2015;5:7992.PubMedPubMedCentralCrossRef
359.
go back to reference Nagaraj M, Najarzadeh Z, Pansieri J, Biverstål H, Musteikyte G, Smirnovas V, et al. Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation. Chem Sci. 2022;13:536–53.PubMedCrossRef Nagaraj M, Najarzadeh Z, Pansieri J, Biverstål H, Musteikyte G, Smirnovas V, et al. Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation. Chem Sci. 2022;13:536–53.PubMedCrossRef
360.
go back to reference Ghadami SA, Chia S, Ruggeri FS, Meisl G, Bemporad F, Habchi J, et al. Transthyretin inhibits primary and secondary nucleations of amyloid-β peptide aggregation and reduces the toxicity of its oligomers. Biomacromolecules. 2020;21:1112–25. Ghadami SA, Chia S, Ruggeri FS, Meisl G, Bemporad F, Habchi J, et al. Transthyretin inhibits primary and secondary nucleations of amyloid-β peptide aggregation and reduces the toxicity of its oligomers. Biomacromolecules. 2020;21:1112–25.
361.
go back to reference Meade RM, Morris KJ, Watt KJC, Williams RJ, Mason JM. The library derived 4554w peptide inhibits primary nucleation of α-synuclein. J Mol Biol. 2020;432: 166706.PubMedCrossRef Meade RM, Morris KJ, Watt KJC, Williams RJ, Mason JM. The library derived 4554w peptide inhibits primary nucleation of α-synuclein. J Mol Biol. 2020;432: 166706.PubMedCrossRef
362.
go back to reference Perni M, Flagmeier P, Limbocker R, Cascella R, Aprile FA, Galvagnion C, et al. Multistep inhibition of α-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. ACS Chem Biol. 2018;13:2308–19.PubMedCrossRef Perni M, Flagmeier P, Limbocker R, Cascella R, Aprile FA, Galvagnion C, et al. Multistep inhibition of α-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. ACS Chem Biol. 2018;13:2308–19.PubMedCrossRef
364.
go back to reference Habchi J, Chia S, Limbocker R, Mannini B, Ahn M, Perni M, et al. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease. Proc Natl Acad Sci USA. 2017;114:E200–8.PubMedCrossRef Habchi J, Chia S, Limbocker R, Mannini B, Ahn M, Perni M, et al. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease. Proc Natl Acad Sci USA. 2017;114:E200–8.PubMedCrossRef
365.
go back to reference Aprile FA, Sormanni P, Perni M, Arosio P, Linse S, Knowles TPJ, et al. Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. Sci Adv. 2017;3: e1700488.ADSPubMedPubMedCentralCrossRef Aprile FA, Sormanni P, Perni M, Arosio P, Linse S, Knowles TPJ, et al. Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. Sci Adv. 2017;3: e1700488.ADSPubMedPubMedCentralCrossRef
366.
go back to reference Limbocker R, Errico S, Barbut D, Knowles TPJ, Vendruscolo M, Chiti F, et al. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat Prod Rep. 2022;39:742–53.PubMedCrossRef Limbocker R, Errico S, Barbut D, Knowles TPJ, Vendruscolo M, Chiti F, et al. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat Prod Rep. 2022;39:742–53.PubMedCrossRef
369.
go back to reference Linse S, Sormanni P, O’Connell DJ. An aggregation inhibitor specific to oligomeric intermediates of Aβ42 derived from phage display libraries of stable, small proteins. Proc Natl Acad Sci USA. 2022;119: e2121966119.PubMedPubMedCentralCrossRef Linse S, Sormanni P, O’Connell DJ. An aggregation inhibitor specific to oligomeric intermediates of Aβ42 derived from phage display libraries of stable, small proteins. Proc Natl Acad Sci USA. 2022;119: e2121966119.PubMedPubMedCentralCrossRef
370.
go back to reference Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15:558–66.PubMedCrossRef Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15:558–66.PubMedCrossRef
371.
go back to reference Ladiwala ARA, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid aβ into off-pathway conformers. J Biol Chem. 2010;285:24228–37.PubMedPubMedCentralCrossRef Ladiwala ARA, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid aβ into off-pathway conformers. J Biol Chem. 2010;285:24228–37.PubMedPubMedCentralCrossRef
372.
go back to reference Connelly S, Choi S, Johnson SM, Kelly JW, Wilson IA. Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr Opin Struct Biol. 2010;20:54–62.PubMedPubMedCentralCrossRef Connelly S, Choi S, Johnson SM, Kelly JW, Wilson IA. Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr Opin Struct Biol. 2010;20:54–62.PubMedPubMedCentralCrossRef
373.
go back to reference Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, Fleming JA, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci USA. 2012;109:9629–34.ADSPubMedPubMedCentralCrossRef Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, Fleming JA, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci USA. 2012;109:9629–34.ADSPubMedPubMedCentralCrossRef
374.
go back to reference Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Planté-Bordeneuve V, Lozeron P, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–92. Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Planté-Bordeneuve V, Lozeron P, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–92.
375.
go back to reference Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379:1007–16.PubMedCrossRef Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379:1007–16.PubMedCrossRef
376.
go back to reference Yan NL, Santos-Martins D, Nair R, Chu A, Wilson IA, Johnson KA, et al. Discovery of potent coumarin-based kinetic stabilizers of amyloidogenic immunoglobulin light chains using structure-based design. J Med Chem. 2021;64:6273–99.PubMedPubMedCentralCrossRef Yan NL, Santos-Martins D, Nair R, Chu A, Wilson IA, Johnson KA, et al. Discovery of potent coumarin-based kinetic stabilizers of amyloidogenic immunoglobulin light chains using structure-based design. J Med Chem. 2021;64:6273–99.PubMedPubMedCentralCrossRef
377.
go back to reference Chiti F, Kelly JW. Small molecule protein binding to correct cellular folding or stabilize the native state against misfolding and aggregation. Curr Opin Struct Biol. 2022;72:267–78.PubMedCrossRef Chiti F, Kelly JW. Small molecule protein binding to correct cellular folding or stabilize the native state against misfolding and aggregation. Curr Opin Struct Biol. 2022;72:267–78.PubMedCrossRef
378.
go back to reference Heller GT, Aprile FA, Michaels TCT, Limbocker R, Perni M, Ruggeri FS, et al. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease. Sci Adv. 6:eabb5924. Heller GT, Aprile FA, Michaels TCT, Limbocker R, Perni M, Ruggeri FS, et al. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease. Sci Adv. 6:eabb5924.
379.
go back to reference Löhr T, Kohlhoff K, Heller GT, Camilloni C, Vendruscolo M. A small molecule stabilizes the disordered native state of the Alzheimer’s Aβ Peptide. ACS Chem Neurosci. 2022;13:1738–45.PubMedCrossRef Löhr T, Kohlhoff K, Heller GT, Camilloni C, Vendruscolo M. A small molecule stabilizes the disordered native state of the Alzheimer’s Aβ Peptide. ACS Chem Neurosci. 2022;13:1738–45.PubMedCrossRef
380.
go back to reference Heller GT, Sormanni P, Vendruscolo M. Targeting disordered proteins with small molecules using entropy. Trends Biochem Sci. 2015;40:491–6.PubMedCrossRef Heller GT, Sormanni P, Vendruscolo M. Targeting disordered proteins with small molecules using entropy. Trends Biochem Sci. 2015;40:491–6.PubMedCrossRef
381.
go back to reference Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 2017;6:6.PubMedPubMedCentralCrossRef Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 2017;6:6.PubMedPubMedCentralCrossRef
382.
go back to reference Selkoe D. β-secretase inhibitors for Alzheimer’s disease: heading in the wrong direction? Lancet Neurol. 2019;18:624–6.PubMedCrossRef Selkoe D. β-secretase inhibitors for Alzheimer’s disease: heading in the wrong direction? Lancet Neurol. 2019;18:624–6.PubMedCrossRef
384.
go back to reference Chiozzi P, Sarti AC, Sanz JM, Giuliani AL, Adinolfi E, Vultaggio-Poma V, et al. Amyloid β-dependent mitochondrial toxicity in mouse microglia requires P2X7 receptor expression and is prevented by nimodipine. Sci Rep. 2019;9:6475.ADSPubMedPubMedCentralCrossRef Chiozzi P, Sarti AC, Sanz JM, Giuliani AL, Adinolfi E, Vultaggio-Poma V, et al. Amyloid β-dependent mitochondrial toxicity in mouse microglia requires P2X7 receptor expression and is prevented by nimodipine. Sci Rep. 2019;9:6475.ADSPubMedPubMedCentralCrossRef
385.
go back to reference Cao Q, Shin WS, Chan H, Vuong CK, Dubois B, Li B, et al. Inhibiting amyloid-β cytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. Nat Chem. 2018;10:1213–21.PubMedPubMedCentralCrossRef Cao Q, Shin WS, Chan H, Vuong CK, Dubois B, Li B, et al. Inhibiting amyloid-β cytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. Nat Chem. 2018;10:1213–21.PubMedPubMedCentralCrossRef
386.
go back to reference Foley AR, Roseman GP, Chan K, Smart A, Finn TS, Yang K, et al. Evidence for aggregation-independent, PrPC-mediated Aβ cellular internalization. Proc Natl Acad Sci USA. 2020;117:28625–31.ADSPubMedPubMedCentralCrossRef Foley AR, Roseman GP, Chan K, Smart A, Finn TS, Yang K, et al. Evidence for aggregation-independent, PrPC-mediated Aβ cellular internalization. Proc Natl Acad Sci USA. 2020;117:28625–31.ADSPubMedPubMedCentralCrossRef
387.
go back to reference Cappelli S, Penco A, Mannini B, Cascella R, Wilson MR, Ecroyd H, et al. Effect of molecular chaperones on aberrant protein oligomers in vitro: super-versus sub-stoichiometric chaperone concentrations. Biol Chem. 2016;397:401–15.PubMedCrossRef Cappelli S, Penco A, Mannini B, Cascella R, Wilson MR, Ecroyd H, et al. Effect of molecular chaperones on aberrant protein oligomers in vitro: super-versus sub-stoichiometric chaperone concentrations. Biol Chem. 2016;397:401–15.PubMedCrossRef
388.
go back to reference Ojha J, Masilamoni G, Dunlap D, Udoff RA, Cashikar AG. Sequestration of toxic oligomers by HspB1 as a cytoprotective mechanism. Mol Cell Biol. 2011;31:3146–57.PubMedPubMedCentralCrossRef Ojha J, Masilamoni G, Dunlap D, Udoff RA, Cashikar AG. Sequestration of toxic oligomers by HspB1 as a cytoprotective mechanism. Mol Cell Biol. 2011;31:3146–57.PubMedPubMedCentralCrossRef
389.
go back to reference Garai K, Posey AE, Li X, Buxbaum JN, Pappu RV. Inhibition of amyloid beta fibril formation by monomeric human transthyretin. Protein Sci. 2018;27:1252–61.PubMedPubMedCentralCrossRef Garai K, Posey AE, Li X, Buxbaum JN, Pappu RV. Inhibition of amyloid beta fibril formation by monomeric human transthyretin. Protein Sci. 2018;27:1252–61.PubMedPubMedCentralCrossRef
390.
go back to reference Cascella R, Conti S, Tatini F, Evangelisti E, Scartabelli T, Casamenti F, et al. Extracellular chaperones prevent Aβ42-induced toxicity in rat brains. Biochim Biophys Acta. 2013;1832:1217–26.PubMedCrossRef Cascella R, Conti S, Tatini F, Evangelisti E, Scartabelli T, Casamenti F, et al. Extracellular chaperones prevent Aβ42-induced toxicity in rat brains. Biochim Biophys Acta. 2013;1832:1217–26.PubMedCrossRef
391.
go back to reference Cascella R, Conti S, Mannini B, Li X, Buxbaum JN, Tiribilli B, et al. Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro. Biochim Biophys Acta BBA - Mol Basis Dis. 2013;1832:2302–14.CrossRef Cascella R, Conti S, Mannini B, Li X, Buxbaum JN, Tiribilli B, et al. Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro. Biochim Biophys Acta BBA - Mol Basis Dis. 2013;1832:2302–14.CrossRef
392.
go back to reference Beeg M, Stravalaci M, Romeo M, Carrá AD, Cagnotto A, Rossi A, et al. Clusterin binds to aβ1–42 oligomers with high affinity and interferes with peptide aggregation by inhibiting primary and secondary nucleation. J Biol Chem. 2016;291:6958–66.PubMedPubMedCentralCrossRef Beeg M, Stravalaci M, Romeo M, Carrá AD, Cagnotto A, Rossi A, et al. Clusterin binds to aβ1–42 oligomers with high affinity and interferes with peptide aggregation by inhibiting primary and secondary nucleation. J Biol Chem. 2016;291:6958–66.PubMedPubMedCentralCrossRef
394.
go back to reference Andreasen M, Lorenzen N, Otzen D. Interactions between misfolded protein oligomers and membranes: a central topic in neurodegenerative diseases? Biochim Biophys Acta. 2015;1848:1897–907.PubMedCrossRef Andreasen M, Lorenzen N, Otzen D. Interactions between misfolded protein oligomers and membranes: a central topic in neurodegenerative diseases? Biochim Biophys Acta. 2015;1848:1897–907.PubMedCrossRef
395.
go back to reference Mrak RE, Griffin WST. Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol Aging. 2001;22:903–8.PubMedCrossRef Mrak RE, Griffin WST. Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol Aging. 2001;22:903–8.PubMedCrossRef
396.
go back to reference Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216.PubMedPubMedCentralCrossRef Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216.PubMedPubMedCentralCrossRef
397.
go back to reference Batista AF, Rody T, Forny-Germano L, Cerdeiro S, Bellio M, Ferreira ST, et al. Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J Neuroinflammation. 2021;18:54.PubMedPubMedCentralCrossRef Batista AF, Rody T, Forny-Germano L, Cerdeiro S, Bellio M, Ferreira ST, et al. Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J Neuroinflammation. 2021;18:54.PubMedPubMedCentralCrossRef
398.
go back to reference Steeland S, Gorlé N, Vandendriessche C, Balusu S, Brkic M, Van Cauwenberghe C, et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med. 2018;10: e8300.PubMedPubMedCentralCrossRef Steeland S, Gorlé N, Vandendriessche C, Balusu S, Brkic M, Van Cauwenberghe C, et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med. 2018;10: e8300.PubMedPubMedCentralCrossRef
400.
go back to reference Xu B, Mo X, Chen J, Yu H, Liu Y. Myricetin inhibits α-synuclein amyloid aggregation by delaying the liquid-to-solid phase transition. ChemBioChem. 2022;23:e202200216.PubMedCrossRef Xu B, Mo X, Chen J, Yu H, Liu Y. Myricetin inhibits α-synuclein amyloid aggregation by delaying the liquid-to-solid phase transition. ChemBioChem. 2022;23:e202200216.PubMedCrossRef
401.
go back to reference Willander H, Presto J, Askarieh G, Biverstål H, Frohm B, Knight SD, et al. BRICHOS domains efficiently delay fibrillation of amyloid β-peptide. J Biol Chem. 2012;287:31608–17.PubMedPubMedCentralCrossRef Willander H, Presto J, Askarieh G, Biverstål H, Frohm B, Knight SD, et al. BRICHOS domains efficiently delay fibrillation of amyloid β-peptide. J Biol Chem. 2012;287:31608–17.PubMedPubMedCentralCrossRef
402.
go back to reference Wang MS, Boddapati S, Emadi S, Sierks MR. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci. 2010;11:57.PubMedPubMedCentralCrossRef Wang MS, Boddapati S, Emadi S, Sierks MR. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci. 2010;11:57.PubMedPubMedCentralCrossRef
403.
go back to reference Smith SP, Shaw GS. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure. 1998;6:211–22.PubMedCrossRef Smith SP, Shaw GS. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure. 1998;6:211–22.PubMedCrossRef
404.
go back to reference Seidler PM, Murray KA, Boyer DR, Ge P, Sawaya MR, Hu CJ, et al. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat Commun. 2022;13:5451.ADSPubMedPubMedCentralCrossRef Seidler PM, Murray KA, Boyer DR, Ge P, Sawaya MR, Hu CJ, et al. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat Commun. 2022;13:5451.ADSPubMedPubMedCentralCrossRef
405.
go back to reference Schofield DJ, Irving L, Calo L, Bogstedt A, Rees G, Nuccitelli A, et al. Preclinical development of a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. Neurobiol Dis. 2019;132: 104582.PubMedCrossRef Schofield DJ, Irving L, Calo L, Bogstedt A, Rees G, Nuccitelli A, et al. Preclinical development of a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. Neurobiol Dis. 2019;132: 104582.PubMedCrossRef
406.
go back to reference Sarkar S, C. Rubinsztein D. Small molecule enhancers of autophagy for neurodegenerative diseases. Mol Biosyst. 2008;4:895–901. Sarkar S, C. Rubinsztein D. Small molecule enhancers of autophagy for neurodegenerative diseases. Mol Biosyst. 2008;4:895–901.
407.
go back to reference Picone P, Bondi ML, Picone P, Bondi ML, Montana G, Bruno A, et al. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radic Res. 2009;43:1133–45.PubMedCrossRef Picone P, Bondi ML, Picone P, Bondi ML, Montana G, Bruno A, et al. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radic Res. 2009;43:1133–45.PubMedCrossRef
408.
go back to reference Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther. 2015;7:35.PubMedPubMedCentralCrossRef Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther. 2015;7:35.PubMedPubMedCentralCrossRef
410.
go back to reference Moreira GG, Cantrelle F-X, Quezada A, Carvalho FS, Cristóvão JS, Sengupta U, et al. Dynamic interactions and Ca2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat Commun. 2021;12:6292.ADSPubMedPubMedCentralCrossRef Moreira GG, Cantrelle F-X, Quezada A, Carvalho FS, Cristóvão JS, Sengupta U, et al. Dynamic interactions and Ca2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat Commun. 2021;12:6292.ADSPubMedPubMedCentralCrossRef
411.
go back to reference Mirecka EA, Shaykhalishahi H, Gauhar A, Akgül Ş, Lecher J, Willbold D, et al. Sequestration of a β-Hairpin for Control of α-Synuclein Aggregation. Angew Chem Int Ed. 2014;53:4227–30.CrossRef Mirecka EA, Shaykhalishahi H, Gauhar A, Akgül Ş, Lecher J, Willbold D, et al. Sequestration of a β-Hairpin for Control of α-Synuclein Aggregation. Angew Chem Int Ed. 2014;53:4227–30.CrossRef
412.
go back to reference Kreiser RP, Wright AK, Sasser LR, Rinauro DJ, Gabriel JM, Hsu CM, et al. A brain-permeable aminosterol regulates cell membranes to mitigate the toxicity of diverse pore-forming agents. ACS Chem Neurosci. 2022;13:1219–31.PubMedCrossRef Kreiser RP, Wright AK, Sasser LR, Rinauro DJ, Gabriel JM, Hsu CM, et al. A brain-permeable aminosterol regulates cell membranes to mitigate the toxicity of diverse pore-forming agents. ACS Chem Neurosci. 2022;13:1219–31.PubMedCrossRef
413.
go back to reference King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments. Pharmacol Ther. 2014;141:1–12.PubMedCrossRef King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments. Pharmacol Ther. 2014;141:1–12.PubMedCrossRef
414.
go back to reference Fukunaga K, Izumi H, Yabuki Y, Shinoda Y, Shioda N, Han F. Alzheimer’s disease therapeutic candidate SAK3 is an enhancer of T-type calcium channels. J Pharmacol Sci. 2019;139:51–8.PubMedCrossRef Fukunaga K, Izumi H, Yabuki Y, Shinoda Y, Shioda N, Han F. Alzheimer’s disease therapeutic candidate SAK3 is an enhancer of T-type calcium channels. J Pharmacol Sci. 2019;139:51–8.PubMedCrossRef
415.
go back to reference Esteras N, Kundel F, Amodeo GF, Pavlov EV, Klenerman D, Abramov AY. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J. 2021;288:127–41.PubMedCrossRef Esteras N, Kundel F, Amodeo GF, Pavlov EV, Klenerman D, Abramov AY. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J. 2021;288:127–41.PubMedCrossRef
416.
go back to reference Dieter F, Esselun C, Eckert GP. Redox active α-lipoic acid differentially improves mitochondrial dysfunction in a cellular model of alzheimer and its control cells. Int J Mol Sci. 2022;23:9186.PubMedPubMedCentralCrossRef Dieter F, Esselun C, Eckert GP. Redox active α-lipoic acid differentially improves mitochondrial dysfunction in a cellular model of alzheimer and its control cells. Int J Mol Sci. 2022;23:9186.PubMedPubMedCentralCrossRef
417.
go back to reference Dedmon MM, Christodoulou J, Wilson MR, Dobson CM. Heat shock protein 70 inhibits α-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem. 2005;280:14733–40.PubMedCrossRef Dedmon MM, Christodoulou J, Wilson MR, Dobson CM. Heat shock protein 70 inhibits α-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem. 2005;280:14733–40.PubMedCrossRef
419.
go back to reference Crespi GAN, Hermans SJ, Parker MW, Miles LA. Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies. Sci Rep. 2015;5:9649.ADSPubMedPubMedCentralCrossRef Crespi GAN, Hermans SJ, Parker MW, Miles LA. Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies. Sci Rep. 2015;5:9649.ADSPubMedPubMedCentralCrossRef
421.
go back to reference Cai X, Zhang K, Xie X, Zhu X, Feng J, Jin Z, et al. Self-assembly hollow manganese Prussian white nanocapsules attenuate Tau-related neuropathology and cognitive decline. Biomaterials. 2020;231: 119678.PubMedCrossRef Cai X, Zhang K, Xie X, Zhu X, Feng J, Jin Z, et al. Self-assembly hollow manganese Prussian white nanocapsules attenuate Tau-related neuropathology and cognitive decline. Biomaterials. 2020;231: 119678.PubMedCrossRef
422.
go back to reference Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58:495–505.PubMedCrossRef Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58:495–505.PubMedCrossRef
423.
go back to reference Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, et al. A therapeutic antibody targeting bace1 inhibits amyloid-β production in vivo. Sci Transl Med. 2011;3:84ra43–84ra43. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, et al. A therapeutic antibody targeting bace1 inhibits amyloid-β production in vivo. Sci Transl Med. 2011;3:84ra43–84ra43.
424.
go back to reference Arndt JW, Qian F, Smith BA, Quan C, Kilambi KP, Bush MW, et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep. 2018;8:6412.ADSPubMedPubMedCentralCrossRef Arndt JW, Qian F, Smith BA, Quan C, Kilambi KP, Bush MW, et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep. 2018;8:6412.ADSPubMedPubMedCentralCrossRef
425.
go back to reference Arai T, Sasaki D, Araya T, Sato T, Sohma Y, Kanai M. A cyclic KLVFF-derived peptide aggregation inhibitor induces the formation of less-toxic off-pathway amyloid-β oligomers. ChemBioChem. 2014;15:2577–83.PubMedCrossRef Arai T, Sasaki D, Araya T, Sato T, Sohma Y, Kanai M. A cyclic KLVFF-derived peptide aggregation inhibitor induces the formation of less-toxic off-pathway amyloid-β oligomers. ChemBioChem. 2014;15:2577–83.PubMedCrossRef
426.
go back to reference Anekonda TS, Quinn JF. Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: The case for isradipine. Biochim Biophys Acta BBA - Mol Basis Dis. 2011;1812:1584–90.CrossRef Anekonda TS, Quinn JF. Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: The case for isradipine. Biochim Biophys Acta BBA - Mol Basis Dis. 2011;1812:1584–90.CrossRef
427.
go back to reference Agerschou ED, Flagmeier P, Saridaki T, Galvagnion C, Komnig D, Heid L, et al. An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils. eLife. 2019;8:e46112. Agerschou ED, Flagmeier P, Saridaki T, Galvagnion C, Komnig D, Heid L, et al. An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils. eLife. 2019;8:e46112.
428.
429.
go back to reference Collier MP, Alderson TR, de Villiers CP, Nicholls D, Gastall HY, Allison TM, et al. HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C. Sci Adv. 2019;5:eaav8421. Collier MP, Alderson TR, de Villiers CP, Nicholls D, Gastall HY, Allison TM, et al. HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C. Sci Adv. 2019;5:eaav8421.
430.
go back to reference Vitek GE, Decourt B, Sabbagh MN. Lecanemab (BAN2401): an anti–beta-amyloid monoclonal antibody for the treatment of Alzheimer disease. Expert Opin Investig Drugs. 2023;32:89–94.PubMedCrossRef Vitek GE, Decourt B, Sabbagh MN. Lecanemab (BAN2401): an anti–beta-amyloid monoclonal antibody for the treatment of Alzheimer disease. Expert Opin Investig Drugs. 2023;32:89–94.PubMedCrossRef
Metadata
Title
Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases
Authors
Dillon J. Rinauro
Fabrizio Chiti
Michele Vendruscolo
Ryan Limbocker
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2024
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-023-00651-2

Other articles of this Issue 1/2024

Molecular Neurodegeneration 1/2024 Go to the issue