Skip to main content
Top
Published in: Journal of Assisted Reproduction and Genetics 9/2022

30-07-2022 | Miscarriage | Reproductive Physiology and Disease

Prevention of intrauterine fetal growth restriction by administrating C1q/TNF-related protein 6, a specific inhibitor of the alternative complement pathway

Authors: Mayu Kurokawa, Ai Takeshita, Shu Hashimoto, Masayasu Koyama, Yoshiharu Morimoto, Daisuke Tachibana

Published in: Journal of Assisted Reproduction and Genetics | Issue 9/2022

Login to get access

Abstract

Purpose

The latest treatments do not sufficiently prevent miscarriage and fetal growth restriction (FGR) in pregnant women. Here, we assessed the effects of a human protein, CTRP6, that specifically inhibits the activation of the alternative complement pathway on miscarriage, fetal and placental development.

Methods

Pregnant CBA/J mice mated with DBA/2 male mice as a model of spontaneous abortion and FGR were randomly divided into the control and CTRP6 groups. In the CTRP6 group, the mice were intravenously administered CTRP6 on days 4.5 and 6.5 post-conception (dpc). The abortion rate and fetal and placental weights on 14.5 dpc were examined. Remodeling of the spiral artery was also assessed.

Results

The abortion rate in the CTRP6 group (13%) was reduced compared to the control group (21%), but there was no statistical difference. The placental and fetal weights in the CTRP6 group were also heavier than those in the control (P < 0.05). Moreover, the thickness of the blood vessel wall in the CTRP6 group was significantly thinner than that in the control (P < 0.05) and comparable to that in the non-abortion model (CBA/J x BALB). The ratio of the inner-per-the-outer diameter of the spiral artery increased more in the CTRP6 group than that in the control (P < 0.05). As well, the Th1/Th2 cytokine ratio was significantly reduced by CTRP6 treatment.

Conclusions

Taken together, the supplementation with a protein that regulates the alternative complement pathway in vivo improves FGR and promotes spiral artery remodeling in a mouse model of miscarriage and FGR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sugiura-Ogasawara M, Ozaki Y, Katano K, Suzumori N, Kitaori T, Mizutani E. Abnormal embryonic karyotype is the most frequent cause of recurrent miscarriage. Hum Reprod. 2012;27:2297–303.PubMedCrossRef Sugiura-Ogasawara M, Ozaki Y, Katano K, Suzumori N, Kitaori T, Mizutani E. Abnormal embryonic karyotype is the most frequent cause of recurrent miscarriage. Hum Reprod. 2012;27:2297–303.PubMedCrossRef
2.
go back to reference Munné S, Kaplan B, Frattarelli JL, Child T, Nakhuda G, Shamma FN, Silverberg K, Kalista T, Handyside AH, Katz-Jaffe M, Wells D, Gordon T, Stock-Myer S, Willman S, STAR Study Group. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril. 2019;112:1071–9.PubMedCrossRef Munné S, Kaplan B, Frattarelli JL, Child T, Nakhuda G, Shamma FN, Silverberg K, Kalista T, Handyside AH, Katz-Jaffe M, Wells D, Gordon T, Stock-Myer S, Willman S, STAR Study Group. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril. 2019;112:1071–9.PubMedCrossRef
3.
go back to reference Sato T, Sugiura-Ogasawara M, Ozawa F, Yamamoto T, Kato T, Kurahashi H, Kuroda T, Aoyama N, Kato K, Kobayashi R, Fukuda A, Utsunomiya T, Kuwahara A, Saito H, Takeshita T, Irahara M. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum Reprod. 2019;34:2340–428.PubMedCrossRef Sato T, Sugiura-Ogasawara M, Ozawa F, Yamamoto T, Kato T, Kurahashi H, Kuroda T, Aoyama N, Kato K, Kobayashi R, Fukuda A, Utsunomiya T, Kuwahara A, Saito H, Takeshita T, Irahara M. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum Reprod. 2019;34:2340–428.PubMedCrossRef
5.
go back to reference Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science. 1990;248:220–3.PubMedCrossRef Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science. 1990;248:220–3.PubMedCrossRef
6.
go back to reference Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–3.PubMedCrossRef Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–3.PubMedCrossRef
7.
go back to reference Trowsdale J, Betz AG. Mother’s little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol. 2006;7:241–6.PubMedCrossRef Trowsdale J, Betz AG. Mother’s little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol. 2006;7:241–6.PubMedCrossRef
9.
go back to reference El Costa H, Tabiasco J, Berrebi A, Parant O, Aguerre-Girr M, Piccinni MP, Le Bouteiller P. Effector functions of human decidual NK cells in healthy early pregnancy are dependent on the specific engagement of natural cytotoxicity receptors. J Reprod Immunol. 2009;82:142–7.PubMedCrossRef El Costa H, Tabiasco J, Berrebi A, Parant O, Aguerre-Girr M, Piccinni MP, Le Bouteiller P. Effector functions of human decidual NK cells in healthy early pregnancy are dependent on the specific engagement of natural cytotoxicity receptors. J Reprod Immunol. 2009;82:142–7.PubMedCrossRef
10.
go back to reference Yang F, Zheng Q, Jin L. Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface. Front Immunol. 2019;10:2317.PubMedPubMedCentralCrossRef Yang F, Zheng Q, Jin L. Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface. Front Immunol. 2019;10:2317.PubMedPubMedCentralCrossRef
11.
go back to reference Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) Cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol. 2020;11:2025.PubMedPubMedCentralCrossRef Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) Cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol. 2020;11:2025.PubMedPubMedCentralCrossRef
12.
go back to reference Lin Y, Ren L, Wang W, Di J, Zeng S, Saito S. Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice. J Reprod Immunol. 2009;82:12–3.PubMedCrossRef Lin Y, Ren L, Wang W, Di J, Zeng S, Saito S. Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice. J Reprod Immunol. 2009;82:12–3.PubMedCrossRef
13.
go back to reference Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med. 2006;203:2165–75.PubMedPubMedCentralCrossRef Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med. 2006;203:2165–75.PubMedPubMedCentralCrossRef
14.
go back to reference Goldman AS, Prabhakar BS. The complement system. in: Baron’s Medical Microbiology (Baron S et al, eds.) (4th ed. ed.). Univ of Texas Medical Branch. 1996 Goldman AS, Prabhakar BS. The complement system. in: Baron’s Medical Microbiology (Baron S et al, eds.) (4th ed. ed.). Univ of Texas Medical Branch. 1996
15.
go back to reference Girardi G, Prohászka Z, Bulla R, Tedesco F, Scherjon S. Complement activation in animal and human pregnancies as a model for immunological recognition. Mol Immunol. 2011;48:1621–30.PubMedCrossRef Girardi G, Prohászka Z, Bulla R, Tedesco F, Scherjon S. Complement activation in animal and human pregnancies as a model for immunological recognition. Mol Immunol. 2011;48:1621–30.PubMedCrossRef
16.
go back to reference van de Geijn FE, Dolhain RJ, van Rijs W, Hazes JM, de Groot CJ. Mannose-binding lectin genotypes and pre-eclampsia: a case-control study. Hum Immunol. 2007;68:888–93.PubMedCrossRef van de Geijn FE, Dolhain RJ, van Rijs W, Hazes JM, de Groot CJ. Mannose-binding lectin genotypes and pre-eclampsia: a case-control study. Hum Immunol. 2007;68:888–93.PubMedCrossRef
17.
go back to reference Than NG, Romero R, Erez O, Kusanovic JP, Tarca AL, Edwin SS, Kim JS, Hassan SS, Espinoza J, Mittal P, Mazaki-Tovi S, Friel L, Gotsch F, Vaisbuch E, Camacho N, Papp Z. A role for mannose-binding lectin, a component of the innate immune system in pre-eclampsia. Am J Reprod Immunol. 2008;60:333–45.PubMedPubMedCentralCrossRef Than NG, Romero R, Erez O, Kusanovic JP, Tarca AL, Edwin SS, Kim JS, Hassan SS, Espinoza J, Mittal P, Mazaki-Tovi S, Friel L, Gotsch F, Vaisbuch E, Camacho N, Papp Z. A role for mannose-binding lectin, a component of the innate immune system in pre-eclampsia. Am J Reprod Immunol. 2008;60:333–45.PubMedPubMedCentralCrossRef
18.
go back to reference Vianna P, Da Silva GK, Dos Santos BP, Bauer ME, Dalmáz CA, Bandinelli E, Chies JA. Association between mannose-binding lectin gene polymorphisms and pre-eclampsia in Brazilian women. Am J Reprod Immunol. 2010;64:359–74.PubMed Vianna P, Da Silva GK, Dos Santos BP, Bauer ME, Dalmáz CA, Bandinelli E, Chies JA. Association between mannose-binding lectin gene polymorphisms and pre-eclampsia in Brazilian women. Am J Reprod Immunol. 2010;64:359–74.PubMed
19.
go back to reference Glotov AS, Tiys ES, Vashukova ES, Pakin VS, Demenkov PS, Saik OV, Ivanisenko TV, Arzhanova ON, Mozgovaya EV, Zainulina MS, Kolchanov NA, Baranov VS, Ivanisenko VA. Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome). BMC Syst Biol. 2015;9:S4.PubMedPubMedCentralCrossRef Glotov AS, Tiys ES, Vashukova ES, Pakin VS, Demenkov PS, Saik OV, Ivanisenko TV, Arzhanova ON, Mozgovaya EV, Zainulina MS, Kolchanov NA, Baranov VS, Ivanisenko VA. Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome). BMC Syst Biol. 2015;9:S4.PubMedPubMedCentralCrossRef
20.
go back to reference Wu W, Yang H, Feng Y, Zhang P, Li S, Wang X, Peng T, Wang F, Xie B, Guo P, Li M, Wang Y, Zhao N, Wang D, Wang S, Zhang Y. Polymorphisms in complement genes and risk of preeclampsia in Taiyuan. China Inflamm Res. 2016;65:837–45.PubMedCrossRef Wu W, Yang H, Feng Y, Zhang P, Li S, Wang X, Peng T, Wang F, Xie B, Guo P, Li M, Wang Y, Zhao N, Wang D, Wang S, Zhang Y. Polymorphisms in complement genes and risk of preeclampsia in Taiyuan. China Inflamm Res. 2016;65:837–45.PubMedCrossRef
21.
go back to reference Poveda NE, Garcés MF, Ruiz-Linares CE, Varón D, Valderrama S, Sanchez E, Castiblanco-Cortes A, Agudelo-Zapata Y, Sandoval-Alzate HF, Leal LG, Ángel-Müller E, Ruíz-Parra AI, González-Clavijo AM, Diéguez C, Nogueiras R, Caminos JE. Serum adipsin levels throughout normal pregnancy and preeclampsia. Sci Rep. 2016;6:20073.PubMedPubMedCentralCrossRef Poveda NE, Garcés MF, Ruiz-Linares CE, Varón D, Valderrama S, Sanchez E, Castiblanco-Cortes A, Agudelo-Zapata Y, Sandoval-Alzate HF, Leal LG, Ángel-Müller E, Ruíz-Parra AI, González-Clavijo AM, Diéguez C, Nogueiras R, Caminos JE. Serum adipsin levels throughout normal pregnancy and preeclampsia. Sci Rep. 2016;6:20073.PubMedPubMedCentralCrossRef
22.
go back to reference Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, Revett T, Gimeno R, Lodish HF. Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J. 2008;416:161–77.PubMedCrossRef Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, Revett T, Gimeno R, Lodish HF. Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J. 2008;416:161–77.PubMedCrossRef
23.
go back to reference Murayama MA, Kakuta S, Inoue A, Umeda N, Yonezawa T, Maruhashi T, Tateishi K, Ishigame H, Yabe R, Ikeda S, Seno A, Chi HH, Hashiguchi Y, Kurata R, Tada T, Kubo S, Sato N, Liu Y, Hattori M, Saijo S, Matsushita M, Fujita T, Sumida T, Iwakura Y. CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nat Commun. 2015;6:8483.PubMedCrossRef Murayama MA, Kakuta S, Inoue A, Umeda N, Yonezawa T, Maruhashi T, Tateishi K, Ishigame H, Yabe R, Ikeda S, Seno A, Chi HH, Hashiguchi Y, Kurata R, Tada T, Kubo S, Sato N, Liu Y, Hattori M, Saijo S, Matsushita M, Fujita T, Sumida T, Iwakura Y. CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nat Commun. 2015;6:8483.PubMedCrossRef
24.
go back to reference Sadeghi A, Fadaei R, Moradi N, Fouani FZ, Roozbehkia M, Zandieh Z, Ansaripour S, Vatannejad A, Doustimotlagh AH. Circulating levels of C1q/TNF-α-related protein 6 (CTRP6) in polycystic ovary syndrome. IUBMB Life. 2020;72:1449–59.PubMedCrossRef Sadeghi A, Fadaei R, Moradi N, Fouani FZ, Roozbehkia M, Zandieh Z, Ansaripour S, Vatannejad A, Doustimotlagh AH. Circulating levels of C1q/TNF-α-related protein 6 (CTRP6) in polycystic ovary syndrome. IUBMB Life. 2020;72:1449–59.PubMedCrossRef
25.
go back to reference Tuteja G, Cheng E, Papadakis H, Bejerano G. A comprehensive database of SNPs studied in association with pre-eclampsia. Placenta. 2012;33:1055–7.PubMedCrossRef Tuteja G, Cheng E, Papadakis H, Bejerano G. A comprehensive database of SNPs studied in association with pre-eclampsia. Placenta. 2012;33:1055–7.PubMedCrossRef
26.
go back to reference Clark DA, Chaouat G, Arck PC, Mittruecker HW, Levy GA. Cytokine-dependent abortion in CBA × DBA/2 mice is mediated by the procoagulant fgl2 prothrombinase [correction of prothombinase]. J Immunol. 1998;160:545–9.PubMed Clark DA, Chaouat G, Arck PC, Mittruecker HW, Levy GA. Cytokine-dependent abortion in CBA × DBA/2 mice is mediated by the procoagulant fgl2 prothrombinase [correction of prothombinase]. J Immunol. 1998;160:545–9.PubMed
27.
go back to reference Girardi G. Guilty as charged: all available evidence implicates complement’s role in fetal demise. Am J Reprod Immunol. 2008;59:183–92.PubMedCrossRef Girardi G. Guilty as charged: all available evidence implicates complement’s role in fetal demise. Am J Reprod Immunol. 2008;59:183–92.PubMedCrossRef
28.
go back to reference McKelvey K, Yenson V, Ashton A, Morris JM, McCracken SA. Embryonic/fetal mortality and intrauterine growth restriction is not exclusive to the CBA/J sub-strain in the CBA × DBA model. Sci Rep. 2016;6:35138.PubMedPubMedCentralCrossRef McKelvey K, Yenson V, Ashton A, Morris JM, McCracken SA. Embryonic/fetal mortality and intrauterine growth restriction is not exclusive to the CBA/J sub-strain in the CBA × DBA model. Sci Rep. 2016;6:35138.PubMedPubMedCentralCrossRef
29.
go back to reference Takeshita A, Kusakabe KT, Hiyama M, Kuniyoshi N, Kondo T, Kano K, Kiso Y, Okada T. Dynamics and reproductive effects of complement factors in the spontaneous abortion model of CBA/J×DBA/2 mice. Immunobiology. 2014;219:385–91.PubMedCrossRef Takeshita A, Kusakabe KT, Hiyama M, Kuniyoshi N, Kondo T, Kano K, Kiso Y, Okada T. Dynamics and reproductive effects of complement factors in the spontaneous abortion model of CBA/J×DBA/2 mice. Immunobiology. 2014;219:385–91.PubMedCrossRef
30.
go back to reference Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC. Immune cells at the fetomaternal interface: how the microenvironment modulates immune cells to hoster fetal development. J Immunol. 2018;201:325–34.PubMedCrossRef Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC. Immune cells at the fetomaternal interface: how the microenvironment modulates immune cells to hoster fetal development. J Immunol. 2018;201:325–34.PubMedCrossRef
31.
go back to reference Fraser R, Whitley GS, Johnstone AP, Host AJ, Sebire NJ, Thilaganathan B, Cartwright JE. Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. J Pathol. 2012;228:322–32.PubMedPubMedCentralCrossRef Fraser R, Whitley GS, Johnstone AP, Host AJ, Sebire NJ, Thilaganathan B, Cartwright JE. Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. J Pathol. 2012;228:322–32.PubMedPubMedCentralCrossRef
32.
go back to reference Charalambous F, Elia A, Georgiades P. Decidual spiral artery remodeling during early post-implantation period in mice: investigation of associations with decidual uNK cells and invasive trophoblast. Biochem Biophys Res Commun. 2012;417:847–52.PubMedCrossRef Charalambous F, Elia A, Georgiades P. Decidual spiral artery remodeling during early post-implantation period in mice: investigation of associations with decidual uNK cells and invasive trophoblast. Biochem Biophys Res Commun. 2012;417:847–52.PubMedCrossRef
33.
go back to reference Staff AC. The two-stage placental model of preeclampsia: an update. J Reprod Immunol. 2019;134–5:1–10.CrossRef Staff AC. The two-stage placental model of preeclampsia: an update. J Reprod Immunol. 2019;134–5:1–10.CrossRef
34.
go back to reference Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124:1094–112.PubMedCrossRef Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124:1094–112.PubMedCrossRef
35.
go back to reference Sugiura-Ogasawara M, Nozawa K, Nakanishi T, Hattori Y, Ozaki Y. Complement as a predictor of further miscarriage in couples with recurrent miscarriages. Hum Reprod. 2006;21:2711–4.PubMedCrossRef Sugiura-Ogasawara M, Nozawa K, Nakanishi T, Hattori Y, Ozaki Y. Complement as a predictor of further miscarriage in couples with recurrent miscarriages. Hum Reprod. 2006;21:2711–4.PubMedCrossRef
36.
go back to reference Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 2000;287:498–501.PubMedCrossRef Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 2000;287:498–501.PubMedCrossRef
37.
go back to reference Cunningham DS, Tichenor JR. Decay-accelerating factor protects human trophoblast from complement-mediated attack. Clin Immunol Immunopathol. 1995;74:156–61.PubMedCrossRef Cunningham DS, Tichenor JR. Decay-accelerating factor protects human trophoblast from complement-mediated attack. Clin Immunol Immunopathol. 1995;74:156–61.PubMedCrossRef
38.
39.
go back to reference Brooks JP, Radojicic C, Riedl MA, Newcomer SD, Banerji A, Hsu FI. Experience with intravenous plasma-derived C1-inhibitor in pregnant women with hereditary angioedema: a systematic literature review. J Allergy Clin Immunol Pract. 2020;8:1875–80.PubMedCrossRef Brooks JP, Radojicic C, Riedl MA, Newcomer SD, Banerji A, Hsu FI. Experience with intravenous plasma-derived C1-inhibitor in pregnant women with hereditary angioedema: a systematic literature review. J Allergy Clin Immunol Pract. 2020;8:1875–80.PubMedCrossRef
40.
go back to reference Sarno L, Tufano A, Maruotti GM, Martinelli P, Balletta MM, Russo D. Eculizumab in pregnancy: a narrative overview. J Nephrol. 2019;32:17–25.PubMedCrossRef Sarno L, Tufano A, Maruotti GM, Martinelli P, Balletta MM, Russo D. Eculizumab in pregnancy: a narrative overview. J Nephrol. 2019;32:17–25.PubMedCrossRef
41.
go back to reference Höchsmann B, Murakami Y, Osato M, Knaus A, Kawamoto M, Inoue N, Hirata T, Murata S, Anliker M, Eggermann T, Jäger M, Floettmann R, Höllein A, Murase S, Ueda Y, Nishimura JI, Kanakura Y, Kohara N, Schrezenmeier H, Krawitz PM, Kinoshita T. Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. J Clin Invest. 2019;129:5123–36.PubMedPubMedCentralCrossRef Höchsmann B, Murakami Y, Osato M, Knaus A, Kawamoto M, Inoue N, Hirata T, Murata S, Anliker M, Eggermann T, Jäger M, Floettmann R, Höllein A, Murase S, Ueda Y, Nishimura JI, Kanakura Y, Kohara N, Schrezenmeier H, Krawitz PM, Kinoshita T. Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. J Clin Invest. 2019;129:5123–36.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Nakagawa K, Kwak-Kim J, Kuroda K, Sugiyama R, Yamaguchi K. Immunosuppressive treatment using tacrolimus promotes pregnancy outcome in infertile women with repeated implantation failures. Am J Reprod Immunol. 2017 Sep;78(3):e12682.CrossRef Nakagawa K, Kwak-Kim J, Kuroda K, Sugiyama R, Yamaguchi K. Immunosuppressive treatment using tacrolimus promotes pregnancy outcome in infertile women with repeated implantation failures. Am J Reprod Immunol. 2017 Sep;78(3):e12682.CrossRef
44.
go back to reference Nakagawa K, Kwan-Kim J, Ota K, Kuroda K, Hisano M, Sugiyama R, Yamaguchi K. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios. Am J Reprod Immunol. 2015;7:353–61.CrossRef Nakagawa K, Kwan-Kim J, Ota K, Kuroda K, Hisano M, Sugiyama R, Yamaguchi K. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios. Am J Reprod Immunol. 2015;7:353–61.CrossRef
Metadata
Title
Prevention of intrauterine fetal growth restriction by administrating C1q/TNF-related protein 6, a specific inhibitor of the alternative complement pathway
Authors
Mayu Kurokawa
Ai Takeshita
Shu Hashimoto
Masayasu Koyama
Yoshiharu Morimoto
Daisuke Tachibana
Publication date
30-07-2022
Publisher
Springer US
Published in
Journal of Assisted Reproduction and Genetics / Issue 9/2022
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-022-02582-1

Other articles of this Issue 9/2022

Journal of Assisted Reproduction and Genetics 9/2022 Go to the issue