Skip to main content
Top
Published in: Inflammation 3/2022

01-06-2022 | Original Article

MiR-15p-5p Mediates the Coordination of ICAM-1 and FAK to Promote Endothelial Cell Proliferation and Migration

Authors: Wei Gu, Li Zhang, Xinhua Zhang, Binyu Wang, Xiaoyu Shi, Kang Hu, Yingying Ye, Guoquan Liu

Published in: Inflammation | Issue 3/2022

Login to get access

Abstract

Intercellular adhesion molecule-1 (ICAM-1) in endothelial cells is critical for neutrophil adhesion and transmigration across the endothelium. Focal adhesion kinase (FAK), which controls the turnover of focal adhesion to regulate cell adhesion and migration, plays a role in the resolution of inflammation. However, the coordinated involvement of ICAM-1 and FAK during endothelial inflammation has yet to be elucidated. This study reports that, as part of an inflammatory response, ICAM-1 controls FAK expression in endothelial cells via the microRNA miR-15b-5p. Induction of lung injury by lipopolysaccharide (LPS) resulted in higher levels of FAK expression in inflammatory tissues, while in ICAM-1 knockout mice, FAK expression was reduced in the lungs. FAK expression was also reduced in endothelial cells following ICAM-1 siRNA downregulation. Furthermore, ICAM-1 inhibited miR-15b-5p expression while increasing FAK mRNA and protein expression via binding of miR-15b-5p to the 3′ untranslated region (UTR) of FAK. ICAM-1 inhibited miR-15b-5p promoter activity and hence reduced miR-15b-5p expression. FAK increased endothelial cell proliferation and migration, whereas miR-15b-5p inhibited cell proliferation and migration. These findings indicate that the inflammatory molecule ICAM-1 regulates FAK expression via miR-15b-5p levels, which in turn controls endothelial cell proliferation and migration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lawson, C., and S. Wolf. 2009. ICAM-1 signaling in endothelial cells. Pharmacological Reports 61: 22–32.CrossRef Lawson, C., and S. Wolf. 2009. ICAM-1 signaling in endothelial cells. Pharmacological Reports 61: 22–32.CrossRef
2.
go back to reference Liu, G., A.T. Place, Z. Chen, V.M. Brovkovych, S.M. Vogel, W.A. Muller, R.A. Skidgel, A.B. Malik, and R.D. Minshall. 2012. ICAM-1–activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 120: 1942–1952.CrossRef Liu, G., A.T. Place, Z. Chen, V.M. Brovkovych, S.M. Vogel, W.A. Muller, R.A. Skidgel, A.B. Malik, and R.D. Minshall. 2012. ICAM-1–activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 120: 1942–1952.CrossRef
3.
go back to reference Yusuf-Makagiansar, H., M.E. Anderson, T.V. Yakovleva, J.S. Murray, and T.J. Siahaan. 2002. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Medicinal Research Reviews 22: 146–167.CrossRef Yusuf-Makagiansar, H., M.E. Anderson, T.V. Yakovleva, J.S. Murray, and T.J. Siahaan. 2002. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Medicinal Research Reviews 22: 146–167.CrossRef
4.
go back to reference Bui, T.M., H.L. Wiesolek, and R. Sumagin. 2020. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukocyte Biol 108: 787–799.CrossRef Bui, T.M., H.L. Wiesolek, and R. Sumagin. 2020. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukocyte Biol 108: 787–799.CrossRef
5.
go back to reference Owen, J.D., P.J. Ruest, D.W. Fry, and S.K. Hanks. 1999. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Molecular and Cellular Biology 19: 4806–4818.CrossRef Owen, J.D., P.J. Ruest, D.W. Fry, and S.K. Hanks. 1999. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Molecular and Cellular Biology 19: 4806–4818.CrossRef
6.
go back to reference Zhao, X., and J. Guan. 2011. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliver Rev 63: 610–615.CrossRef Zhao, X., and J. Guan. 2011. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliver Rev 63: 610–615.CrossRef
7.
go back to reference Lim, S.S. 2013. Nuclear FAK: A new mode of gene regulation from cellular adhesions. Molecules and Cells 36: 1–6.CrossRef Lim, S.S. 2013. Nuclear FAK: A new mode of gene regulation from cellular adhesions. Molecules and Cells 36: 1–6.CrossRef
8.
go back to reference Zhou, J., Yi, Q., and L. Tang. 2019. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. J Exp Clin Canc Res 38. Zhou, J., Yi, Q., and L. Tang. 2019. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. J Exp Clin Canc Res 38.
9.
go back to reference Petridou, N.I., P. Stylianou, and P.A. Skourides. 2013. A dominant-negative provides new insights into FAK regulation and function in early embryonic morphogenesis. Development 140: 4266–4276.CrossRef Petridou, N.I., P. Stylianou, and P.A. Skourides. 2013. A dominant-negative provides new insights into FAK regulation and function in early embryonic morphogenesis. Development 140: 4266–4276.CrossRef
10.
go back to reference Roycroft, A., A. Szabó, I. Bahm, L. Daly, G. Charras, M. Parsons, and R. Mayor. 2018. Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest. Developmental Cell 45: 565–579.CrossRef Roycroft, A., A. Szabó, I. Bahm, L. Daly, G. Charras, M. Parsons, and R. Mayor. 2018. Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest. Developmental Cell 45: 565–579.CrossRef
11.
go back to reference Shen, T.L., A.Y. Park, A. Alcaraz, X. Peng, I. Jang, P. Koni, R.A. Flavell, H. Gu, and J.L. Guan. 2005. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology 169: 941–952.CrossRef Shen, T.L., A.Y. Park, A. Alcaraz, X. Peng, I. Jang, P. Koni, R.A. Flavell, H. Gu, and J.L. Guan. 2005. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology 169: 941–952.CrossRef
12.
go back to reference Zhao, X., X. Peng, S. Sun, A.Y. Park, and J.L. Guan. 2010. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. Journal of Cell Biology 189: 955–965.CrossRef Zhao, X., X. Peng, S. Sun, A.Y. Park, and J.L. Guan. 2010. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. Journal of Cell Biology 189: 955–965.CrossRef
13.
go back to reference Arnold, K.M., Z.M. Goeckeler, and R.B. Wysolmerski. 2013. Loss of focal adhesion kinase enhances endothelial barrier function and increases focal adhesions. Microcirculation 20: 637–649.CrossRef Arnold, K.M., Z.M. Goeckeler, and R.B. Wysolmerski. 2013. Loss of focal adhesion kinase enhances endothelial barrier function and increases focal adhesions. Microcirculation 20: 637–649.CrossRef
14.
go back to reference Bikis, C., D. Moris, I. Vasileiou, E. Patsouris, and S. Theocharis. 2015. FAK/Src family of kinases: Protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin Ther Tar 19: 539–549.CrossRef Bikis, C., D. Moris, I. Vasileiou, E. Patsouris, and S. Theocharis. 2015. FAK/Src family of kinases: Protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin Ther Tar 19: 539–549.CrossRef
15.
go back to reference Wang, T., Jin, H., Hu, J., Li, X., Ruan, H., Xu, H., Wei, L., Dong, W., Teng, F., and J. Gu. et al. 2020. COL4A1 promotes the growth and metastasis of hepatocellular carcinoma cells by activating FAK-Src signaling. J Exp Clin Canc Res 39. Wang, T., Jin, H., Hu, J., Li, X., Ruan, H., Xu, H., Wei, L., Dong, W., Teng, F., and J. Gu. et al. 2020. COL4A1 promotes the growth and metastasis of hepatocellular carcinoma cells by activating FAK-Src signaling. J Exp Clin Canc Res 39.
16.
go back to reference Yasuda, M., Y. Tanaka, M. Tamura, K. Fujii, M. Sugaya, T. So, M. Takenoyama, and K. Yasumoto. 2001. Stimulation of beta1 integrin down-regulates ICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase. Cancer Research 61: 2022–2030.PubMed Yasuda, M., Y. Tanaka, M. Tamura, K. Fujii, M. Sugaya, T. So, M. Takenoyama, and K. Yasumoto. 2001. Stimulation of beta1 integrin down-regulates ICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase. Cancer Research 61: 2022–2030.PubMed
17.
go back to reference Nakayamada, S., Y. Okada, K. Saito, M. Tamura, and Y. Tanaka. 2003. β1 Integrin/Focal Adhesion Kinase-mediated Signaling Induces Intercellular Adhesion Molecule 1 and Receptor Activator of Nuclear Factor κB Ligand on Osteoblasts and Osteoclast Maturation. Journal of Biological Chemistry 278: 45368–45374.CrossRef Nakayamada, S., Y. Okada, K. Saito, M. Tamura, and Y. Tanaka. 2003. β1 Integrin/Focal Adhesion Kinase-mediated Signaling Induces Intercellular Adhesion Molecule 1 and Receptor Activator of Nuclear Factor κB Ligand on Osteoblasts and Osteoclast Maturation. Journal of Biological Chemistry 278: 45368–45374.CrossRef
18.
go back to reference Taglia, L., D. Matusiak, K.A. Matkowskyj, and R.V. Benya. 2007. Gastrin-releasing peptide mediates its morphogenic properties in human colon cancer by upregulating intracellular adhesion protein-1 (ICAM-1) via focal adhesion kinase. Am J Physiol-Gastr L 292: G182–G190. Taglia, L., D. Matusiak, K.A. Matkowskyj, and R.V. Benya. 2007. Gastrin-releasing peptide mediates its morphogenic properties in human colon cancer by upregulating intracellular adhesion protein-1 (ICAM-1) via focal adhesion kinase. Am J Physiol-Gastr L 292: G182–G190.
19.
go back to reference Lu, TX., M.E. Rothenberg. 2018. MicroRNA. J Allergy Clin Immun 141: 1202–1207. Lu, TX., M.E. Rothenberg. 2018. MicroRNA. J Allergy Clin Immun 141: 1202–1207.
20.
go back to reference Cai, Y., X. Yu, S. Hu, and J. Yu. 2009. A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics & Bioinformatics 7: 147–154.CrossRef Cai, Y., X. Yu, S. Hu, and J. Yu. 2009. A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics & Bioinformatics 7: 147–154.CrossRef
21.
go back to reference Pekarsky, Y., and C.M. Croce. 2015. Role of miR-15/16 in CLL. Cell Death and Differentiation 22: 6–11.CrossRef Pekarsky, Y., and C.M. Croce. 2015. Role of miR-15/16 in CLL. Cell Death and Differentiation 22: 6–11.CrossRef
22.
go back to reference Wang, J., S. Yao, Y. Diao, Y. Geng, Y. Bi, and G. Liu. 2020. miR-15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer 11: 1396–1405.CrossRef Wang, J., S. Yao, Y. Diao, Y. Geng, Y. Bi, and G. Liu. 2020. miR-15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer 11: 1396–1405.CrossRef
23.
go back to reference Sun, L., Y. Yao, B. Liu, Z. Lin, L. Lin, M. Yang, W. Zhang, W. Chen, C. Pan, Q. Liu, et al. 2012. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 31: 432–445.CrossRef Sun, L., Y. Yao, B. Liu, Z. Lin, L. Lin, M. Yang, W. Zhang, W. Chen, C. Pan, Q. Liu, et al. 2012. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 31: 432–445.CrossRef
24.
go back to reference Lovat, F., M. Fassan, P. Gasparini, L. Rizzotto, L. Cascione, M. Pizzi, C. Vicentini, V. Balatti, D. Palmieri, S. Costinean, and C.M. Croce. 2015. miR-15b/16-2 deletion promotes B-cell malignancies. Proceedings of the National Academy of Sciences 112: 11636–11641.CrossRef Lovat, F., M. Fassan, P. Gasparini, L. Rizzotto, L. Cascione, M. Pizzi, C. Vicentini, V. Balatti, D. Palmieri, S. Costinean, and C.M. Croce. 2015. miR-15b/16-2 deletion promotes B-cell malignancies. Proceedings of the National Academy of Sciences 112: 11636–11641.CrossRef
25.
go back to reference Qi, L.Q., B. Sun, B.B. Yang, and S. Lu. 2020. MiR-15b facilitates breast cancer progression via repressing tumor suppressor PAQR3. European Review for Medical and Pharmacological Sciences 24: 740–748.PubMed Qi, L.Q., B. Sun, B.B. Yang, and S. Lu. 2020. MiR-15b facilitates breast cancer progression via repressing tumor suppressor PAQR3. European Review for Medical and Pharmacological Sciences 24: 740–748.PubMed
26.
go back to reference Zhu, L., J. Zhou, J. Zhang, J. Wang, Z. Wang, M. Pan, L. Li, L. Chen, C. Li, K. Wang, et al. 2017. MiR-15b-5p Regulates Collateral Artery Formation by Targeting AKT3 (Protein Kinase B-3). Arteriosclerosis, Thrombosis, and Vascular Biology 37: 957–968.CrossRef Zhu, L., J. Zhou, J. Zhang, J. Wang, Z. Wang, M. Pan, L. Li, L. Chen, C. Li, K. Wang, et al. 2017. MiR-15b-5p Regulates Collateral Artery Formation by Targeting AKT3 (Protein Kinase B-3). Arteriosclerosis, Thrombosis, and Vascular Biology 37: 957–968.CrossRef
27.
go back to reference Zhu, L.P., J.P. Zhou, J.X. Zhang, J.Y. Wang, Z.Y. Wang, M. Pan, L.F. Li, C.C. Li, K.K. Wang, Y.P. Bai, and G.G. Zhang. 2017. MiR-15b-5p Regulates Collateral Artery Formation by Targeting AKT3 (Protein Kinase B-3). Arteriosclerosis, Thrombosis, and Vascular Biology 37: 957–968.CrossRef Zhu, L.P., J.P. Zhou, J.X. Zhang, J.Y. Wang, Z.Y. Wang, M. Pan, L.F. Li, C.C. Li, K.K. Wang, Y.P. Bai, and G.G. Zhang. 2017. MiR-15b-5p Regulates Collateral Artery Formation by Targeting AKT3 (Protein Kinase B-3). Arteriosclerosis, Thrombosis, and Vascular Biology 37: 957–968.CrossRef
28.
go back to reference Gu, W., L. Yao, L. Li, J. Zhang, A.T. Place, R.D. Minshall, and G. Liu. 2017. ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation. Oncotarget 8: 111882–111901.CrossRef Gu, W., L. Yao, L. Li, J. Zhang, A.T. Place, R.D. Minshall, and G. Liu. 2017. ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation. Oncotarget 8: 111882–111901.CrossRef
29.
go back to reference Yan, M., X. Zhang, A. Chen, W. Gu, J. Liu, X. Ren, J. Zhang, X. Wu, A.T. Place, R.D. Minshall, and G. Liu. 2017. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1–VE-cadherin interaction. The FASEB Journal 31: 4759–4769.CrossRef Yan, M., X. Zhang, A. Chen, W. Gu, J. Liu, X. Ren, J. Zhang, X. Wu, A.T. Place, R.D. Minshall, and G. Liu. 2017. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1–VE-cadherin interaction. The FASEB Journal 31: 4759–4769.CrossRef
30.
go back to reference Bae, G.H., H.Y. Lee, Y.S. Jung, J.W. Shim, S.D. Kim, S.H. Baek, J.Y. Kwon, J.S. Park, and Y.S. Bae. 2012. Identification of novel peptides that stimulate human neutrophils. Experimental & Molecular Medicine 44: 130–137.CrossRef Bae, G.H., H.Y. Lee, Y.S. Jung, J.W. Shim, S.D. Kim, S.H. Baek, J.Y. Kwon, J.S. Park, and Y.S. Bae. 2012. Identification of novel peptides that stimulate human neutrophils. Experimental & Molecular Medicine 44: 130–137.CrossRef
31.
go back to reference Downey, D.G., S.C. Bell, and J.S. Elborn. 2009. Neutrophils in cystic fibrosis. Thorax 64: 81–88.CrossRef Downey, D.G., S.C. Bell, and J.S. Elborn. 2009. Neutrophils in cystic fibrosis. Thorax 64: 81–88.CrossRef
32.
go back to reference Sumagin, R., J.C. Brazil, P. Nava, H. Nishio, A. Alam, A.C. Luissint, D.A. Weber, A.S. Neish, A. Nusrat, and C.A. Parkos. 2016. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunology 9: 1151–1162.CrossRef Sumagin, R., J.C. Brazil, P. Nava, H. Nishio, A. Alam, A.C. Luissint, D.A. Weber, A.S. Neish, A. Nusrat, and C.A. Parkos. 2016. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunology 9: 1151–1162.CrossRef
33.
go back to reference Mehta, D., and A.B. Malik. 2006. Signaling mechanisms regulating endothelial permeability. Physiological Reviews 86: 279–367.CrossRef Mehta, D., and A.B. Malik. 2006. Signaling mechanisms regulating endothelial permeability. Physiological Reviews 86: 279–367.CrossRef
34.
go back to reference Roy-Luzarraga, M., and K. Hodivala-Dilke. 2016. Molecular Pathways: Endothelial Cell FAK-A Target for Cancer Treatment. Clinical Cancer Research 22: 3718–3724.CrossRef Roy-Luzarraga, M., and K. Hodivala-Dilke. 2016. Molecular Pathways: Endothelial Cell FAK-A Target for Cancer Treatment. Clinical Cancer Research 22: 3718–3724.CrossRef
35.
go back to reference Schmidt, T.T., M. Tauseef, L. Yue, M.G. Bonini, J. Gothert, T.L. Shen, J.L. Guan, S. Predescu, R. Sadikot, and D. Mehta. 2013. Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities. American Journal of Physiology. Lung Cellular and Molecular Physiology 305: L291–L300.CrossRef Schmidt, T.T., M. Tauseef, L. Yue, M.G. Bonini, J. Gothert, T.L. Shen, J.L. Guan, S. Predescu, R. Sadikot, and D. Mehta. 2013. Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities. American Journal of Physiology. Lung Cellular and Molecular Physiology 305: L291–L300.CrossRef
36.
go back to reference Wu, B., G. Liu, Y. Jin, T. Yang, D. Zhang, L. Ding, F. Zhou, Y. Pan, and Y. Wei. 2020. miR-15b-5p Promotes Growth and Metastasis in Breast Cancer by Targeting HPSE2. Frontiers in Oncology 10: 108.CrossRef Wu, B., G. Liu, Y. Jin, T. Yang, D. Zhang, L. Ding, F. Zhou, Y. Pan, and Y. Wei. 2020. miR-15b-5p Promotes Growth and Metastasis in Breast Cancer by Targeting HPSE2. Frontiers in Oncology 10: 108.CrossRef
37.
go back to reference Fleming, N.H., J. Zhong, S.I. Da, D.M.E. Vega-Saenz, B. Brady, S.W. Han, D. Hanniford, J. Wang, R.L. Shapiro, E. Hernando, and I. Osman. 2015. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer-Am Cancer Soc 121: 51–59. Fleming, N.H., J. Zhong, S.I. Da, D.M.E. Vega-Saenz, B. Brady, S.W. Han, D. Hanniford, J. Wang, R.L. Shapiro, E. Hernando, and I. Osman. 2015. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer-Am Cancer Soc 121: 51–59.
38.
go back to reference Zhu, Y., T. Yang, J. Duan, N. Mu, and T. Zhang. 2019. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY) 11: 1089–1109.CrossRef Zhu, Y., T. Yang, J. Duan, N. Mu, and T. Zhang. 2019. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY) 11: 1089–1109.CrossRef
39.
go back to reference Niu, S., L. Xu, Y. Yuan, S. Yang, H. Ning, X. Qin, P. Xin, D. Yuan, J. Jiao, and Y. Zhao. 2020. Effect of down-regulated miR-15b-5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice. Biochemical and Biophysical Research Communications 530: 54–59.CrossRef Niu, S., L. Xu, Y. Yuan, S. Yang, H. Ning, X. Qin, P. Xin, D. Yuan, J. Jiao, and Y. Zhao. 2020. Effect of down-regulated miR-15b-5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice. Biochemical and Biophysical Research Communications 530: 54–59.CrossRef
40.
go back to reference Chava, S., C.P. Reynolds, A.S. Pathania, S. Gorantla, L.Y. Poluektova, D.W. Coulter, S.C. Gupta, M.K. Pandey, and K.B. Challagundla. 2020. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Molecular Oncology 14: 180–196.CrossRef Chava, S., C.P. Reynolds, A.S. Pathania, S. Gorantla, L.Y. Poluektova, D.W. Coulter, S.C. Gupta, M.K. Pandey, and K.B. Challagundla. 2020. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Molecular Oncology 14: 180–196.CrossRef
41.
go back to reference Shelef, M.A., D.A. Bennin, N. Yasmin, T.F. Warner, T. Ludwig, H.E. Beggs, and A. Huttenlocher. 2014. Focal adhesion kinase is required for synovial fibroblast invasion, but not murine inflammatory arthritis. Arthritis Research & Therapy 16: 464.CrossRef Shelef, M.A., D.A. Bennin, N. Yasmin, T.F. Warner, T. Ludwig, H.E. Beggs, and A. Huttenlocher. 2014. Focal adhesion kinase is required for synovial fibroblast invasion, but not murine inflammatory arthritis. Arthritis Research & Therapy 16: 464.CrossRef
42.
go back to reference Chen, X.L., J.O. Nam, C. Jean, C. Lawson, C.T. Walsh, E. Goka, S.T. Lim, A. Tomar, I. Tancioni, S. Uryu, et al. 2012. VEGF-induced vascular permeability is mediated by FAK. Developmental Cell 22: 146–157.CrossRef Chen, X.L., J.O. Nam, C. Jean, C. Lawson, C.T. Walsh, E. Goka, S.T. Lim, A. Tomar, I. Tancioni, S. Uryu, et al. 2012. VEGF-induced vascular permeability is mediated by FAK. Developmental Cell 22: 146–157.CrossRef
43.
go back to reference Wong, V.W., K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach, M. Januszyk, E.R. Nelson, K. Levi, J. Paterno, I.N. Vial, et al. 2011. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Medicine 18: 148–152.CrossRef Wong, V.W., K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach, M. Januszyk, E.R. Nelson, K. Levi, J. Paterno, I.N. Vial, et al. 2011. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Medicine 18: 148–152.CrossRef
Metadata
Title
MiR-15p-5p Mediates the Coordination of ICAM-1 and FAK to Promote Endothelial Cell Proliferation and Migration
Authors
Wei Gu
Li Zhang
Xinhua Zhang
Binyu Wang
Xiaoyu Shi
Kang Hu
Yingying Ye
Guoquan Liu
Publication date
01-06-2022
Publisher
Springer US
Published in
Inflammation / Issue 3/2022
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01630-3

Other articles of this Issue 3/2022

Inflammation 3/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine