Skip to main content
Top
Published in: Inflammation 3/2022

01-06-2022 | Original Article

Human Breast Milk–Derived Exosomal miR-148a-3p Protects Against Necrotizing Enterocolitis by Regulating p53 and Sirtuin 1

Authors: Miao-miao Guo, Kun Zhang, Jia-hui Zhang

Published in: Inflammation | Issue 3/2022

Login to get access

Abstract

Necrotizing enterocolitis (NEC) is a gastrointestinal disease that results in the exaggerated intestinal inflammation and injury. Human breast milk–derived exosome (BMEXO) has been reported to relieve NEC, which is closely related to the contained microRNAs (miRNAs). However, which miRNA and whether its synthesized mimic can replace the protection of BMEXO remains unclear. We established a NEC mouse model, and miRNA sequencing was performed to determine the miRNA profiling in BMEXO. The downstream target of miRNA was then confirmed by dual-luciferase reporter assay. Finally, we explored the protective effect of a single miRNA agomir on NEC and its downstream mechanisms. The results revealed that BMEXO treatment exerts a significant protective effect on NEC mice, including inhibiting inflammation and improving intercellular tight junctions. Additionally, as the most abundant miRNA in BMEXO, miR-148a-3p directly targets Tp53 on its 3′ untranslated region (3′ UTR). miR-148a-3p mimic treatment significantly reduces p53 expression and upregulates sirtuin 1 (SIRT1) level in the lipopolysaccharide (LPS)-treated intestinal epithelial IEC6 cells. In addition, decreased nuclear translocation of nuclear factor-κB (NF-κB) and cell apoptosis were observed by miR-148a-3p mimic. Also, delivery of miR-148a-3p agomir in vivo exerts a similar protective role on NEC as BMEXO treatment, accompanied by changes in p53 and SIRT1. Finally, the abolition of the protection of miR-148a-3p agomir on NEC was observed in a Sirt1-deficient (Sirt1+/–) mouse. Collectively, our present study demonstrated that the miR-148a-3p/p53/SIRT1 axis has a considerable protective effect on NEC, and the agomir therapy provides a new treatment strategy for NEC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim, W., and J.M. Seo. 2020. Necrotizing enterocolitis. New England Journal of Medicine 383 (25): 2461.CrossRef Kim, W., and J.M. Seo. 2020. Necrotizing enterocolitis. New England Journal of Medicine 383 (25): 2461.CrossRef
2.
go back to reference Mara, M.A., M. Good, and J.H. Weitkamp. 2018. Innate and adaptive immunity in necrotizing enterocolitis. Seminars in Fetal and Neonatal Medicine 23 (6): 394–399.PubMedCrossRef Mara, M.A., M. Good, and J.H. Weitkamp. 2018. Innate and adaptive immunity in necrotizing enterocolitis. Seminars in Fetal and Neonatal Medicine 23 (6): 394–399.PubMedCrossRef
3.
go back to reference Flahive, C., A. Schlegel, and E.A. Mezoff. 2020. Necrotizing enterocolitis: Updates on morbidity and mortality outcomes. Journal of Pediatrics 220: 7–9.CrossRef Flahive, C., A. Schlegel, and E.A. Mezoff. 2020. Necrotizing enterocolitis: Updates on morbidity and mortality outcomes. Journal of Pediatrics 220: 7–9.CrossRef
4.
go back to reference Schanler, R.J., R.J. Shulman, and C. Lau. 1999. Feeding strategies for premature infants: Beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics 103 (6 Pt 1): 1150–1157.PubMedCrossRef Schanler, R.J., R.J. Shulman, and C. Lau. 1999. Feeding strategies for premature infants: Beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics 103 (6 Pt 1): 1150–1157.PubMedCrossRef
5.
go back to reference Newburg, D.S., and W.A. Walker. 2007. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatric Research 61 (1): 2–8.PubMedCrossRef Newburg, D.S., and W.A. Walker. 2007. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatric Research 61 (1): 2–8.PubMedCrossRef
6.
go back to reference Galley, J.D., Besner, G.E. 2020. The therapeutic potential of breast milk-derived extracellular vesicles. Nutrients 12 (3). Galley, J.D., Besner, G.E. 2020. The therapeutic potential of breast milk-derived extracellular vesicles. Nutrients 12 (3).
7.
go back to reference Montecalvo, A., A.T. Larregina, W.J. Shufesky, D.B. Stolz, M.L. Sullivan, J.M. Karlsson, C.J. Baty, G.A. Gibson, G. Erdos, Z. Wang, et al. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119 (3): 756–766.PubMedPubMedCentralCrossRef Montecalvo, A., A.T. Larregina, W.J. Shufesky, D.B. Stolz, M.L. Sullivan, J.M. Karlsson, C.J. Baty, G.A. Gibson, G. Erdos, Z. Wang, et al. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119 (3): 756–766.PubMedPubMedCentralCrossRef
8.
go back to reference Pisano, C., J. Galley, M. Elbahrawy, Y. Wang, A. Farrell, D. Brigstock, and G.E. Besner. 2020. Human breast milk-derived extracellular vesicles in the protection against experimental necrotizing enterocolitis. Journal of Pediatric Surgery 55 (1): 54–58.PubMedCrossRef Pisano, C., J. Galley, M. Elbahrawy, Y. Wang, A. Farrell, D. Brigstock, and G.E. Besner. 2020. Human breast milk-derived extracellular vesicles in the protection against experimental necrotizing enterocolitis. Journal of Pediatric Surgery 55 (1): 54–58.PubMedCrossRef
10.
go back to reference Meister, G. 2013. Argonaute proteins: Functional insights and emerging roles. Nature Reviews Genetics 14 (7): 447–459.PubMedCrossRef Meister, G. 2013. Argonaute proteins: Functional insights and emerging roles. Nature Reviews Genetics 14 (7): 447–459.PubMedCrossRef
12.
go back to reference Sun, L., M. Sun, K. Ma, and J. Liu. 2020. Let-7d-5p suppresses inflammatory response in neonatal rats with necrotizing enterocolitis via LGALS3-mediated TLR4/NF-kappaB signaling pathway. American Journal of Physiology. Cell Physiology 319 (6): C967–C979.PubMedCrossRef Sun, L., M. Sun, K. Ma, and J. Liu. 2020. Let-7d-5p suppresses inflammatory response in neonatal rats with necrotizing enterocolitis via LGALS3-mediated TLR4/NF-kappaB signaling pathway. American Journal of Physiology. Cell Physiology 319 (6): C967–C979.PubMedCrossRef
13.
go back to reference Zhang, K., X. Zhang, A. Lv, S. Fan, and J. Zhang. 2020. Saccharomyces boulardii modulates necrotizing enterocolitis in neonatal mice by regulating the sirtuin 1/NFkappaB pathway and the intestinal microbiota. Molecular Medicine Reports 22 (2): 671–680.PubMedPubMedCentralCrossRef Zhang, K., X. Zhang, A. Lv, S. Fan, and J. Zhang. 2020. Saccharomyces boulardii modulates necrotizing enterocolitis in neonatal mice by regulating the sirtuin 1/NFkappaB pathway and the intestinal microbiota. Molecular Medicine Reports 22 (2): 671–680.PubMedPubMedCentralCrossRef
14.
go back to reference Kazgan, N., M.R. Metukuri, A. Purushotham, J. Lu, A. Rao, S. Lee, M. Pratt-Hyatt, A. Lickteig, I.L. Csanaky, Y. Zhao, et al. 2014. Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1alpha-FXR signaling and alters systemic bile acid homeostasis. Gastroenterology 146 (4): 1006–1016.PubMedCrossRef Kazgan, N., M.R. Metukuri, A. Purushotham, J. Lu, A. Rao, S. Lee, M. Pratt-Hyatt, A. Lickteig, I.L. Csanaky, Y. Zhao, et al. 2014. Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1alpha-FXR signaling and alters systemic bile acid homeostasis. Gastroenterology 146 (4): 1006–1016.PubMedCrossRef
15.
go back to reference Egan, C.E., C.P. Sodhi, M. Good, J. Lin, H. Jia, Y. Yamaguchi, P. Lu, C. Ma, M.F. Branca, S. Weyandt, et al. 2016. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. The Journal of Clinical Investigation 126 (2): 495–508.PubMedCrossRef Egan, C.E., C.P. Sodhi, M. Good, J. Lin, H. Jia, Y. Yamaguchi, P. Lu, C. Ma, M.F. Branca, S. Weyandt, et al. 2016. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. The Journal of Clinical Investigation 126 (2): 495–508.PubMedCrossRef
16.
go back to reference Sodhi, C.P., W.B. Fulton, M. Good, M. Vurma, T. Das, C.S. Lai, H. Jia, Y. Yamaguchi, P. Lu, T. Prindle, et al. 2018. Fat composition in infant formula contributes to the severity of necrotising enterocolitis. British Journal of Nutrition 120 (6): 665–680.CrossRef Sodhi, C.P., W.B. Fulton, M. Good, M. Vurma, T. Das, C.S. Lai, H. Jia, Y. Yamaguchi, P. Lu, T. Prindle, et al. 2018. Fat composition in infant formula contributes to the severity of necrotising enterocolitis. British Journal of Nutrition 120 (6): 665–680.CrossRef
17.
go back to reference Good, M., C.P. Sodhi, C.E. Egan, A. Afrazi, H. Jia, Y. Yamaguchi, P. Lu, M.F. Branca, C. Ma, T. Prindle Jr., et al. 2015. Breast milk protects against the development of necrotizing enterocolitis through inhibition of Toll-like receptor 4 in the intestinal epithelium via activation of the epidermal growth factor receptor. Mucosal Immunology 8 (5): 1166–1179.PubMedPubMedCentralCrossRef Good, M., C.P. Sodhi, C.E. Egan, A. Afrazi, H. Jia, Y. Yamaguchi, P. Lu, M.F. Branca, C. Ma, T. Prindle Jr., et al. 2015. Breast milk protects against the development of necrotizing enterocolitis through inhibition of Toll-like receptor 4 in the intestinal epithelium via activation of the epidermal growth factor receptor. Mucosal Immunology 8 (5): 1166–1179.PubMedPubMedCentralCrossRef
18.
go back to reference Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., Enright, A.J. 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34 (Database issue): D140–144. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., Enright, A.J. 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34 (Database issue): D140–144.
19.
20.
go back to reference Pruesse, E., C. Quast, K. Knittel, B.M. Fuchs, W. Ludwig, J. Peplies, and F.O. Glockner. 2007. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35 (21): 7188–7196.PubMedPubMedCentralCrossRef Pruesse, E., C. Quast, K. Knittel, B.M. Fuchs, W. Ludwig, J. Peplies, and F.O. Glockner. 2007. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35 (21): 7188–7196.PubMedPubMedCentralCrossRef
22.
go back to reference Robinson, M.D., D.J. McCarthy, and G.K. Smyth. 2010. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 (1): 139–140.PubMedCrossRef Robinson, M.D., D.J. McCarthy, and G.K. Smyth. 2010. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 (1): 139–140.PubMedCrossRef
23.
go back to reference Clark, J.A., S.M. Doelle, M.D. Halpern, T.A. Saunders, H. Holubec, K. Dvorak, S.A. Boitano, and B. Dvorak. 2006. Intestinal barrier failure during experimental necrotizing enterocolitis: Protective effect of EGF treatment. American Journal of Physiology. Gastrointestinal and Liver Physiology 291 (5): G938-949.PubMedCrossRef Clark, J.A., S.M. Doelle, M.D. Halpern, T.A. Saunders, H. Holubec, K. Dvorak, S.A. Boitano, and B. Dvorak. 2006. Intestinal barrier failure during experimental necrotizing enterocolitis: Protective effect of EGF treatment. American Journal of Physiology. Gastrointestinal and Liver Physiology 291 (5): G938-949.PubMedCrossRef
24.
go back to reference Cohran, V., E. Managlia, E.M. Bradford, T. Goretsky, T. Li, R.B. Katzman, P. Cheresh, J.B. Brown, J. Hawkins, S.X.L. Liu, et al. 2016. Epithelial PIK3R1 (p85) and TP53 regulate survivin expression during adaptation to ileocecal resection. American Journal of Pathology 186 (7): 1837–1846.PubMedCentralCrossRef Cohran, V., E. Managlia, E.M. Bradford, T. Goretsky, T. Li, R.B. Katzman, P. Cheresh, J.B. Brown, J. Hawkins, S.X.L. Liu, et al. 2016. Epithelial PIK3R1 (p85) and TP53 regulate survivin expression during adaptation to ileocecal resection. American Journal of Pathology 186 (7): 1837–1846.PubMedCentralCrossRef
25.
go back to reference Deng, Z., J. Jin, Z. Wang, Y. Wang, Q. Gao, and J. Zhao. 2017. The metal nanoparticle-induced inflammatory response is regulated by SIRT1 through NF-kappaB deacetylation in aseptic loosening. International Journal of Nanomedicine 12: 3617–3636.PubMedPubMedCentralCrossRef Deng, Z., J. Jin, Z. Wang, Y. Wang, Q. Gao, and J. Zhao. 2017. The metal nanoparticle-induced inflammatory response is regulated by SIRT1 through NF-kappaB deacetylation in aseptic loosening. International Journal of Nanomedicine 12: 3617–3636.PubMedPubMedCentralCrossRef
26.
go back to reference Ong, A.L.C., and T.S. Ramasamy. 2018. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Research Reviews 43: 64–80.PubMedCrossRef Ong, A.L.C., and T.S. Ramasamy. 2018. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Research Reviews 43: 64–80.PubMedCrossRef
27.
go back to reference de la Torre, Gomez C., R.V. Goreham, J.J. Bech Serra, T. Nann, and M. Kussmann. 2018. “Exosomics”-a review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Frontiers in Genetics 9: 92.CrossRef de la Torre, Gomez C., R.V. Goreham, J.J. Bech Serra, T. Nann, and M. Kussmann. 2018. “Exosomics”-a review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Frontiers in Genetics 9: 92.CrossRef
28.
go back to reference Patel, A.L., and J.H. Kim. 2018. Human milk and necrotizing enterocolitis. Seminars in Pediatric Surgery 27 (1): 34–38.PubMedCrossRef Patel, A.L., and J.H. Kim. 2018. Human milk and necrotizing enterocolitis. Seminars in Pediatric Surgery 27 (1): 34–38.PubMedCrossRef
29.
go back to reference Yu, S., Z. Zhao, L. Sun, and P. Li. 2017. Fermentation results in quantitative changes in milk-derived exosomes and different effects on cell growth and survival. Journal of Agriculture and Food Chemistry 65 (6): 1220–1228.CrossRef Yu, S., Z. Zhao, L. Sun, and P. Li. 2017. Fermentation results in quantitative changes in milk-derived exosomes and different effects on cell growth and survival. Journal of Agriculture and Food Chemistry 65 (6): 1220–1228.CrossRef
30.
go back to reference Gribar, S.C., C.P. Sodhi, W.M. Richardson, R.J. Anand, G.K. Gittes, M.F. Branca, A. Jakub, X.H. Shi, S. Shah, J.A. Ozolek, et al. 2009. Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. The Journal of Immunology 182 (1): 636–646.PubMedCrossRef Gribar, S.C., C.P. Sodhi, W.M. Richardson, R.J. Anand, G.K. Gittes, M.F. Branca, A. Jakub, X.H. Shi, S. Shah, J.A. Ozolek, et al. 2009. Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. The Journal of Immunology 182 (1): 636–646.PubMedCrossRef
31.
go back to reference Hackam, D.J., M. Good, and C.P. Sodhi. 2013. Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: Toll-like receptors throw the switch. Seminars in Pediatric Surgery 22 (2): 76–82.PubMedPubMedCentralCrossRef Hackam, D.J., M. Good, and C.P. Sodhi. 2013. Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: Toll-like receptors throw the switch. Seminars in Pediatric Surgery 22 (2): 76–82.PubMedPubMedCentralCrossRef
32.
go back to reference Dheer, R., R. Santaolalla, J.M. Davies, J.K. Lang, M.C. Phillips, C. Pastorini, M.T. Vazquez-Pertejo, and M.T. Abreu. 2016. Intestinal epithelial toll-like receptor 4 signaling affects epithelial function and colonic microbiota and promotes a risk for transmissible colitis. Infection and Immunity 84 (3): 798–810.PubMedPubMedCentralCrossRef Dheer, R., R. Santaolalla, J.M. Davies, J.K. Lang, M.C. Phillips, C. Pastorini, M.T. Vazquez-Pertejo, and M.T. Abreu. 2016. Intestinal epithelial toll-like receptor 4 signaling affects epithelial function and colonic microbiota and promotes a risk for transmissible colitis. Infection and Immunity 84 (3): 798–810.PubMedPubMedCentralCrossRef
33.
go back to reference Yazji, I., C.P. Sodhi, E.K. Lee, M. Good, C.E. Egan, A. Afrazi, M.D. Neal, H. Jia, J. Lin, C. Ma, et al. 2013. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proceedings of the National Academy of Sciences of the United States of America 110 (23): 9451–9456.PubMedPubMedCentralCrossRef Yazji, I., C.P. Sodhi, E.K. Lee, M. Good, C.E. Egan, A. Afrazi, M.D. Neal, H. Jia, J. Lin, C. Ma, et al. 2013. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proceedings of the National Academy of Sciences of the United States of America 110 (23): 9451–9456.PubMedPubMedCentralCrossRef
34.
go back to reference Jantscher-Krenn, E., M. Zherebtsov, C. Nissan, K. Goth, Y.S. Guner, N. Naidu, B. Choudhury, A.V. Grishin, H.R. Ford, and L. Bode. 2012. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut 61 (10): 1417–1425.PubMedCrossRef Jantscher-Krenn, E., M. Zherebtsov, C. Nissan, K. Goth, Y.S. Guner, N. Naidu, B. Choudhury, A.V. Grishin, H.R. Ford, and L. Bode. 2012. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut 61 (10): 1417–1425.PubMedCrossRef
35.
go back to reference Good, M., C.P. Sodhi, Y. Yamaguchi, H. Jia, P. Lu, W.B. Fulton, L.Y. Martin, T. Prindle, D.F. Nino, Q. Zhou, et al. 2016. The human milk oligosaccharide 2’-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. British Journal of Nutrition 116 (7): 1175–1187.CrossRef Good, M., C.P. Sodhi, Y. Yamaguchi, H. Jia, P. Lu, W.B. Fulton, L.Y. Martin, T. Prindle, D.F. Nino, Q. Zhou, et al. 2016. The human milk oligosaccharide 2’-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. British Journal of Nutrition 116 (7): 1175–1187.CrossRef
36.
go back to reference van Herwijnen, M.J.C., T.A.P. Driedonks, B.L. Snoek, A.M.T. Kroon, M. Kleinjan, R. Jorritsma, C.M.J. Pieterse, E. Hoen, and M.H.M. Wauben. 2018. Abundantly present miRNAs in milk-derived extracellular vesicles are conserved between mammals. Frontiers in Nutrition 5: 81.PubMedPubMedCentralCrossRef van Herwijnen, M.J.C., T.A.P. Driedonks, B.L. Snoek, A.M.T. Kroon, M. Kleinjan, R. Jorritsma, C.M.J. Pieterse, E. Hoen, and M.H.M. Wauben. 2018. Abundantly present miRNAs in milk-derived extracellular vesicles are conserved between mammals. Frontiers in Nutrition 5: 81.PubMedPubMedCentralCrossRef
37.
go back to reference Simpson, M.R., G. Brede, J. Johansen, R. Johnsen, O. Storro, P. Saetrom, and T. Oien. 2015. Human breast milk miRNA, maternal probiotic supplementation and atopic dermatitis in offspring. PLoS One 10 (12): e0143496.PubMedPubMedCentralCrossRef Simpson, M.R., G. Brede, J. Johansen, R. Johnsen, O. Storro, P. Saetrom, and T. Oien. 2015. Human breast milk miRNA, maternal probiotic supplementation and atopic dermatitis in offspring. PLoS One 10 (12): e0143496.PubMedPubMedCentralCrossRef
38.
go back to reference Izumi, H., M. Tsuda, Y. Sato, N. Kosaka, T. Ochiya, H. Iwamoto, K. Namba, and Y. Takeda. 2015. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science 98 (5): 2920–2933.PubMedCrossRef Izumi, H., M. Tsuda, Y. Sato, N. Kosaka, T. Ochiya, H. Iwamoto, K. Namba, and Y. Takeda. 2015. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science 98 (5): 2920–2933.PubMedCrossRef
39.
go back to reference Gu, Y., M. Li, T. Wang, Y. Liang, Z. Zhong, X. Wang, Q. Zhou, L. Chen, Q. Lang, Z. He, et al. 2012. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One 7 (8): e43691.PubMedPubMedCentralCrossRef Gu, Y., M. Li, T. Wang, Y. Liang, Z. Zhong, X. Wang, Q. Zhou, L. Chen, Q. Lang, Z. He, et al. 2012. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One 7 (8): e43691.PubMedPubMedCentralCrossRef
40.
go back to reference Chen, T., Q.Y. Xi, R.S. Ye, X. Cheng, Q.E. Qi, S.B. Wang, G. Shu, L.N. Wang, X.T. Zhu, Q.Y. Jiang, et al. 2014. Exploration of microRNAs in porcine milk exosomes. BMC Genomics 15: 100.PubMedPubMedCentralCrossRef Chen, T., Q.Y. Xi, R.S. Ye, X. Cheng, Q.E. Qi, S.B. Wang, G. Shu, L.N. Wang, X.T. Zhu, Q.Y. Jiang, et al. 2014. Exploration of microRNAs in porcine milk exosomes. BMC Genomics 15: 100.PubMedPubMedCentralCrossRef
41.
go back to reference Ma, J., C. Wang, K. Long, H. Zhang, J. Zhang, L. Jin, Q. Tang, A. Jiang, X. Wang, S. Tian, et al. 2017. Exosomal microRNAs in giant panda (Ailuropoda melanoleuca) breast milk: Potential maternal regulators for the development of newborn cubs. Science and Reports 7 (1): 3507.CrossRef Ma, J., C. Wang, K. Long, H. Zhang, J. Zhang, L. Jin, Q. Tang, A. Jiang, X. Wang, S. Tian, et al. 2017. Exosomal microRNAs in giant panda (Ailuropoda melanoleuca) breast milk: Potential maternal regulators for the development of newborn cubs. Science and Reports 7 (1): 3507.CrossRef
42.
go back to reference Valadi, H., K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, and J.O. Lotvall. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 9 (6): 654–659.PubMedCrossRef Valadi, H., K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, and J.O. Lotvall. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 9 (6): 654–659.PubMedCrossRef
43.
go back to reference Xie, M.Y., L.J. Hou, J.J. Sun, B. Zeng, Q.Y. Xi, J.Y. Luo, T. Chen, and Y.L. Zhang. 2019. Porcine milk exosome MiRNAs attenuate LPS-induced apoptosis through inhibiting TLR4/NF-kappaB and p53 pathways in intestinal epithelial cells. Journal of Agriculture and Food Chemistry 67 (34): 9477–9491.CrossRef Xie, M.Y., L.J. Hou, J.J. Sun, B. Zeng, Q.Y. Xi, J.Y. Luo, T. Chen, and Y.L. Zhang. 2019. Porcine milk exosome MiRNAs attenuate LPS-induced apoptosis through inhibiting TLR4/NF-kappaB and p53 pathways in intestinal epithelial cells. Journal of Agriculture and Food Chemistry 67 (34): 9477–9491.CrossRef
Metadata
Title
Human Breast Milk–Derived Exosomal miR-148a-3p Protects Against Necrotizing Enterocolitis by Regulating p53 and Sirtuin 1
Authors
Miao-miao Guo
Kun Zhang
Jia-hui Zhang
Publication date
01-06-2022
Publisher
Springer US
Published in
Inflammation / Issue 3/2022
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01618-5

Other articles of this Issue 3/2022

Inflammation 3/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine