Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2019

Open Access 01-12-2019 | Migraine | Review article

Animal models of migraine and experimental techniques used to examine trigeminal sensory processing

Authors: Andrea M. Harriott, Lauren C. Strother, Marta Vila-Pueyo, Philip R. Holland

Published in: The Journal of Headache and Pain | Issue 1/2019

Login to get access

Abstract

Background

Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life.

Main body

Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes.

Conclusion

Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.
Literature
1.
go back to reference Lipton RB et al (2001) Prevalence and burden of migraine in the United States: data from the American migraine study II. Headache 41(7):646–657CrossRefPubMed Lipton RB et al (2001) Prevalence and burden of migraine in the United States: data from the American migraine study II. Headache 41(7):646–657CrossRefPubMed
2.
go back to reference Gormley P et al (2018) Common variant burden contributes to the familial aggregation of migraine in 1,589 families. Neuron 99(5):1098PubMedCrossRef Gormley P et al (2018) Common variant burden contributes to the familial aggregation of migraine in 1,589 families. Neuron 99(5):1098PubMedCrossRef
4.
go back to reference Agosti R (2018) Migraine burden of disease: from the Patient’s experience to a socio-economic view. Headache 58(Suppl 1):17–32PubMedCrossRef Agosti R (2018) Migraine burden of disease: from the Patient’s experience to a socio-economic view. Headache 58(Suppl 1):17–32PubMedCrossRef
5.
go back to reference G. B. D. Headache Collaborators (2018) Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 17(11):954–976CrossRef G. B. D. Headache Collaborators (2018) Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 17(11):954–976CrossRef
6.
go back to reference Akerman S, Romero-Reyes M, Holland PR (2017) Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther 172:151–170PubMedCrossRef Akerman S, Romero-Reyes M, Holland PR (2017) Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther 172:151–170PubMedCrossRef
8.
go back to reference Goadsby PJ et al (2017) A controlled trial of Erenumab for episodic migraine. N Engl J Med 377(22):2123–2132CrossRefPubMed Goadsby PJ et al (2017) A controlled trial of Erenumab for episodic migraine. N Engl J Med 377(22):2123–2132CrossRefPubMed
9.
go back to reference Silberstein SD et al (2017) Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med 377(22):2113–2122CrossRefPubMed Silberstein SD et al (2017) Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med 377(22):2113–2122CrossRefPubMed
10.
go back to reference Goadsby PJ et al (2019) Phase 3 randomized, placebo-controlled, double-blind study of lasmiditan for acute treatment of migraine. Brain 142(7):1894–1904CrossRefPubMedPubMedCentral Goadsby PJ et al (2019) Phase 3 randomized, placebo-controlled, double-blind study of lasmiditan for acute treatment of migraine. Brain 142(7):1894–1904CrossRefPubMedPubMedCentral
11.
go back to reference Olesen J et al (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8(7):679–690PubMedCrossRef Olesen J et al (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8(7):679–690PubMedCrossRef
12.
go back to reference Ray BW, Wolff HG (1940) Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg 41:813–856CrossRef Ray BW, Wolff HG (1940) Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg 41:813–856CrossRef
13.
go back to reference Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33(1):48–56CrossRefPubMed Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33(1):48–56CrossRefPubMed
14.
go back to reference Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain 154:S44–S53PubMedCrossRef Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain 154:S44–S53PubMedCrossRef
15.
go back to reference Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16(2):69–75PubMedCrossRef Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16(2):69–75PubMedCrossRef
16.
go back to reference Ottosson A, Edvinsson L (1997) Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17(3):166–174PubMedCrossRef Ottosson A, Edvinsson L (1997) Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17(3):166–174PubMedCrossRef
17.
go back to reference Yarnitsky D et al (2003) 2003 Wolff award: possible parasympathetic contributions to peripheral and central sensitization during migraine. Headache 43(7):704–714PubMedCrossRef Yarnitsky D et al (2003) 2003 Wolff award: possible parasympathetic contributions to peripheral and central sensitization during migraine. Headache 43(7):704–714PubMedCrossRef
18.
go back to reference Akerman S, Holland PR, Hoffmann J (2013) Pearls and pitfalls in experimental in vivo models of migraine: dural trigeminovascular nociception. Cephalalgia 33(8):577–592PubMedCrossRef Akerman S, Holland PR, Hoffmann J (2013) Pearls and pitfalls in experimental in vivo models of migraine: dural trigeminovascular nociception. Cephalalgia 33(8):577–592PubMedCrossRef
19.
go back to reference Bergerot A et al (2006) Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci 24(6):1517–1534PubMedCrossRef Bergerot A et al (2006) Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci 24(6):1517–1534PubMedCrossRef
20.
go back to reference Demartini C et al (2019) Nitroglycerin as a comparative experimental model of migraine pain: from animal to human and back. Prog Neurobiol 177:15–32PubMedCrossRef Demartini C et al (2019) Nitroglycerin as a comparative experimental model of migraine pain: from animal to human and back. Prog Neurobiol 177:15–32PubMedCrossRef
21.
go back to reference Munro G, Jansen-Olesen I, Olesen J (2017) Animal models of pain and migraine in drug discovery. Drug Discov Today 22(7):1103–1111PubMedCrossRef Munro G, Jansen-Olesen I, Olesen J (2017) Animal models of pain and migraine in drug discovery. Drug Discov Today 22(7):1103–1111PubMedCrossRef
23.
go back to reference Gallai V et al (1995) Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 15(5):384–390PubMedCrossRef Gallai V et al (1995) Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 15(5):384–390PubMedCrossRef
24.
go back to reference Sarchielli P et al (2006) Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. Headache 46(2):200–207PubMedCrossRef Sarchielli P et al (2006) Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. Headache 46(2):200–207PubMedCrossRef
25.
go back to reference Sarchielli P et al (2000) Nitric oxide metabolites, prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during spontaneous migraine attacks. Cephalalgia 20(10):907–918PubMedCrossRef Sarchielli P et al (2000) Nitric oxide metabolites, prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during spontaneous migraine attacks. Cephalalgia 20(10):907–918PubMedCrossRef
26.
go back to reference Edvinsson L et al (1988) Neurokinin a in cerebral vessels: characterization, localization and effects in vitro. Regul Pept 20(3):181–197PubMedCrossRef Edvinsson L et al (1988) Neurokinin a in cerebral vessels: characterization, localization and effects in vitro. Regul Pept 20(3):181–197PubMedCrossRef
27.
go back to reference Uddman R, Edvinsson L (1989) Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev 1:230–252PubMed Uddman R, Edvinsson L (1989) Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev 1:230–252PubMed
28.
go back to reference Uddman R et al (1985) Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett 62(1):131–136PubMedCrossRef Uddman R et al (1985) Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett 62(1):131–136PubMedCrossRef
29.
go back to reference Uddman R et al (1993) PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cereb Blood Flow Metab 13(2):291–297PubMedCrossRef Uddman R et al (1993) PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cereb Blood Flow Metab 13(2):291–297PubMedCrossRef
30.
go back to reference Hassler SN et al (2019) Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 39(1):111–122PubMedCrossRef Hassler SN et al (2019) Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 39(1):111–122PubMedCrossRef
32.
go back to reference Rozniecki JJ et al (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849(1–2):1–15PubMedCrossRef Rozniecki JJ et al (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849(1–2):1–15PubMedCrossRef
33.
go back to reference Harriott AM, Gold MS (2009) Electrophysiological properties of dural afferents in the absence and presence of inflammatory mediators. J Neurophysiol 101(6):3126–3134PubMedPubMedCentralCrossRef Harriott AM, Gold MS (2009) Electrophysiological properties of dural afferents in the absence and presence of inflammatory mediators. J Neurophysiol 101(6):3126–3134PubMedPubMedCentralCrossRef
35.
36.
37.
go back to reference Nair A et al (2010) Familial hemiplegic migraine Ca(v)2.1 channel mutation R192Q enhances ATP-gated P2X3 receptor activity of mouse sensory ganglion neurons mediating trigeminal pain. Mol Pain 6:48PubMedPubMedCentralCrossRef Nair A et al (2010) Familial hemiplegic migraine Ca(v)2.1 channel mutation R192Q enhances ATP-gated P2X3 receptor activity of mouse sensory ganglion neurons mediating trigeminal pain. Mol Pain 6:48PubMedPubMedCentralCrossRef
38.
go back to reference Huang ZJ et al (2012) Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2. Pain 153(7):1426–1437PubMedCrossRef Huang ZJ et al (2012) Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2. Pain 153(7):1426–1437PubMedCrossRef
39.
go back to reference Ebersberger A et al (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience 89(3):901–907PubMedCrossRef Ebersberger A et al (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience 89(3):901–907PubMedCrossRef
41.
go back to reference Knyihar-Csillik E et al (1995) Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett 184(3):189–192PubMedCrossRef Knyihar-Csillik E et al (1995) Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett 184(3):189–192PubMedCrossRef
42.
go back to reference Knyihar-Csillik E et al (1997) Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res 48(5):449–464PubMedCrossRef Knyihar-Csillik E et al (1997) Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res 48(5):449–464PubMedCrossRef
43.
go back to reference Limmroth V et al (2001) An in vivo rat model to study calcitonin gene related peptide release following activation of the trigeminal vascular system. Pain 92(1–2):101–106PubMedCrossRef Limmroth V et al (2001) An in vivo rat model to study calcitonin gene related peptide release following activation of the trigeminal vascular system. Pain 92(1–2):101–106PubMedCrossRef
44.
go back to reference Buzzi MG et al (1991) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 30(11):1193–1200PubMedCrossRef Buzzi MG et al (1991) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 30(11):1193–1200PubMedCrossRef
45.
46.
go back to reference Holland PR et al (2012) Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol 72(4):559–563PubMedCrossRef Holland PR et al (2012) Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol 72(4):559–563PubMedCrossRef
47.
go back to reference Vila-Pueyo M et al (2019) Divergent influences of the locus coeruleus on migraine pathophysiology. Pain 160(2):385–394PubMedCrossRef Vila-Pueyo M et al (2019) Divergent influences of the locus coeruleus on migraine pathophysiology. Pain 160(2):385–394PubMedCrossRef
48.
go back to reference Benjamin L et al (2004) Hypothalamic activation after stimulation of the superior sagittal sinus in the cat: a Fos study. Neurobiol Dis 16(3):500–505PubMedCrossRef Benjamin L et al (2004) Hypothalamic activation after stimulation of the superior sagittal sinus in the cat: a Fos study. Neurobiol Dis 16(3):500–505PubMedCrossRef
49.
go back to reference Kaube H et al (1993) Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 629(1):95–102PubMedCrossRef Kaube H et al (1993) Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 629(1):95–102PubMedCrossRef
50.
go back to reference Knight YE et al (2005) Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat. Brain Res 1045(1–2):1–11PubMedCrossRef Knight YE et al (2005) Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat. Brain Res 1045(1–2):1–11PubMedCrossRef
52.
go back to reference Akerman S et al (2019) Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity. Brain 142(1):103–119PubMedCrossRef Akerman S et al (2019) Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity. Brain 142(1):103–119PubMedCrossRef
53.
go back to reference Goadsby PJ, Hoskin KL (1999) Differential effects of low dose CP122,288 and eletriptan on fos expression due to stimulation of the superior sagittal sinus in cat. Pain 82(1):15–22PubMedCrossRef Goadsby PJ, Hoskin KL (1999) Differential effects of low dose CP122,288 and eletriptan on fos expression due to stimulation of the superior sagittal sinus in cat. Pain 82(1):15–22PubMedCrossRef
54.
go back to reference Goadsby PJ, Edvinsson L (1994) Joint 1994 Wolff award presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache 34(7):394–399PubMedCrossRef Goadsby PJ, Edvinsson L (1994) Joint 1994 Wolff award presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache 34(7):394–399PubMedCrossRef
55.
go back to reference Knyihar-Csillik E et al (2000) Effects of eletriptan on the peptidergic innervation of the cerebral dura mater and trigeminal ganglion, and on the expression of c-fos and c-Jun in the trigeminal complex of the rat in an experimental migraine model. Eur J Neurosci 12(11):3991–4002PubMedCrossRef Knyihar-Csillik E et al (2000) Effects of eletriptan on the peptidergic innervation of the cerebral dura mater and trigeminal ganglion, and on the expression of c-fos and c-Jun in the trigeminal complex of the rat in an experimental migraine model. Eur J Neurosci 12(11):3991–4002PubMedCrossRef
56.
go back to reference Storer RJ, Goadsby PJ (2004) Topiramate inhibits trigeminovascular neurons in the cat. Cephalalgia 24(12):1049–1056PubMedCrossRef Storer RJ, Goadsby PJ (2004) Topiramate inhibits trigeminovascular neurons in the cat. Cephalalgia 24(12):1049–1056PubMedCrossRef
57.
go back to reference Summ O et al (2010) Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain 133(9):2540–2548PubMedCrossRef Summ O et al (2010) Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain 133(9):2540–2548PubMedCrossRef
58.
go back to reference Akerman S, Goadsby PJ (2015) Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: Relevance to migraine. Sci Transl Med 7(308):308ra157PubMedCrossRef Akerman S, Goadsby PJ (2015) Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: Relevance to migraine. Sci Transl Med 7(308):308ra157PubMedCrossRef
59.
go back to reference Goadsby PJ, Hoskin KL, Knight YE (1998) Substance P blockade with the potent and centrally acting antagonist GR205171 does not effect central trigeminal activity with superior sagittal sinus stimulation. Neuroscience 86(1):337–343PubMedCrossRef Goadsby PJ, Hoskin KL, Knight YE (1998) Substance P blockade with the potent and centrally acting antagonist GR205171 does not effect central trigeminal activity with superior sagittal sinus stimulation. Neuroscience 86(1):337–343PubMedCrossRef
60.
go back to reference Burstein R et al (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79(2):964–982PubMedCrossRef Burstein R et al (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79(2):964–982PubMedCrossRef
61.
go back to reference Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384(6609):560–564CrossRefPubMed Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384(6609):560–564CrossRefPubMed
62.
63.
go back to reference Zhang X, Burstein R, Levy D (2012) Local action of the proinflammatory cytokines IL-1beta and IL-6 on intracranial meningeal nociceptors. Cephalalgia 32(1):66–72PubMedCrossRef Zhang X, Burstein R, Levy D (2012) Local action of the proinflammatory cytokines IL-1beta and IL-6 on intracranial meningeal nociceptors. Cephalalgia 32(1):66–72PubMedCrossRef
64.
go back to reference Lukacs M et al (2015) Dural administration of inflammatory soup or complete Freund's adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain 16:564PubMedCrossRef Lukacs M et al (2015) Dural administration of inflammatory soup or complete Freund's adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain 16:564PubMedCrossRef
65.
go back to reference Lukacs M et al (2017) Topical dura mater application of CFA induces enhanced expression of c-fos and glutamate in rat trigeminal nucleus caudalis: attenuated by KYNA derivate (SZR72). J Headache Pain 18(1):39PubMedPubMedCentralCrossRef Lukacs M et al (2017) Topical dura mater application of CFA induces enhanced expression of c-fos and glutamate in rat trigeminal nucleus caudalis: attenuated by KYNA derivate (SZR72). J Headache Pain 18(1):39PubMedPubMedCentralCrossRef
66.
go back to reference Burgos-Vega CC et al (2019) Non-invasive dural stimulation in mice: a novel preclinical model of migraine. Cephalalgia 39(1):123–134PubMedCrossRef Burgos-Vega CC et al (2019) Non-invasive dural stimulation in mice: a novel preclinical model of migraine. Cephalalgia 39(1):123–134PubMedCrossRef
68.
go back to reference Wieseler J et al (2010) A novel method for modeling facial allodynia associated with migraine in awake and freely moving rats. J Neurosci Methods 185(2):236–245PubMedCrossRef Wieseler J et al (2010) A novel method for modeling facial allodynia associated with migraine in awake and freely moving rats. J Neurosci Methods 185(2):236–245PubMedCrossRef
69.
go back to reference Wieseler J et al (2012) Indwelling supradural catheters for induction of facial allodynia: surgical procedures, application of inflammatory stimuli, and behavioral testing. Methods Mol Biol 851:99–107PubMedPubMedCentralCrossRef Wieseler J et al (2012) Indwelling supradural catheters for induction of facial allodynia: surgical procedures, application of inflammatory stimuli, and behavioral testing. Methods Mol Biol 851:99–107PubMedPubMedCentralCrossRef
70.
71.
go back to reference Ashina M et al (2017) Human models of migraine - short-term pain for long-term gain. Nat Rev Neurol 13(12):713–724PubMedCrossRef Ashina M et al (2017) Human models of migraine - short-term pain for long-term gain. Nat Rev Neurol 13(12):713–724PubMedCrossRef
72.
go back to reference Ashina M, Hansen JM, Olesen J (2013) Pearls and pitfalls in human pharmacological models of migraine: 30 years’ experience. Cephalalgia 33(8):540–553PubMedCrossRef Ashina M, Hansen JM, Olesen J (2013) Pearls and pitfalls in human pharmacological models of migraine: 30 years’ experience. Cephalalgia 33(8):540–553PubMedCrossRef
74.
go back to reference Murrell W (1879) Nitro-glycerine as a remedy for angina pectoris. Lancet 113:80–81CrossRef Murrell W (1879) Nitro-glycerine as a remedy for angina pectoris. Lancet 113:80–81CrossRef
75.
go back to reference Guo S, Olesen J, Ashina M (2014) Phosphodiesterase 3 inhibitor cilostazol induces migraine-like attacks via cyclic AMP increase. Brain 137(Pt 11):2951–2959PubMedCrossRef Guo S, Olesen J, Ashina M (2014) Phosphodiesterase 3 inhibitor cilostazol induces migraine-like attacks via cyclic AMP increase. Brain 137(Pt 11):2951–2959PubMedCrossRef
76.
go back to reference Hansen JM et al (2010) Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 30(10):1179–1186PubMedCrossRef Hansen JM et al (2010) Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 30(10):1179–1186PubMedCrossRef
77.
go back to reference Schytz HW et al (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132(Pt 1):16–25PubMedCrossRef Schytz HW et al (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132(Pt 1):16–25PubMedCrossRef
78.
go back to reference Christensen SL et al (2018) Cilostazol induces C-fos expression in the trigeminal nucleus caudalis and behavioural changes suggestive of headache with the migraine-like feature photophobia in female rats. Cephalalgia 38(3):452–465PubMedCrossRef Christensen SL et al (2018) Cilostazol induces C-fos expression in the trigeminal nucleus caudalis and behavioural changes suggestive of headache with the migraine-like feature photophobia in female rats. Cephalalgia 38(3):452–465PubMedCrossRef
79.
go back to reference Rea BJ et al (2018) Peripherally administered calcitonin gene-related peptide induces spontaneous pain in mice: implications for migraine. Pain 159(11):2306–2317PubMedCrossRefPubMedCentral Rea BJ et al (2018) Peripherally administered calcitonin gene-related peptide induces spontaneous pain in mice: implications for migraine. Pain 159(11):2306–2317PubMedCrossRefPubMedCentral
80.
go back to reference Afridi SK, Kaube H, Goadsby PJ (2004) Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain 110(3):675–680PubMedCrossRef Afridi SK, Kaube H, Goadsby PJ (2004) Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain 110(3):675–680PubMedCrossRef
81.
go back to reference Guo S et al (2016) Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain 157(12):2773–2781PubMedCrossRef Guo S et al (2016) Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain 157(12):2773–2781PubMedCrossRef
82.
go back to reference Maniyar FH et al (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137(Pt 1):232–241CrossRefPubMed Maniyar FH et al (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137(Pt 1):232–241CrossRefPubMed
83.
go back to reference Pradhan AA et al (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274PubMedCrossRef Pradhan AA et al (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274PubMedCrossRef
86.
go back to reference Holland PR, Akerman S, Goadsby PJ (2005) Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther 315(3):1380–1385PubMedCrossRef Holland PR, Akerman S, Goadsby PJ (2005) Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther 315(3):1380–1385PubMedCrossRef
87.
go back to reference Williamson DJ et al (1997) The novel anti-migraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation. Eur J Pharmacol 328(1):61–64PubMedCrossRef Williamson DJ et al (1997) The novel anti-migraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation. Eur J Pharmacol 328(1):61–64PubMedCrossRef
89.
go back to reference Mason BN et al (2017) Induction of migraine-like photophobic behavior in mice by both peripheral and central CGRP mechanisms. J Neurosci 37(1):204–216PubMedPubMedCentralCrossRef Mason BN et al (2017) Induction of migraine-like photophobic behavior in mice by both peripheral and central CGRP mechanisms. J Neurosci 37(1):204–216PubMedPubMedCentralCrossRef
90.
91.
go back to reference De Felice M et al (2010) Triptan-induced latent sensitization: a possible basis for medication overuse headache. Ann Neurol 67(3):325–337PubMedPubMedCentral De Felice M et al (2010) Triptan-induced latent sensitization: a possible basis for medication overuse headache. Ann Neurol 67(3):325–337PubMedPubMedCentral
92.
go back to reference Penfield WM, McNaughton FR (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiatr 44(1):43–75CrossRef Penfield WM, McNaughton FR (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiatr 44(1):43–75CrossRef
93.
go back to reference Amin FM et al (2013) Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol 12(5):454–461PubMedCrossRef Amin FM et al (2013) Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol 12(5):454–461PubMedCrossRef
94.
go back to reference May A, Goadsby PJ (1999) The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab 19(2):115–127PubMedCrossRef May A, Goadsby PJ (1999) The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab 19(2):115–127PubMedCrossRef
95.
go back to reference Akerman S, Holland PR, Goadsby PJ (2011) Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 12(10):570–584PubMedCrossRef Akerman S, Holland PR, Goadsby PJ (2011) Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 12(10):570–584PubMedCrossRef
96.
go back to reference Liu Y et al (2009) Brainstem and thalamic projections from a craniovascular sensory nervous Centre in the rostral cervical spinal dorsal horn of rats. Cephalalgia 29(9):935–948PubMedCrossRef Liu Y et al (2009) Brainstem and thalamic projections from a craniovascular sensory nervous Centre in the rostral cervical spinal dorsal horn of rats. Cephalalgia 29(9):935–948PubMedCrossRef
97.
go back to reference Matsushita M, Ikeda M, Okado N (1982) The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neuroscience 7(6):1439–1454PubMedCrossRef Matsushita M, Ikeda M, Okado N (1982) The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neuroscience 7(6):1439–1454PubMedCrossRef
98.
go back to reference Akerman S, Holland PR, Goadsby PJ (2007) Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther 320(1):64–71PubMedCrossRef Akerman S, Holland PR, Goadsby PJ (2007) Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther 320(1):64–71PubMedCrossRef
99.
go back to reference Hoskin KL, Kaube H, Goadsby PJ (1996) Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study. Brain 119(Pt 1):249–256PubMedCrossRef Hoskin KL, Kaube H, Goadsby PJ (1996) Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study. Brain 119(Pt 1):249–256PubMedCrossRef
100.
go back to reference Holland PR, Akerman S, Goadsby PJ (2006) Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci 24(10):2825–2833PubMedCrossRef Holland PR, Akerman S, Goadsby PJ (2006) Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci 24(10):2825–2833PubMedCrossRef
101.
go back to reference Liu Y, Broman J, Edvinsson L (2004) Central projections of sensory innervation of the rat superior sagittal sinus. Neuroscience 129(2):431–437PubMedCrossRef Liu Y, Broman J, Edvinsson L (2004) Central projections of sensory innervation of the rat superior sagittal sinus. Neuroscience 129(2):431–437PubMedCrossRef
102.
go back to reference Liu Y, Broman J, Edvinsson L (2008) Central projections of the sensory innervation of the rat middle meningeal artery. Brain Res 1208:103–110PubMedCrossRef Liu Y, Broman J, Edvinsson L (2008) Central projections of the sensory innervation of the rat middle meningeal artery. Brain Res 1208:103–110PubMedCrossRef
104.
go back to reference Melo-Carrillo A et al (2017) Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (Adelta) But Not Unmyelinated (C) Meningeal Nociceptors. J Neurosci 37(44):10587–10596PubMedPubMedCentralCrossRef Melo-Carrillo A et al (2017) Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (Adelta) But Not Unmyelinated (C) Meningeal Nociceptors. J Neurosci 37(44):10587–10596PubMedPubMedCentralCrossRef
105.
go back to reference Hu J, Milenkovic N, Lewin GR (2006) The high threshold mechanotransducer: a status report. Pain 120(1–2):3–7PubMedCrossRef Hu J, Milenkovic N, Lewin GR (2006) The high threshold mechanotransducer: a status report. Pain 120(1–2):3–7PubMedCrossRef
106.
go back to reference Andreou AP, Shields KG, Goadsby PJ (2010) GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol Dis 37(2):314–323PubMedCrossRef Andreou AP, Shields KG, Goadsby PJ (2010) GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol Dis 37(2):314–323PubMedCrossRef
107.
go back to reference Shields KG, Goadsby PJ (2006) Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol Dis 23(3):491–501PubMedCrossRef Shields KG, Goadsby PJ (2006) Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol Dis 23(3):491–501PubMedCrossRef
108.
go back to reference Charbit AR, Akerman S, Goadsby PJ (2011) Trigeminocervical complex responses after lesioning dopaminergic A11 nucleus are modified by dopamine and serotonin mechanisms. Pain 152(10):2365–2376PubMedCrossRef Charbit AR, Akerman S, Goadsby PJ (2011) Trigeminocervical complex responses after lesioning dopaminergic A11 nucleus are modified by dopamine and serotonin mechanisms. Pain 152(10):2365–2376PubMedCrossRef
109.
go back to reference Knight YE, Goadsby PJ (2001) The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience 106(4):793–800PubMedCrossRef Knight YE, Goadsby PJ (2001) The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience 106(4):793–800PubMedCrossRef
110.
go back to reference Pozo-Rosich P et al (2015) Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons. Cephalalgia 35(14):1298–1307PubMedCrossRef Pozo-Rosich P et al (2015) Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons. Cephalalgia 35(14):1298–1307PubMedCrossRef
112.
go back to reference Goadsby PJ, Hoskin KL (1996) Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain 67(2–3):355–359PubMedCrossRef Goadsby PJ, Hoskin KL (1996) Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain 67(2–3):355–359PubMedCrossRef
113.
go back to reference Goadsby PJ, Hoskin KL (1997) The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat 190(Pt 3):367–375PubMedPubMedCentralCrossRef Goadsby PJ, Hoskin KL (1997) The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat 190(Pt 3):367–375PubMedPubMedCentralCrossRef
114.
go back to reference Kaube H, Hoskin KL, Goadsby PJ (1993) Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption. Br J Pharmacol 109(3):788–792PubMedPubMedCentralCrossRef Kaube H, Hoskin KL, Goadsby PJ (1993) Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption. Br J Pharmacol 109(3):788–792PubMedPubMedCentralCrossRef
115.
go back to reference Melo-Carrillo A et al (2017) Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal Anti-CGRP Antibody. J Neurosci 37(30):7149–7163PubMedPubMedCentralCrossRef Melo-Carrillo A et al (2017) Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal Anti-CGRP Antibody. J Neurosci 37(30):7149–7163PubMedPubMedCentralCrossRef
116.
go back to reference Feistel S, Albrecht S, Messlinger K (2013) The calcitonin gene-related peptide receptor antagonist MK-8825 decreases spinal trigeminal activity during nitroglycerin infusion. J Headache Pain 14:93PubMedPubMedCentralCrossRef Feistel S, Albrecht S, Messlinger K (2013) The calcitonin gene-related peptide receptor antagonist MK-8825 decreases spinal trigeminal activity during nitroglycerin infusion. J Headache Pain 14:93PubMedPubMedCentralCrossRef
117.
go back to reference Vila-Pueyo M, Strother L, Page K, Loaraine H, Kovalchin J, Goadsby PJ, Holland PR (2016) Lasmiditan inhibits trigeminovascular nociceptive transmission. Cephalalgia 36:152 Vila-Pueyo M, Strother L, Page K, Loaraine H, Kovalchin J, Goadsby PJ, Holland PR (2016) Lasmiditan inhibits trigeminovascular nociceptive transmission. Cephalalgia 36:152
118.
go back to reference Akerman S, Simon B, Romero-Reyes M (2017) Vagus nerve stimulation suppresses acute noxious activation of trigeminocervical neurons in animal models of primary headache. Neurobiol Dis 102:96–104PubMedCrossRef Akerman S, Simon B, Romero-Reyes M (2017) Vagus nerve stimulation suppresses acute noxious activation of trigeminocervical neurons in animal models of primary headache. Neurobiol Dis 102:96–104PubMedCrossRef
119.
go back to reference Bloom FE (1974) To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci 14(10):1819–1834PubMedCrossRef Bloom FE (1974) To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci 14(10):1819–1834PubMedCrossRef
120.
go back to reference Lambert GA et al (1992) The spinal cord processing of input from the superior sagittal sinus: pathway and modulation by ergot alkaloids. Brain Res 597(2):321–330PubMedCrossRef Lambert GA et al (1992) The spinal cord processing of input from the superior sagittal sinus: pathway and modulation by ergot alkaloids. Brain Res 597(2):321–330PubMedCrossRef
121.
go back to reference Donaldson C et al (2002) The role of 5-HT1B and 5-HT1D receptors in the selective inhibitory effect of naratriptan on trigeminovascular neurons. Neuropharmacology 42(3):374–385PubMedCrossRef Donaldson C et al (2002) The role of 5-HT1B and 5-HT1D receptors in the selective inhibitory effect of naratriptan on trigeminovascular neurons. Neuropharmacology 42(3):374–385PubMedCrossRef
122.
go back to reference Lambert GA et al (2002) Suppression by eletriptan of the activation of trigeminovascular sensory neurons by glyceryl trinitrate. Brain Res 953(1–2):181–188PubMedCrossRef Lambert GA et al (2002) Suppression by eletriptan of the activation of trigeminovascular sensory neurons by glyceryl trinitrate. Brain Res 953(1–2):181–188PubMedCrossRef
123.
go back to reference Storer RJ, Goadsby PJ (1997) Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain 120(Pt 12):2171–2177PubMedCrossRef Storer RJ, Goadsby PJ (1997) Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain 120(Pt 12):2171–2177PubMedCrossRef
124.
go back to reference Storer RJ, Akerman S, Goadsby PJ (2004) Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 142(7):1171–1181PubMedPubMedCentralCrossRef Storer RJ, Akerman S, Goadsby PJ (2004) Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 142(7):1171–1181PubMedPubMedCentralCrossRef
125.
go back to reference Thankachan S et al (2019) Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 9(1):3607PubMedPubMedCentralCrossRef Thankachan S et al (2019) Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 9(1):3607PubMedPubMedCentralCrossRef
126.
go back to reference Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296(4):517–530PubMedCrossRef Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296(4):517–530PubMedCrossRef
127.
go back to reference Chiu R et al (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54(4):541–552PubMedCrossRef Chiu R et al (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54(4):541–552PubMedCrossRef
129.
go back to reference Coggeshall RE (2005) Fos, nociception and the dorsal horn. Prog Neurobiol 77(5):299–352PubMed Coggeshall RE (2005) Fos, nociception and the dorsal horn. Prog Neurobiol 77(5):299–352PubMed
130.
go back to reference Sundquist SJ, Nisenbaum LK (2005) Fast Fos: rapid protocols for single- and double-labeling c-Fos immunohistochemistry in fresh frozen brain sections. J Neurosci Methods 141(1):9–20PubMedCrossRef Sundquist SJ, Nisenbaum LK (2005) Fast Fos: rapid protocols for single- and double-labeling c-Fos immunohistochemistry in fresh frozen brain sections. J Neurosci Methods 141(1):9–20PubMedCrossRef
131.
go back to reference Morgan JI, Curran T (1988) Calcium as a modulator of the immediate-early gene cascade in neurons. Cell Calcium 9(5–6):303–311PubMedCrossRef Morgan JI, Curran T (1988) Calcium as a modulator of the immediate-early gene cascade in neurons. Cell Calcium 9(5–6):303–311PubMedCrossRef
132.
go back to reference Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328(6131):632–634CrossRefPubMed Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328(6131):632–634CrossRefPubMed
134.
go back to reference Hoskin KL, Bulmer DC, Goadsby PJ (1999) Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 266(3):173–176PubMedCrossRef Hoskin KL, Bulmer DC, Goadsby PJ (1999) Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 266(3):173–176PubMedCrossRef
135.
go back to reference Strassman AM, Mineta Y, Vos BP (1994) Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 14(6):3725–3735PubMedCrossRefPubMedCentral Strassman AM, Mineta Y, Vos BP (1994) Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 14(6):3725–3735PubMedCrossRefPubMedCentral
136.
go back to reference Sugimoto T et al (1998) c-fos induction in the subnucleus oralis following trigeminal nerve stimulation. Brain Res 783(1):158–162PubMedCrossRef Sugimoto T et al (1998) c-fos induction in the subnucleus oralis following trigeminal nerve stimulation. Brain Res 783(1):158–162PubMedCrossRef
137.
go back to reference Goadsby PJ, Zagami AS (1991) Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain 114(Pt 2):1001–1011PubMedCrossRef Goadsby PJ, Zagami AS (1991) Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain 114(Pt 2):1001–1011PubMedCrossRef
138.
go back to reference Kaube H, Hoskin KL, Goadsby PJ (1992) Activation of the trigeminovascular system by mechanical distension of the superior sagittal sinus in the cat. Cephalalgia 12(3):133–136PubMedCrossRef Kaube H, Hoskin KL, Goadsby PJ (1992) Activation of the trigeminovascular system by mechanical distension of the superior sagittal sinus in the cat. Cephalalgia 12(3):133–136PubMedCrossRef
139.
go back to reference Strassman AM et al (1993) Fos-like immunoreactivity in the superficial medullary dorsal horn induced by noxious and innocuous thermal stimulation of facial skin in the rat. J Neurophysiol 70(5):1811–1821PubMedCrossRef Strassman AM et al (1993) Fos-like immunoreactivity in the superficial medullary dorsal horn induced by noxious and innocuous thermal stimulation of facial skin in the rat. J Neurophysiol 70(5):1811–1821PubMedCrossRef
140.
go back to reference Hoskin KL, Goadsby PJ (1998) Comparison of more and less lipophilic serotonin (5HT1B/1D) agonists in a model of trigeminovascular nociception in cat. Exp Neurol 150(1):45–51PubMedCrossRef Hoskin KL, Goadsby PJ (1998) Comparison of more and less lipophilic serotonin (5HT1B/1D) agonists in a model of trigeminovascular nociception in cat. Exp Neurol 150(1):45–51PubMedCrossRef
141.
go back to reference Shepheard SL et al (1995) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in Dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology 34(3):255–261PubMedCrossRef Shepheard SL et al (1995) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in Dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology 34(3):255–261PubMedCrossRef
142.
go back to reference Nelson DL et al (2010) Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia 30(10):1159–1169PubMedCrossRef Nelson DL et al (2010) Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia 30(10):1159–1169PubMedCrossRef
144.
go back to reference Keay KA, Bandler R (1998) Vascular head pain selectively activates ventrolateral periaqueductal gray in the cat. Neurosci Lett 245(1):58–60PubMedCrossRef Keay KA, Bandler R (1998) Vascular head pain selectively activates ventrolateral periaqueductal gray in the cat. Neurosci Lett 245(1):58–60PubMedCrossRef
145.
go back to reference Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 682(1–2):167–181PubMedCrossRef Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 682(1–2):167–181PubMedCrossRef
146.
go back to reference Park J et al (2014) Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: A Fos protein study. Neurobiol Dis 64:1–7PubMedCrossRef Park J et al (2014) Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: A Fos protein study. Neurobiol Dis 64:1–7PubMedCrossRef
147.
go back to reference Tepe N et al (2015) The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. European J Neurosci 41(1):120–128CrossRef Tepe N et al (2015) The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. European J Neurosci 41(1):120–128CrossRef
148.
go back to reference May A, Goadsby PJ (2001) Substance P receptor antagonists in the therapy of migraine. Expert Opin Investig Drugs 10(4):673–678PubMedCrossRef May A, Goadsby PJ (2001) Substance P receptor antagonists in the therapy of migraine. Expert Opin Investig Drugs 10(4):673–678PubMedCrossRef
149.
go back to reference Polley JS et al (1997) The activity of GR205171, a potent non-peptide tachykinin NK1 receptor antagonist, in the trigeminovascular system. Regul Pept 68(1):23–29PubMedCrossRef Polley JS et al (1997) The activity of GR205171, a potent non-peptide tachykinin NK1 receptor antagonist, in the trigeminovascular system. Regul Pept 68(1):23–29PubMedCrossRef
150.
go back to reference Widmann C et al (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79(1):143–180PubMedCrossRef Widmann C et al (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79(1):143–180PubMedCrossRef
151.
152.
go back to reference Gao YJ, Ji RR (2009) c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J 2:11–17PubMedPubMedCentralCrossRef Gao YJ, Ji RR (2009) c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J 2:11–17PubMedPubMedCentralCrossRef
153.
go back to reference Burstein R et al (2000) An association between migraine and cutaneous allodynia. Ann Neurol 47(5):614–624PubMedCrossRef Burstein R et al (2000) An association between migraine and cutaneous allodynia. Ann Neurol 47(5):614–624PubMedCrossRef
154.
go back to reference Oshinsky ML (2006) Insights from experimental studies into allodynia and its treatment. Curr Pain Headache Rep 10(3):225–230PubMedCrossRef Oshinsky ML (2006) Insights from experimental studies into allodynia and its treatment. Curr Pain Headache Rep 10(3):225–230PubMedCrossRef
155.
go back to reference Tfelt-Hansen P, Lous I, Olesen J (1981) Prevalence and significance of muscle tenderness during common migraine attacks. Headache 21(2):49–54PubMedCrossRef Tfelt-Hansen P, Lous I, Olesen J (1981) Prevalence and significance of muscle tenderness during common migraine attacks. Headache 21(2):49–54PubMedCrossRef
157.
go back to reference Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63PubMedCrossRef Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63PubMedCrossRef
158.
go back to reference Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462PubMedCrossRef Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462PubMedCrossRef
159.
go back to reference Minett MS, Quick K, Wood JN (2011) Behavioral Measures of Pain Thresholds. Curr Protoc Mouse Biol 1(3):383–412PubMedCrossRef Minett MS, Quick K, Wood JN (2011) Behavioral Measures of Pain Thresholds. Curr Protoc Mouse Biol 1(3):383–412PubMedCrossRef
160.
go back to reference Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50(3):355–363CrossRef Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50(3):355–363CrossRef
161.
go back to reference Hansen JM et al (2008) Familial hemiplegic migraine type 1 shows no hypersensitivity to nitric oxide. Cephalalgia 28(5):496–505PubMedCrossRef Hansen JM et al (2008) Familial hemiplegic migraine type 1 shows no hypersensitivity to nitric oxide. Cephalalgia 28(5):496–505PubMedCrossRef
162.
163.
go back to reference Farajdokht F et al (2018) Ghrelin attenuated hyperalgesia induced by chronic nitroglycerin: CGRP and TRPV1 as targets for migraine management. Cephalalgia 38(11):1716–1730PubMedCrossRef Farajdokht F et al (2018) Ghrelin attenuated hyperalgesia induced by chronic nitroglycerin: CGRP and TRPV1 as targets for migraine management. Cephalalgia 38(11):1716–1730PubMedCrossRef
164.
go back to reference Greco R et al (2018) Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain 19(1):51PubMedPubMedCentralCrossRef Greco R et al (2018) Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain 19(1):51PubMedPubMedCentralCrossRef
165.
go back to reference Ben Aissa M et al (2018) Soluble guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia 38(8):1471–1484PubMedCrossRef Ben Aissa M et al (2018) Soluble guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia 38(8):1471–1484PubMedCrossRef
166.
go back to reference Marquez de Prado B, Hammond DL, Russo AF (2009) Genetic enhancement of calcitonin gene-related Peptide-induced central sensitization to mechanical stimuli in mice. J Pain 10(9):992–1000PubMedCrossRef Marquez de Prado B, Hammond DL, Russo AF (2009) Genetic enhancement of calcitonin gene-related Peptide-induced central sensitization to mechanical stimuli in mice. J Pain 10(9):992–1000PubMedCrossRef
167.
go back to reference Yan J et al (2012) Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6). Mol Pain 8:6PubMedPubMedCentralCrossRef Yan J et al (2012) Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6). Mol Pain 8:6PubMedPubMedCentralCrossRef
168.
go back to reference Fioravanti B et al (2011) Evaluation of cutaneous allodynia following induction of cortical spreading depression in freely moving rats. Cephalalgia 31(10):1090–1100PubMedPubMedCentralCrossRef Fioravanti B et al (2011) Evaluation of cutaneous allodynia following induction of cortical spreading depression in freely moving rats. Cephalalgia 31(10):1090–1100PubMedPubMedCentralCrossRef
169.
go back to reference Filiz A et al (2017) CGRP receptor antagonist MK-8825 attenuates cortical spreading depression induced pain behavior. Cephalalgia 39(3):354–365PubMedCrossRef Filiz A et al (2017) CGRP receptor antagonist MK-8825 attenuates cortical spreading depression induced pain behavior. Cephalalgia 39(3):354–365PubMedCrossRef
170.
go back to reference Choi Y et al (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59(3):369–376CrossRef Choi Y et al (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59(3):369–376CrossRef
171.
172.
go back to reference Hargreaves K et al (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88PubMedCrossRef Hargreaves K et al (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88PubMedCrossRef
173.
go back to reference Akcali D et al (2017) Nitroglycerin challenge induces lateralized headache in nasociliarynerve-ligated rats: implications for chronic migraine. Turk J Med Sci 47(2):681–688PubMedCrossRef Akcali D et al (2017) Nitroglycerin challenge induces lateralized headache in nasociliarynerve-ligated rats: implications for chronic migraine. Turk J Med Sci 47(2):681–688PubMedCrossRef
174.
go back to reference Kim SJ et al (2018) Differential Development of Facial and Hind Paw Allodynia in a Nitroglycerin-Induced Mouse Model of Chronic Migraine: Role of Capsaicin Sensitive Primary Afferents. Biol Pharm Bull 41(2):172–181PubMedCrossRef Kim SJ et al (2018) Differential Development of Facial and Hind Paw Allodynia in a Nitroglycerin-Induced Mouse Model of Chronic Migraine: Role of Capsaicin Sensitive Primary Afferents. Biol Pharm Bull 41(2):172–181PubMedCrossRef
176.
177.
go back to reference Sureda Gibert P, Goadsby PJ, Holland PR (2018) Characterisation of an orofacial pain assessment device (OPAD) to measure facial allodynia. Cephalalgia 38:1–115 Sureda Gibert P, Goadsby PJ, Holland PR (2018) Characterisation of an orofacial pain assessment device (OPAD) to measure facial allodynia. Cephalalgia 38:1–115
178.
go back to reference Pradhan AA et al (2014) delta-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol 171(9):2375–2384PubMedPubMedCentralCrossRef Pradhan AA et al (2014) delta-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol 171(9):2375–2384PubMedPubMedCentralCrossRef
180.
go back to reference Akcali D et al (2010) Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia 30(10):1195–1206PubMedCrossRef Akcali D et al (2010) Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia 30(10):1195–1206PubMedCrossRef
181.
go back to reference Houben T et al (2016) Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice. J Cereb Blood Flow Metab 37(5):1641–1655PubMedPubMedCentralCrossRef Houben T et al (2016) Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice. J Cereb Blood Flow Metab 37(5):1641–1655PubMedPubMedCentralCrossRef
182.
go back to reference Melo-Carrillo A, Lopez-Avila A (2013) A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia 33(13):1096–1105PubMedCrossRef Melo-Carrillo A, Lopez-Avila A (2013) A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia 33(13):1096–1105PubMedCrossRef
184.
go back to reference Lafreniere RG et al (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16(10):1157–1160PubMedCrossRef Lafreniere RG et al (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16(10):1157–1160PubMedCrossRef
185.
go back to reference Royal P et al (2019) Migraine-Associated TRESK Mutations Increase Neuronal Excitability through Alternative Translation Initiation and Inhibition of TREK. Neuron 101(2):232–245 e6PubMedCrossRef Royal P et al (2019) Migraine-Associated TRESK Mutations Increase Neuronal Excitability through Alternative Translation Initiation and Inhibition of TREK. Neuron 101(2):232–245 e6PubMedCrossRef
186.
go back to reference van den Maagdenberg AM et al (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41(5):701–710PubMedCrossRef van den Maagdenberg AM et al (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41(5):701–710PubMedCrossRef
187.
go back to reference Hall B et al (2018) Genome Editing in Mice Using CRISPR/Cas9 Technology. Curr Protoc Cell Biol 81(1):e57PubMedCrossRef Hall B et al (2018) Genome Editing in Mice Using CRISPR/Cas9 Technology. Curr Protoc Cell Biol 81(1):e57PubMedCrossRef
188.
go back to reference Recober A et al (2010) Induction of multiple photophobic behaviors in a transgenic mouse sensitized to CGRP. Neuropharmacology 58(1):156–165PubMedCrossRef Recober A et al (2010) Induction of multiple photophobic behaviors in a transgenic mouse sensitized to CGRP. Neuropharmacology 58(1):156–165PubMedCrossRef
189.
191.
192.
go back to reference Houben T et al (2017) Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice. J Cereb Blood Flow Metab 37(5):1641–1655PubMedCrossRef Houben T et al (2017) Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice. J Cereb Blood Flow Metab 37(5):1641–1655PubMedCrossRef
194.
go back to reference Burstein R, Cliffer KD, Giesler GJ (1987) Direct Somatosensory Projections from the Spinal-Cord to the Hypothalamus and Telencephalon. J Neurosci 7(12):4159–4164PubMedCrossRefPubMedCentral Burstein R, Cliffer KD, Giesler GJ (1987) Direct Somatosensory Projections from the Spinal-Cord to the Hypothalamus and Telencephalon. J Neurosci 7(12):4159–4164PubMedCrossRefPubMedCentral
195.
go back to reference Burstein R, Cliffer KD, Giesler GJ (1990) Cells of Origin of the Spinohypothalamic Tract in the Rat. J Comp Neurol 291(3):329–344PubMedCrossRef Burstein R, Cliffer KD, Giesler GJ (1990) Cells of Origin of the Spinohypothalamic Tract in the Rat. J Comp Neurol 291(3):329–344PubMedCrossRef
197.
go back to reference Noseda R et al (2017) Neural mechanism for hypothalamic-mediated autonomic responses to light during migraine. Proc Natl Acad Sci U S A 114(28):E5683–E5692PubMedPubMedCentralCrossRef Noseda R et al (2017) Neural mechanism for hypothalamic-mediated autonomic responses to light during migraine. Proc Natl Acad Sci U S A 114(28):E5683–E5692PubMedPubMedCentralCrossRef
198.
go back to reference Kim EJ et al (2016) Improved Monosynaptic Neural Circuit Tracing Using Engineered Rabies Virus Glycoproteins. Cell Reports 15(4):692–699PubMedCrossRef Kim EJ et al (2016) Improved Monosynaptic Neural Circuit Tracing Using Engineered Rabies Virus Glycoproteins. Cell Reports 15(4):692–699PubMedCrossRef
Metadata
Title
Animal models of migraine and experimental techniques used to examine trigeminal sensory processing
Authors
Andrea M. Harriott
Lauren C. Strother
Marta Vila-Pueyo
Philip R. Holland
Publication date
01-12-2019
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 1/2019
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-019-1043-7

Other articles of this Issue 1/2019

The Journal of Headache and Pain 1/2019 Go to the issue