Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2022

Open Access 01-12-2022 | Migraine | Research article

Dual action of the cannabinoid receptor 1 ligand arachidonyl-2′-chloroethylamide on calcitonin gene-related peptide release

Authors: Isabella Mai Christiansen, Jacob C. A. Edvinsson, Philip V. Reducha, Lars Edvinsson, Kristian Agmund Haanes

Published in: The Journal of Headache and Pain | Issue 1/2022

Login to get access

Abstract

Background

Based on the current understanding of the role of neuropeptide signalling in migraine, we explored the therapeutic potential of a specific cannabinoid agonist. The aim of the present study was to examine the effect of the synthetic endocannabinoid (eCB) analogue, arachidonyl-2′-chloroethylamide (ACEA), on calcitonin gene-related peptide (CGRP) release in the dura and trigeminal ganglion (TG), as cannabinoids are known to activate Gi/o-coupled cannabinoid receptors type 1 (CB1), resulting in neuronal inhibition.

Methods

The experiments were performed using the hemi-skull model and dissected TGs from male Sprague-Dawley rats. CGRP release was induced by either 60 mM K+ (for depolarization-induced stimulation) or 100 nM capsaicin (for transient receptor potential vanilloid 1 (TRPV1) -induced stimulation) and measured using an enzyme-linked immunosorbent assay. The analysis of CGRP release data was combined with immunohistochemistry in order to study the cellular localization of CB1, cannabinoid receptor type 2 (CB2), CGRP and receptor activity modifying protein 1 (RAMP1), a subunit of the functional CGRP receptor, in the TG.

Results

CB1 was predominantly expressed in neuronal somas in which colocalization with CGRP was observed. Furthermore, CB1 exhibited colocalization with RAMP1 in neuronal Aδ-fibres but was not clearly expressed in the CGRP-immunoreactive C-fibres. CB2 was mainly expressed in satellite glial cells and did not show substantial colocalization with either CGRP or RAMP1. Without stimulation, 140 nM ACEA per se caused a significant increase in CGRP release in the dura but not TG, compared to vehicle. Furthermore, 140 nM ACEA did not significantly modify neither K+- nor capsaicin-induced CGRP release. However, when the TRPV1 blocker AMG9810 (1 mM) was coapplied with ACEA, K+-induced CGRP release was significantly attenuated in the TG and dura.

Conclusions

Results from the present study indicate that ACEA per se does not exhibit antimigraine potential due to its dual agonistic properties, resulting in activation of both CB1 and TRPV1, and thereby inhibition and stimulation of CGRP release, respectively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28(2):183–187PubMedCrossRef Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28(2):183–187PubMedCrossRef
2.
go back to reference Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience 89(3):901–907PubMedCrossRef Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience 89(3):901–907PubMedCrossRef
3.
go back to reference Amrutkar DV, Ploug KB, Hay-Schmidt A, Porreca F, Olesen J, Jansen-Olesen I (2012) mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain 153(4):830–838PubMedCrossRef Amrutkar DV, Ploug KB, Hay-Schmidt A, Porreca F, Olesen J, Jansen-Olesen I (2012) mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain 153(4):830–838PubMedCrossRef
4.
go back to reference Edvinsson JCA, Grell A, Warfvinge K, Sheykhzade M, Edvinsson L, Haanes KA (2020) Differences in pituitary adenylate cyclase-activating peptide and calcitonin gene-related peptide release in the trigeminovascular system. Cephalalgia 40(12):1296–1309PubMedCrossRef Edvinsson JCA, Grell A, Warfvinge K, Sheykhzade M, Edvinsson L, Haanes KA (2020) Differences in pituitary adenylate cyclase-activating peptide and calcitonin gene-related peptide release in the trigeminovascular system. Cephalalgia 40(12):1296–1309PubMedCrossRef
5.
go back to reference Haanes KA, Labastida-Ramirez A, Blixt FW, Rubio-Beltran E, Dirven CM, Danser AH et al (2019) Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models. Cephalalgia 39(11):1421–1434PubMedCrossRef Haanes KA, Labastida-Ramirez A, Blixt FW, Rubio-Beltran E, Dirven CM, Danser AH et al (2019) Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models. Cephalalgia 39(11):1421–1434PubMedCrossRef
6.
go back to reference Edvinsson JC, Reducha PV, Sheykhzade M, Warfvinge K, Haanes KA, Edvinsson L (2021) Neurokinins and their receptors in the rat trigeminal system: Differential localization and release with implications for migraine pain. Mol Pain 17:17448069211059400PubMedPubMedCentralCrossRef Edvinsson JC, Reducha PV, Sheykhzade M, Warfvinge K, Haanes KA, Edvinsson L (2021) Neurokinins and their receptors in the rat trigeminal system: Differential localization and release with implications for migraine pain. Mol Pain 17:17448069211059400PubMedPubMedCentralCrossRef
7.
go back to reference Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97(2):553–622PubMedPubMedCentralCrossRef Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97(2):553–622PubMedPubMedCentralCrossRef
8.
go back to reference Bartsch T, Goadsby PJ (2003) The trigeminocervical complex and migraine: current concepts and synthesis. Curr Pain Headache Rep 7(5):371–376PubMedCrossRef Bartsch T, Goadsby PJ (2003) The trigeminocervical complex and migraine: current concepts and synthesis. Curr Pain Headache Rep 7(5):371–376PubMedCrossRef
9.
10.
go back to reference Haanes KA, Edvinsson L (2019) Pathophysiological mechanisms in migraine and the identification of new therapeutic targets. CNS Drugs 33(6):525–537PubMedCrossRef Haanes KA, Edvinsson L (2019) Pathophysiological mechanisms in migraine and the identification of new therapeutic targets. CNS Drugs 33(6):525–537PubMedCrossRef
11.
go back to reference Edvinsson L, Haanes KA (2021) Identifying new antimigraine targets: lessons from molecular biology. Trends Pharmacol Sci 42(4):217–225PubMedCrossRef Edvinsson L, Haanes KA (2021) Identifying new antimigraine targets: lessons from molecular biology. Trends Pharmacol Sci 42(4):217–225PubMedCrossRef
12.
go back to reference Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, Edvinsson L (2015) Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Res 1600:93–109PubMedCrossRef Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, Edvinsson L (2015) Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Res 1600:93–109PubMedCrossRef
13.
go back to reference Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L et al (2019) C-fibers may modulate adjacent Adelta-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain 20(1):105PubMedPubMedCentralCrossRef Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L et al (2019) C-fibers may modulate adjacent Adelta-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain 20(1):105PubMedPubMedCentralCrossRef
14.
go back to reference Diener HC, Dodick DW, Goadsby PJ, Lipton RB, Almas M, Parsons B (2008) Identification of negative predictors of pain-free response to triptans: analysis of the eletriptan database. Cephalalgia 28(1):35–40PubMedCrossRef Diener HC, Dodick DW, Goadsby PJ, Lipton RB, Almas M, Parsons B (2008) Identification of negative predictors of pain-free response to triptans: analysis of the eletriptan database. Cephalalgia 28(1):35–40PubMedCrossRef
15.
go back to reference Rubio-Beltran E, Labastida-Ramirez A, Haanes KA, van den Bogaerdt A, Bogers A, Zanelli E et al (2019) Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan. Br J Pharmacol 176(24):4681–4695PubMedPubMedCentralCrossRef Rubio-Beltran E, Labastida-Ramirez A, Haanes KA, van den Bogaerdt A, Bogers A, Zanelli E et al (2019) Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan. Br J Pharmacol 176(24):4681–4695PubMedPubMedCentralCrossRef
16.
17.
go back to reference de Vries T, Villalon CM, MaassenVanDenBrink A (2020) Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Ther 107528 de Vries T, Villalon CM, MaassenVanDenBrink A (2020) Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Ther 107528
18.
go back to reference De Petrocellis L, Melck D, Bisogno T, Milone A, Di Marzo V (1999) Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. Neuroscience 92(1):377–387PubMedCrossRef De Petrocellis L, Melck D, Bisogno T, Milone A, Di Marzo V (1999) Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. Neuroscience 92(1):377–387PubMedCrossRef
19.
go back to reference Burggren AC, Shirazi A, Ginder N, London ED (2019) Cannabis effects on brain structure, function, and cognition: considerations for medical uses of cannabis and its derivatives. Am J Drug Alcohol Abuse 45(6):563–579PubMedPubMedCentralCrossRef Burggren AC, Shirazi A, Ginder N, London ED (2019) Cannabis effects on brain structure, function, and cognition: considerations for medical uses of cannabis and its derivatives. Am J Drug Alcohol Abuse 45(6):563–579PubMedPubMedCentralCrossRef
20.
go back to reference Lowin T, Schneider M, Pongratz G (2019) Joints for joints: cannabinoids in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 31(3):271–278PubMedCrossRef Lowin T, Schneider M, Pongratz G (2019) Joints for joints: cannabinoids in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 31(3):271–278PubMedCrossRef
21.
go back to reference Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR et al (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87(5):1932–1936PubMedPubMedCentralCrossRef Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR et al (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87(5):1932–1936PubMedPubMedCentralCrossRef
23.
go back to reference Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K et al (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19(11):4544–4558PubMedPubMedCentralCrossRef Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K et al (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19(11):4544–4558PubMedPubMedCentralCrossRef
24.
go back to reference Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22(11):565–572PubMedCrossRef Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22(11):565–572PubMedCrossRef
25.
go back to reference Katona I, Sperlagh B, Magloczky Z, Santha E, Kofalvi A, Czirjak S et al (2000) GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience 100(4):797–804PubMedCrossRef Katona I, Sperlagh B, Magloczky Z, Santha E, Kofalvi A, Czirjak S et al (2000) GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience 100(4):797–804PubMedCrossRef
26.
go back to reference Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106(2):231–232PubMedPubMedCentralCrossRef Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106(2):231–232PubMedPubMedCentralCrossRef
27.
go back to reference Lauckner JE, Hille B, Mackie K (2005) The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci U S A 102(52):19144–19149PubMedPubMedCentralCrossRef Lauckner JE, Hille B, Mackie K (2005) The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci U S A 102(52):19144–19149PubMedPubMedCentralCrossRef
28.
go back to reference Akerman S, Kaube H, Goadsby PJ (2004) Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J Pharmacol Exp Ther 309(1):56–63PubMedCrossRef Akerman S, Kaube H, Goadsby PJ (2004) Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J Pharmacol Exp Ther 309(1):56–63PubMedCrossRef
29.
go back to reference Akerman S, Holland PR, Goadsby PJ (2007) Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther 320(1):64–71PubMedCrossRef Akerman S, Holland PR, Goadsby PJ (2007) Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther 320(1):64–71PubMedCrossRef
30.
go back to reference Ruparel NB, Patwardhan AM, Akopian AN, Hargreaves KM (2011) Desensitization of transient receptor potential ankyrin 1 (TRPA1) by the TRP vanilloid 1-selective cannabinoid arachidonoyl-2 chloroethanolamine. Mol Pharmacol 80(1):117–123PubMedPubMedCentralCrossRef Ruparel NB, Patwardhan AM, Akopian AN, Hargreaves KM (2011) Desensitization of transient receptor potential ankyrin 1 (TRPA1) by the TRP vanilloid 1-selective cannabinoid arachidonoyl-2 chloroethanolamine. Mol Pharmacol 80(1):117–123PubMedPubMedCentralCrossRef
31.
go back to reference Engel MA, Izydorczyk I, Mueller-Tribbensee SM, Becker C, Neurath MF, Reeh PW (2011) Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. Neuropeptides 45(3):229–237PubMedCrossRef Engel MA, Izydorczyk I, Mueller-Tribbensee SM, Becker C, Neurath MF, Reeh PW (2011) Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. Neuropeptides 45(3):229–237PubMedCrossRef
32.
go back to reference Hou M, Uddman R, Tajti J, Kanje M, Edvinsson L (2002) Capsaicin receptor immunoreactivity in the human trigeminal ganglion. Neurosci Lett 330(3):223–226PubMedCrossRef Hou M, Uddman R, Tajti J, Kanje M, Edvinsson L (2002) Capsaicin receptor immunoreactivity in the human trigeminal ganglion. Neurosci Lett 330(3):223–226PubMedCrossRef
33.
go back to reference Fischer MJ, Messlinger K (2007) Cannabinoid and vanilloid effects of R(+)-methanandamide in the hemisected meningeal preparation. Cephalalgia 27(5):422–428PubMedCrossRef Fischer MJ, Messlinger K (2007) Cannabinoid and vanilloid effects of R(+)-methanandamide in the hemisected meningeal preparation. Cephalalgia 27(5):422–428PubMedCrossRef
34.
go back to reference Hillard CJ, Manna S, Greenberg MJ, DiCamelli R, Ross RA, Stevenson LA et al (1999) Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther 289(3):1427–1433PubMed Hillard CJ, Manna S, Greenberg MJ, DiCamelli R, Ross RA, Stevenson LA et al (1999) Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther 289(3):1427–1433PubMed
35.
go back to reference Bhatt DK, Gupta S, Jansen-Olesen I, Andrews JS, Olesen J (2013) NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia 33(2):87–100PubMedCrossRef Bhatt DK, Gupta S, Jansen-Olesen I, Andrews JS, Olesen J (2013) NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia 33(2):87–100PubMedCrossRef
36.
go back to reference Egea SC, Dickerson IM (2012) Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling. Endocrinology 153(4):1850–1860PubMedPubMedCentralCrossRef Egea SC, Dickerson IM (2012) Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling. Endocrinology 153(4):1850–1860PubMedPubMedCentralCrossRef
37.
go back to reference Walker CS, Eftekhari S, Bower RL, Wilderman A, Insel PA, Edvinsson L et al (2015) A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann Clin Transl Neurol 2(6):595–608PubMedPubMedCentralCrossRef Walker CS, Eftekhari S, Bower RL, Wilderman A, Insel PA, Edvinsson L et al (2015) A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann Clin Transl Neurol 2(6):595–608PubMedPubMedCentralCrossRef
38.
go back to reference Edvinsson L, Edvinsson JCA, Haanes KA (2022) Biological and small molecule strategies in migraine therapy with relation to the calcitonin gene-related peptide family of peptides. Br J Pharmacol 179(3):371–380PubMedCrossRef Edvinsson L, Edvinsson JCA, Haanes KA (2022) Biological and small molecule strategies in migraine therapy with relation to the calcitonin gene-related peptide family of peptides. Br J Pharmacol 179(3):371–380PubMedCrossRef
39.
go back to reference Walker CS, Raddant AC, Woolley MJ, Russo AF, Hay DL (2018) CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured. Cephalalgia 38(3):437–451PubMedCrossRef Walker CS, Raddant AC, Woolley MJ, Russo AF, Hay DL (2018) CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured. Cephalalgia 38(3):437–451PubMedCrossRef
40.
go back to reference Price TJ, Helesic G, Parghi D, Hargreaves KM, Flores CM (2003) The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience 120(1):155–162PubMedCrossRef Price TJ, Helesic G, Parghi D, Hargreaves KM, Flores CM (2003) The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience 120(1):155–162PubMedCrossRef
41.
go back to reference Hougaard Pedersen S, Maretty L, Ramachandran R, Sibbesen JA, Yakimov V, Elgaard-Christensen R et al (2016) RNA sequencing of trigeminal ganglia in Rattus Norvegicus after glyceryl Trinitrate infusion with relevance to migraine. PLoS One 11(5):e0155039PubMedPubMedCentralCrossRef Hougaard Pedersen S, Maretty L, Ramachandran R, Sibbesen JA, Yakimov V, Elgaard-Christensen R et al (2016) RNA sequencing of trigeminal ganglia in Rattus Norvegicus after glyceryl Trinitrate infusion with relevance to migraine. PLoS One 11(5):e0155039PubMedPubMedCentralCrossRef
42.
go back to reference Price TJ, Patwardhan A, Akopian AN, Hargreaves KM, Flores CM (2004) Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide. Br J Pharmacol 141(7):1118–1130PubMedPubMedCentralCrossRef Price TJ, Patwardhan A, Akopian AN, Hargreaves KM, Flores CM (2004) Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide. Br J Pharmacol 141(7):1118–1130PubMedPubMedCentralCrossRef
43.
go back to reference Richardson JD, Aanonsen L, Hargreaves KM (1998) Antihyperalgesic effects of spinal cannabinoids. Eur J Pharmacol 345(2):145–153PubMedCrossRef Richardson JD, Aanonsen L, Hargreaves KM (1998) Antihyperalgesic effects of spinal cannabinoids. Eur J Pharmacol 345(2):145–153PubMedCrossRef
44.
go back to reference Van Der Stelt M, Di Marzo V (2004) Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem 271(10):1827–1834CrossRef Van Der Stelt M, Di Marzo V (2004) Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem 271(10):1827–1834CrossRef
45.
go back to reference Akopian AN, Ruparel NB, Jeske NA, Patwardhan A, Hargreaves KM (2009) Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia. Trends Pharmacol Sci 30(2):79–84PubMedCrossRef Akopian AN, Ruparel NB, Jeske NA, Patwardhan A, Hargreaves KM (2009) Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia. Trends Pharmacol Sci 30(2):79–84PubMedCrossRef
46.
go back to reference Muller C, Morales P, Reggio PH (2018) Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci 11:487PubMedCrossRef Muller C, Morales P, Reggio PH (2018) Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci 11:487PubMedCrossRef
47.
go back to reference Raboune S, Stuart JM, Leishman E, Takacs SM, Rhodes B, Basnet A et al (2014) Novel endogenous N-acyl amides activate TRPV1–4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front Cell Neurosci 8:195PubMedPubMedCentralCrossRef Raboune S, Stuart JM, Leishman E, Takacs SM, Rhodes B, Basnet A et al (2014) Novel endogenous N-acyl amides activate TRPV1–4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front Cell Neurosci 8:195PubMedPubMedCentralCrossRef
48.
go back to reference Casarotto PC, Terzian AL, Aguiar DC, Zangrossi H, Guimaraes FS, Wotjak CT et al (2012) Opposing roles for cannabinoid receptor type-1 (CB (1)) and transient receptor potential vanilloid type-1 channel (TRPV1) on the modulation of panic-like responses in rats. Neuropsychopharmacol 37(2):478–486CrossRef Casarotto PC, Terzian AL, Aguiar DC, Zangrossi H, Guimaraes FS, Wotjak CT et al (2012) Opposing roles for cannabinoid receptor type-1 (CB (1)) and transient receptor potential vanilloid type-1 channel (TRPV1) on the modulation of panic-like responses in rats. Neuropsychopharmacol 37(2):478–486CrossRef
49.
go back to reference Tognetto M, Amadesi S, Harrison S, Creminon C, Trevisani M, Carreras M et al (2001) Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. J Neurosci 21(4):1104–1109PubMedPubMedCentralCrossRef Tognetto M, Amadesi S, Harrison S, Creminon C, Trevisani M, Carreras M et al (2001) Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. J Neurosci 21(4):1104–1109PubMedPubMedCentralCrossRef
50.
go back to reference Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457PubMedCrossRef Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457PubMedCrossRef
51.
go back to reference Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI et al (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129(2):227–230PubMedPubMedCentralCrossRef Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI et al (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129(2):227–230PubMedPubMedCentralCrossRef
52.
go back to reference Starkus J, Jansen C, Shimoda LMN, Stokes AJ, Small-Howard AL, Turner H (2019) Diverse TRPV1 responses to cannabinoids. Channels (Austin) 13(1):172–191CrossRef Starkus J, Jansen C, Shimoda LMN, Stokes AJ, Small-Howard AL, Turner H (2019) Diverse TRPV1 responses to cannabinoids. Channels (Austin) 13(1):172–191CrossRef
53.
go back to reference Doherty EM, Fotsch C, Bo Y, Chakrabarti PP, Chen N, Gavva N et al (2005) Discovery of potent, orally available vanilloid receptor-1 antagonists. Structure-activity relationship of N-aryl cinnamides. J Med Chem 48(1):71–90PubMedCrossRef Doherty EM, Fotsch C, Bo Y, Chakrabarti PP, Chen N, Gavva N et al (2005) Discovery of potent, orally available vanilloid receptor-1 antagonists. Structure-activity relationship of N-aryl cinnamides. J Med Chem 48(1):71–90PubMedCrossRef
54.
go back to reference Summ O, Holland PR, Akerman S, Goadsby PJ (2011) TRPV1 receptor blockade is ineffective in different in vivo models of migraine. Cephalalgia 31(2):172–180PubMedCrossRef Summ O, Holland PR, Akerman S, Goadsby PJ (2011) TRPV1 receptor blockade is ineffective in different in vivo models of migraine. Cephalalgia 31(2):172–180PubMedCrossRef
55.
go back to reference Edvinsson L, Haanes KA (2021) Identifying New Antimigraine Targets: Lessons from Molecular Biology. Trends Pharmacol Sci 42(4):217–225PubMedCrossRef Edvinsson L, Haanes KA (2021) Identifying New Antimigraine Targets: Lessons from Molecular Biology. Trends Pharmacol Sci 42(4):217–225PubMedCrossRef
Metadata
Title
Dual action of the cannabinoid receptor 1 ligand arachidonyl-2′-chloroethylamide on calcitonin gene-related peptide release
Authors
Isabella Mai Christiansen
Jacob C. A. Edvinsson
Philip V. Reducha
Lars Edvinsson
Kristian Agmund Haanes
Publication date
01-12-2022
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 1/2022
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-022-01399-8

Other articles of this Issue 1/2022

The Journal of Headache and Pain 1/2022 Go to the issue